w0 20227103382 A1 |0 0000 KO0 O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
19 May 2022 (19.05.2022)

‘O 00 O 0 0
(10) International Publication Number

WO 2022/103382 Al

WIPO I PCT

(51) International Patent Classification:
GO6F 9/44 (2018.01) GO6F 9/45 (2006.01)
GO6F 11/36 (2006.01)

(21) International Application Number:
PCT/US2020/059775

(22) International Filing Date:
10 November 2020 (10.11.2020)

(74)

@81)

Hendy Heng Lee; Blk 207C Punggol Place #02-966, Sin-
gapore 823207 (SG). FOO, Darius Tsien Wei; 69 Crescent
Rd, Singapore 439359 (SG).

Agent: GILLIAM, Steven R. et al.; 7200 N. Mopac Expy.,
Suite 440, Austin, Texas 78731 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, 1IN,
HR, HU, ID, IL, IN, IR, IS, IT, JO, JP, KE, KG, KH, KN,
KP, KR, KW,KZ, LA, LC,LK, LR, LS, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO,
NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW,
SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM, ZW.

(25) Filing Language: English

(26) Publication Language: English

(71) Applicant: VERACODE, INC. [US/US]; 65 Network Dri-
ve, Burlington, Massachusetts 01803 (US).

(72) Inventors: SHARMA, Asankhaya; 5 Bedok Reservoir
View, #01-04, Singapore 478928 (SG). XIAQO, Hao; Bedok
Reservoir Road #02-31, Singapore 479255 (SG). CHUA,

(54) Title: DEIDENTIFYING CODE FOR CROSS-ORGANIZATION REMEDIATION KNOWLEDGE

B e e e e -
{ Scan Stage \5
i 108
| ! 4 Remediation Service ™
! - ’ 119
} Yulnarabhity Re i *—/
< T 1est Pragics g
e T e s
| N T A e,
//0//,/ / i /ﬂ
i Suggested Fix(es) | 54;%/4%2/
1 135 - . %7
‘ ’ ;%
e e e e e e e e e e e e e e e e e e i - &
; T KR Model Trainer 425
_____ 'é},,) " Code De- ™,
% R identifier
e | \ip o _ A
h
Continuous integration 4t Orqanizat
[. Pingline Mutti-Or ganization
]@ 107 Flaw/Fix Egaﬁining Dat
Software Development Tool . I S
101 185
- FIG. 1

(57) Abstract: To preserve privacy when leveraging organization-specific remediation knowledge for flaw remediation across organi-
zations, program code is deidentified to remove code which potentially identifies its source/origin. Deidentification operates based on
structure of flaws and fixes at the level of source code constructs based on an abstract syntax tree (AST) or other structural context
representation of a fix and corresponding flaw. Potentially identifying portions of a fix indicated in its AST are determined and modified
(e.g., removed or obfuscated) without impacting AST structure. Deidentified remediation knowledge originating from different orga-
nizations is used to train a fix suggestion model(s) which learns structural context of fixes and corresponding flaws and, once trained,
generates predictions indicating suggested fixes to flaws based on structural contexts of the flaws. Deidentification can occur before
training of the fix suggestion model(s) or during prediction so potentially identifying program code is removed before suggested fixes

[Continued on next page]

WO 2022/103382 A | [0} 00 00 00O 0O 0

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

are consumed by different organizations.

[

10

20

25

WO 2022/103382 PCT/US2020/059775

DEIDENTIFYING COBE FOR CROSS-ORGANIZATION REMEBIATION
KNOWLEDGE

TECHNICAL FIELD

18601} The disclosure generally relates to the ficld of software dovelopment, mstallation and

management and 1o testing or debugging.
BACKGROUND ART

{8602} Automated program repair techoigues aim o reduce manual debugging efforts through
automation of patch generation to fix flaws identified 1o program code, such as those related to
bugs or security vulnerabilities. Automated paich generation often leverages analysis of potential
fix patterns, or high-level modifications to program code as a resubt of applying a patch, to
determinge those which can remediate an identified flaw. For instance, in the generate-and-
validaie approach to automated patch generation, candidate patches corresponding to a sot of fix
pattemns are applied to program code contamning a flaw, and the program is evaluated using a
series of tests o determine which of the candidate patches applied to the program successfully

fixes the dentified flaw.
BRIEF DESCRIPTION OF THE DRAWINGS

6603} Embodiments of the disclosure may be better understood by referencing the

accompanying drawings.

{8004} Figure 1 is a system diagram iHustrating a remediation service that provides deidentified

fix suggestions for flaws dentified n a software project.

{08005] Figure 2 depicts an example conceptual diagram of training a fix suggestion pipeline with

deidentified flaw/fix training data.

{8006] Figure 3 depicts an example conceptual diagram of determuning fix suggestions for flaws

based on output of a trained fix suggestion pipehine and deidentifving the fix suggestions.

10687} Figure 4 15 a flowchart of example operations for deidentifving code for cross-

organization remediation knowledge.

3008} Figure 5 15 a flowchart of example operations for traming a i suggestion pipehne that
g peop g 58 pip

generates detdentified code flaw fix suggestions.

[

1

20

30

WO 2022/103382 PCT/US2020/059775

{8009} Figure 6 is a flowchart of example operations for obtaining and deidentifying fix

suggestions from a tramed fix suggestion pipeline.

10610} Figures 7-8 are a flowchart of example operations for deidentifying a fix based on it

structural representation.

{3011 Figure 9 depicts an example computer systera with a reraediation service that includes a

code de-identifier.

DESCRIPTION OF EMBODIMENTS

10612} The description that follows includes example systems, methods, techuques, and
program flows that embody aspects of the disclosure. However, 1t 18 understood that this
disclosure may be practiced without these specific details. For instance, this disclosure refers to
abstract syntax trees as tHustrative examples of a data structure that captures structural context of
program code. Aspects of this disclosure can use other intermediate representations §0 SX{ESs oF
describe the structural context of program code, such as a control flow graph. In other instances,
well-known instruction instances, protocols, struchires and techniques have not been shown in

detail in order not to obfuscate the description.
Overview

{8061 3] Flaw remediation knowledge gathered from a particular organization may be useful to
mform fix suggestions for flaws identified in program code within other organizations; however,
the program code associated with the fixes (1.¢., patches) may include mformation which s
proprictary, sensitive, or otherwise private to the organization. For instance, naming conventions
used in the organization's program code may reflect proprictary information. As a result, fixes
wdentified from a scan and analysis of an organization’s program code cannot be presented to
menmbers of external organizations without the potential for sharing the originating

orgamzation’s privaie information.

10014} A techmigue for deidentifying program code while maintaiming s underying structure
has been developed that resolves the 1ssue of preserving privacy in leveraging organization-
specific remediation knowiedge for flaw remediation across organizations. Deidentification of
program code can be considered the removal of features which may identify the organization
from which the program code onginates. Collected and deidentified remediation knowledge
originating from different organizations, or cross-organization remediation knowledge, can be

2

W

10

30

WO 2022/103382 PCT/US2020/059775

used to train a fx suggestion model(s) which learns from structural context of fixes and
corresponding flaws. Predictions generated by the trained fix suggestion model indicate
suggested fixes to flaws identified in program code based on structural contexis of the flaws,
where the suggested fixes can include deidentified fixes learned from any originating
organization. Suggested fixes can thus be incorporated for flaw remediation across organizations
regardless of source/origin of the fixes without sharing private information that may be reflected

i the program code.

{88615} Deidentification of program code as disclosed herein operates based on structure of flaws
and fixes, where structure of program code may be defined in tenms of an abstract syntax tree
{AST) or other structural representation which indicates structural context of 3 flaw or a flaw and
its comresponding fix. Deidentification theretore can be performed at the level of individual
constructs 1 source code represented 1n a structural context representation of the source code,
such as an AST. This lower level of granmularity at which program code is deidentified affords for
preservation of structure of the program code that may otherwise be lost, such as if code were
mstead deidentified at the level of ine numbers. Code deidentification is achieved through
determining potentially identifving portions of a fix collected from an orgamization’s program
code indicated in the associated structural context representation and removing, obfuscating, or
otherwise modifying the potentially identifying code at one of several stages before the fix is
presented as a suggestion. Potentially identifving code can mchude program code which does not
correspond to known or publicly accessible code umits/elements, such as standard libraries or
open source libraries, or naming conventions used by an organization. Afier potentially
wdentifving code 15 determined based on the structural context representation associated with a
fix, the determined code can be modified 1n a manner which does not impact the overall structure
of the program code of the fix; that is, the structare underdying the stractural context
representation is unchanged as a result of deidentification of the fix. Deidentification can occur
cither before training of the i suggestion model(s) or during prediction. When deidentification
s implemented before trainmg, flaws and corresponding fixes can be preprocessed o detdentify
sensitive code while preparing the flaws and fixes to be used as training data. The fix suggestion
model(s) is thus trained on deidentified flaws and fixes. For deidentification during prediction,
fix predictions output by the trained fix suggestion model are deidentified before the fix
predictions are presented as suggestions. In either case, potentially dentifying code is modified
to remove source identifying information, such as wnformation identifying of an organization,

before fixes are consumed by users within different organizations, thus allowing the remediation
o P > L

[9Y]

[

1

WO 2022/103382 PCT/US2020/059775

knowledge gained across organizations 1o be used to inform intra- as well as mter-organizational

fix suggestions without compromising orgamizational privacy.

Example lustrations

{8016} Figure 1 is a system diagram iHustrating a remediation service that provides deidentified
fix suggestions for flaws identified m a software project. Figure 1 depicts a remediation service
119 as communicating with a pipeline integrated agent. While embodiments can be used with
various types of software development pipelines, Figure 1 uses a continuous integration {CH)
pipeline 107 as an example pipeline for the illustration. The f pipeline 107 1s implemented with
a software development tool 105, Anagent 117 can be program code ttegrated nto the sofiware
development tool 103 or invoked from the sottware development tool 103, for example via an
application programming interface {API). The remediation service 119 communicates with the

agent 117 as part of providing deidentified fix suggestions.

10617} Dunng a software project, developers/enginegrs will submit code changes through a
software development tool that touplements a defined development pipeline. Figure 1 illustrates a
single mstance of a developer 101 submitting a code change 102 for a sottware project with the
software development tool 105 that implements the C1 pipeline 107, Submission of a code
change can be a commit, merge, push, etc., depending on the software development tool being
used. The code change 102 may be program code being added to the software projectora
reviston/edit of program code existing in the software project. The submission of the code
change 102 triggers ranning of the Cl pipeline 107 as defined 1o a pipeline configuration file.
The Cl pipeline 107 has been defined to at least mchude a scan stage occurnng after the build and

test stages. The scan stage mvokes a vulnerability scammer 113,

[8018] The agent 117 operates with scan results from the valnerability scanner 113 to obtain fix
suggestions for detected flaws. An initial nput to the vulnerability scanner 113 1s identified
Figure 1 as program code 103A. The program code 103A may be the code change 102, an
mtermediate representation of the code change 102, or an intermediate reprosentation of at least a
part of the software project with the code change 162 incorporated. Inputting the program code
103 A to the vulnerability scanner 113 generates scan results 115A. The scan resalts 115A
mdicate one or morg flaws {¢.g., vulnerabilities). The agent 117 obtains suggested fixes for the
flaws identificd n the scan results 115A by interacting with the remediation service 119, The
agent 117 commumicates or inputs the flaws to the remediation service 119 to obtain potential
fixes output by one or more of tramed models 127. The remediation service 119 meludes the

4

W

10

36

WO 2022/103382 PCT/US2020/059775

trained models 127, a repository 123 of multi-organization flaw/fix traiming data. and a model
trainer 125, The traived models 127 have been trained with flaw/fix tramning data from the
repository 123, The multi-organization flaw/fix training data 1s based on data from vanous
sources, such as open source software reposttories, peer organizations, ¢tc. To allow for training
with the multi-organization training data without exposing proprictary nformation, the model
trainer 125 unilizes a code de-~identifier 126. The code de-identifier 126 deternunes and modifies
program code which is potentially wdentifving of 1fs source organmization, or the
owning/controlling organization of the software project that is the source of the program code.
Modifymng program code refers to modifving the program code to remove source/organization
wdentifying information. For example, an element of program code that includes information
wdentifving of its source {e.g., its source organization) can be modificd based on removing and
optionally replacing the code clement with another representation {e.g., a generic identifier or

other abstracted reprosentation) or obfuscating the code element.

18619} After obtaining the potential fixes to the remaining flaws, the agent 117 presents the
potential fixes as suggested fixes 135, The suggested fixes 135 have had potentially sensitive,
privaie, or otherwise proprictary program code modified to produce a deidentified representation
of the program code as a resalt of the model trainer 125 utilizing the code de-identificr 126 to
deidentify traming data used to generate the trained models 127, The suggested fixes 135 may
thus melude inter-orgamzational fixes, intra~organizational fixes, or a combination thereof.
Presentation of the suggested fixes 135 can be immplemented differently. The agent 117 can
update the scan results 115A to mchade the suggested fixes 135, The agent 117 can pass the
suggested fixes 135 in association with the cormrespounding rematning flaws to the software
development tool 103 mstance being used by the developer 101, The agent 117 may have its own
user interface and present the suggested fixes 135 #tself. In some implementations, the agent 117

can store the mformation or generate a notification of the suggested fixes 135

18628} The remediation service 119 can also communicate with the agent 117 to facilitate
building of the repository 123, The agent 117 can provide to the remediation service 119 traimming
data based on use of suggested fixes obtained from the remediation service 119, such as the
suggested fixes 135, or other candidate fixes apphied and determined to be successful. For
mstance, after the suggested fixes 135 are obtaimed from the remediation service 119, the agent
117 can present the flaws mndicated n the scan results 115A in association with the suggested
fixes. The agent 117 then detects which suggested fixes are selected for use and labels those for
supervised training. Alternatively or in addition, the agent 117 may label other flaw/fix data

5

W

10

20

o
(4

WO 2022/103382 PCT/US2020/059775

identified by the developer 101 for supervised training based on the developer 101 accessing a
coramit log or other historical information maintained by the software development tool 105 and
wdentifying fixes and corresponding tlaws {¢.g., upon the developer 101 determining that a
previousiy-identified flaw has been remediated). The agent 117 can commumicate the labelled
training data to the remediation service 119 for ingertion ido the repository 123 at a configured
cadence {¢.g., every n commits, cach selection, otc.}. Labelled trainmg data communicated o the
remediation service 119 may be associated with an additional label, tag, identifier, etc. whic
mdicates the source orgamzation of the traiming data. Each entry in the reposttory 123 for
flaw/fix data thus indicates its source organization based on the associated label, tag, identifier,

Ste.

16021} While Figure | depicts the model trainer 125 as invoking the code de~-identifier 126 to
deidentify flaw/fix training daia retrieved from the repository 123, in other implementations, the
remediation service 119 invokes the code de-identifier 126 to deidentify the potential fixes
cutput by the trained models 127 before the fixgs are presented as suggestions. The code de-
wdentifier 126 can thus be leveraged during preprocessing of the fixed flaw training data used to
generate the trained models 127 {as depicted in Figure 1) or after potential fixes have been
cutput by the trained models 127 following a request for prediction-based fix suggestions. These
mplementations are now described in greater detail in reference to Figure 2 and Figure 3,

respectively.

{8022 Figure 2 depicts an example conceptual diagram of training a fix suggestion pipeline with
deidentified flaw/fix training data. A remediation service 219 maintains the reposiiory 123 of
multi-organization Haw/fix traiming data. The remediation service 219 also mcludes a model
trainer 225 which frains a machine leaming model pipeline 231 compnsed of one or more
machine learning models, or the “fix suggestion pipehne 231, with traming data obtained from
the repository 123 to generate a trained fix suggestion pipeline 215, The model trainer 223
utihizes the code de-identifier 126 to deidentity the traming data obtained from the repository
123. The agent 117 convaunicates with the remediation service 219 to provide labelied tratung
data 241 to the remediation service 219 for insertion into the repository 123 as similardy

described above.

{8623} Figure 2 1s annotated with a series of letters A-E. These letiers represent stages of
operations. Although these stages are ordered for this example, the stages iHustrate one exanple

to aid in understanding this disclosure and should not be used to lntt the claims. Subjoct matier

N

10

20

o
(4

36

WO 2022/103382 PCT/US2020/059775

falling within the scope of the claims can vary with respect to the order and some of the

operations.

10624] At stage A, the model trainer 2235 retrieves fabelled traming data from the repository 123,
The model trainer 223 retrieves flaw/fix data 227 which may comprise a source code fe(s) of a
flaw and a source code file(s) of its corresponding fix. Traiming data retrieved from the
reposttory 123 can include Haw/fix data which originated from a software project owned by a
particular organization or an open source software reposttory. Training data stored in the
repository 123 which was collected from program code of a software project belonging to an
oreamization may be assigned an wdentifier (1D} which uniquely dentifies the respective source
organtzation upon collection by the agent 117 or upon insertion nto the repository 123, In this
exaraple, the flaw/fix data 227 is associated with a source organization with an orgamization 1D

of 217.

[B025] At stage B, the model trainer 225 invokes a training data preprocessor 203 to preprocess
the flaw/fix data 227, The training data preprocessor 203 preprocesses flaw/fix training data to

transform the data to a format which can be used as input to the fix sugpestion pipeling 231 for

corresponding fix, where structural context can be determined based on generating an AST for
the flaw and fix. The training data preprocessor 203 stilizes an AST generator 229 to generate
the AST based on determining a differcnec between source code of the flaw and source code of
the fix and producing an AST diff 207 based on the resulting differcnce between the respective
source code of the flaw and fix. The AST generated by the AST generator 229 15 referred to
herein as an “AST diff” due to the gencral correspondence with the code diff resulting from
determining the difference between the flaw source code and fix source code. The AST diff 207
mehudes a plurality of nodes corresponding to source code constructs and may indicate additions
or deletions made to the source code as a result of applving the fix to the flaw. In this example,
the AST diff 207 includes a node 205 and a node 209 indicating constructs which were added
and a node 211 mdicating a construct which was deleted. Values of the source code constructs
for each node {e.g., the corresponding syntax)} may be denoted in nodes of the AST dift 267 as a
node property, attribute, ete. The trainmg data preprocessor 203 may assign the AST diff 207 an
1D which identifics the fix represented by the flaw/fix data 227 and insert the AST diff 267 in a

reposttory 235 mamntained for storing AST diffs generated during traiming.

W

10

Pt
(4]

26

30

WO 2022/103382 PCT/US2020/059775

18626} Atstage C, the code de-identifier 126 obtains the AST diff 207 and deidentifies
potentially identifving features of the flaw/fix data 227 indicated by the nodes of the AST diff
207, The code de~identifier 126 leverages rules 221 for determining code that 1s sensitive,
proprietary, or otherwise potentially identifics the source organization of the flaw/fix data 227
being evaluated. The nules 221 indicate criteria for deternining if a scurce code construct
mdicated by a node of the AST diff 207 corresponds to potentially identifving code. Crtenia can
mmehude type, ongin, and/or other featurcs of source code constructs that potentially render the
construct identifving of its source organization. For mstance, the rules 221 may dictate that
source code constructs which do not correspond 1o publicly accessible code clements/uniis {c.g.,
open source code units, standard code units, etc.) should be considered potentially wdentifving.
Alternatively or in addition, the roles 221 may mdicate that naming conventions, such as names
assigned to variables, classes, routines/subroutines, or other constructs, are potentiaily
wdentifving features. To determine the source code constructs of the flaw/fix data 227 which
comprise potentially identitving code, the code de-identifier 126 evaluates the nodes of the AST
diff 207 against the rules 221 and determines which of those correspond to potentiaily
wdentifving code based on satisfving at feast a first of the ndes 221, The code de-identifier 126
may, for instance, iterate over each of the nodes of the AST diff 207 and evaluate an atiribute or
property value(s) of the node against the rules 221 to determine if the source code construct
represented by the node satisfies a first rule of the rules 221, Nodes which the code de-identifier
126 determines to satisfyv onc of the rules 221 are selected for deidentification of the
corresponding source code. In this example, the code de-identifier 126 determines that the node

205 and a node 213 satisfy the rules 221 and thus correspond to potentially identifying code.

{8027} To de~identify the source code corresponding to the nodes 205, 213, the code de-
wdentifier 126 modifies the source code corresponding to the node. Modifyving the source code
resulis in a deidentified representation of the source code, or a representation i which the
potentially identifying elements/constructs of the code are removed. The manner by which the
soarce code s modified may be specified by a set of deidentification policies that are mdicated
i the rules 221, attached to {e.g., installed on or otherwise accessible to) the code de-identifier
126, ¢te. For instance, code may be modified by deternuning a generic identifier mdicative of the
tvpe of the respective construct and replacing the construct with the generic identifier. As
another example, code may be modified through obfuscation, such as by replacing the code with
a string of randomly generated characters. Deidentification of the code represented by the nodes

2035, 213 generates a deidentified AST duff 233 in which the potentially identifying features that

W

10

o
(4

36

WO 2022/103382 PCT/US2020/059775

were indicated in the AST diff 207 have been removed. Deidentification of potentially
wdentifving code at the level of individual source code constructs represented in the AST diff 207
preserves of structure of the flaw/fix data 227, as the code de~identifier 126 docs not modify the
stracture of the AST diff 207 when deidentifving the source code—that is, the AST diff 207 and

detdentified AST diff 233 have the same structure.

{8028] At stage D, the code de-identificor 126 inserts mappings 201 which associate an imdication
of the dewdentified source code corresponding to the nodes 205, 213 with an mdication of their
respective original representations nto a repository 239 of de-identified code mappings. The
repository 239 stores mappings between modified and onginal versions of program code
deternuned to be potentially identifving of its source organization. The repository 239 can be
rdexed by organization {13 or entries 1o the repository 239 can be labelled based on organization
ID. The mappings 201 may each comprise an organization D and a construct I3 as well as an
mdication of the oniginal and deidentified code, for example. By storing mappings between
original and deidentified flaw/fix information, if a deidentified fix is suggested for a flaw
appearing in code belonging to 1ts source organization (i.¢., the fix is an intra-organization fix),
the original representation(s) of the detdentified portion(s} of the fix can be presented mstead of
the deidentified representation to facilitate understanding of suggested fixes by users consaming
the suggestions and ncorporation of the suggested fixes wnto the software project if an intra-
organization fix suggestion 1s selected. For mstance, the remediation service 219 could be
configured to present original representations of fix suggestions determingd to be intra-
organization fixes bascd on accessing the repository 239 before returning the fix suggestions to

the agent 117,

10029] At stage E, the model trainer 225 provides the deidentitied AST diff 233 as mput to the
fix suggestion pipehine 231 for tramning. Because the structure of the AST diff 207 was
snchanged from the operations of the code de-identifier 126 which generated the deidentified
AST diff 233, the mode! trainer 225 can train the fix sugeestion pipeline 231 to learn structural
context of flaws and their fixes, such as the flaw/fix data 227, as opposed to specific syntax of
flaws and fixes. The model trainer 225 can continue to retrieve flaw/fix data from the repository
123, generate an AST diff based on the tratning data, deidentify the flaw/fix data based on the
AST diff if the mies 221 are satisfied, and provide the deidentified AST diff as input into the fix
suggestion pipeline 231 until one or more traming criteria have been satisfied to vield the tramed
fix suggestion pipeling 213, Because the model trainer 225 trains the fix suggestion pipeline 231

based on ASTs which have been deidentified, the trained fix suggestion pipeline 215 gencrates

9

(4]

10

WO 2022/103382 PCT/US2020/059775

predictions corresponding to deidentified fixes. Suggested fixes selected based on output of the
trained fix suggestion pipeline 215 can thus be presented to users within any organization

regardiess of the source organization{(s} of the suggested fixes.

10038 Figure 3 depicts an example conceptual diagram of detenmining fix suggestions for flaws
based on output of a trained fix suggestion pipeline and dewdentifving the fix suggestions. A
remediation service 319 maintains the repository 123 of mudti-organization flaw/fix training
data. The remediation service 319 also includes a model trainer 325 which trains a fix suggestion
pipeline 331 with training data obtained from the repostiory 123 fo gencrate a trained fix
suggestion pipeline 315, The agent 117 communicates with the remediation service 319 to obtain
suggested fixes to ong or more flaws by providing program code of the flaws as input to the
trained fix suggestion pipeline 315, The rermediation service 319 utilizes the code de-identifier

126 1o deadentity suggested fixes output by the tramed fix suggestion mpeline 315,

{8031 Figure 3 is annotated with a serics of letters A-E. These letters represent stages of
operations. Although these stages are ordered for this example, the stages tHustrate one example
to aid in understanding this disclosure and should not be used to Himit the claims. Subject matier
falling within the scope of the clanus can vary with respect to the order and somce of the

operations.

{3032] At stage A, the model trainer 323 trains the fix suggestion pipeline with labelled trainig
data retrieved from the repository 123 to generate the trained fix suggestion pipeline 315, The
model tramer 323 retnieves flaw/fix data from the reposttory 123, inchuding labelled training data
327 that comprises flaw/fix data {e.g., flaw and fix source code files). Retreval and
preprocessing of labelled training data retrieved from the repository 123 by the mode! tramner 325
occurs as similarly described in reference to stages A and B of Figure 2. In particular, the model
trainer 325 invokes the traiming data preprocessor 203 to preprocess the labelled training data
327 based on deternuning structural context for the flaw and corresponding fix represented by
the labelled training data 327, where structaral context can be indicated by an AST for the
labelled traming data 327, The training data preprocessor 203 utilizes the AST generator 229 to
generate an AST diff 307 based on determining a difference between source code of the flaw and
source code of the fix. In this example, the AST diff 307 indicates the addition of a source code
construct corresponding to a node 3035 and deletion of scurce code constructs corresponding to a
node 309 and a node 311, The mode! trainer 325 provides the AST diftf 307 as input for training

the fix suggestion pipeline 331, As sinularly described i reference to Figure 2, the fix

10

W

10

o
(4

36

WO 2022/103382 PCT/US2020/059775

suggestion pipeline 331 learns from structural context of flaw/fix data indicated by the AST diffs
provided as input. The model trainer 325 continues traming the fix suggestion pipeline 331 1o
this manner until one or more training criteria have been satisfied to vield the tramed fix
suggestion pipeline 3135, In this example, the model tramer 323 15 trained using original
representations of flaw/fix data rather than deidentitied flaw/fix data as desenbed in reference to

Figure 2.

{3033} At stage B, the remediation service 319 obtains program code of at ieast a first flaw 333
from the agent 117, The flaw 333 can be a flaw detected by the agent 117 as a result of scanning
a software project as described in reference to Figure 1. The agent 117 can communicate flaws
such as the flaw 333 to the remediation service 319 to request potential fixes or {ix suggestions
output by the tramed fix suggestion pipeline 3135 as a result of running the pipeline 315 with the
flaws as mput. The remediation service 319 can perform sinular inifial processing of the flaw

33 to gencrate an AST of the flaw 333 indicating stractaral context of the flaw before passing
the flaw 333 as input to the trained fix suggestion pipeline 315, Running the trained fix

3
o)

suggestion pipeline 315 with the flaw 333 as mput results in the fix suggestion pipeline 313
cutputting one or more fix suggestions 323 as prediction results. The fix suggestions 323
comprise suggested fixes for the flaw 333 based on the structural context of the flaw 333 The fix
suggestions 323 also mclude the oniginal fix program code based on which the trained fix
suggestion pipeline 315 was trained; that 15, unlike the example depicted in Figure 2, fix

suggestions output by the trained fix suggestion pipeline 315 are not detdentified fixes.

{8034} At stage C, the code de-dentifier 126 deidentifics potentially identifying code mcluded
the fix suggestions 323. The code de-identifier 126 may first deternune if one or more of the fix
suggestions 323 are mtra~-organization fixes, such as based on whether an organization 1D
associated with the flaw 333 matches the organization 1D associated with any of the fix
suggestions 323, Infra-organization fixes may bypass deidentification so that the consuming
organization is presented with the original representation of the fix as obtained from that
organization’s program code {i ¢, the fix without deidentification}. For cach of the remaining fix
suggestions 323, the code de-identifier 126 can deidentifv the fix suggestion based on structural
gontext of the fix suggestion. The code de-identifier 126 can determine structaral context of cach
of the fix suggestions 323 based on determining an AST associated with the fix and evaluating
nodes of the determined AST against rules 321 {o determune code included n the fix thats
potentially dentifying of 18 respective source organization. As with the rules 221, the rules 321

may indicate ong or more criteria for determining that a source code construct is potentiaily

1i

W

10

30

WO 2022/103382 PCT/US2020/059775

wlentifying of ifs source organization, such as type, origin, and/or other features of the construct.
In this example, the code de~identifier 126 can obtamn an AST previously created for cach of the
fix suggestions 323 during the trainming which resulted in the tramed fix suggestion pipeline 313
based on an 1D associated with the fix. For mstance, a repository which the remediation service
319 can query by fix 13 may store ASTs generated from flaw/fix data during training {c.g., as
desenbed in reference to Figure 2 at stage B with respect to the reposttory 233}, Determining the
AST associated with the fix suggestions 323 can then comprise the remediation service 319
retrigving the ASTs corresponding to each of the fix saggestions 323 from the AST repository

that was butlt/updated during training of the fix suggestion pipchine 331,

18035} For cach AST determined for the fix suggestions 323, the code de-identifier 126
cvaluates the nodes of the AST agamst the rules 321 and determines whether any of the nodes
correspond o potentially wdentifving code based on satisfving at least a first of the rules 321, The
code de-identifier 126 may, for instance, iterate over each of the nodes of the AST and evalaaic
an attribuic or property value(s} of the node against the rules 321 to determinge if the source code
construct represented by the node satisfies a first rule of the rules 321, MNodes which the code de-
wdentifier 126 defermines to satisty one of the rules 321 are selecied for deidentification of the
corresponding source code. In this example, the code de-identifier 126 determines that the node
303 and a node 329 of a fust deterouned AST satisfv the rules 321 and thus correspond to
potentially identifyving code. The code de-identifier 126 can then modify the source code
corresponding to the nodes 365, 329, such as by obfuscating the source code or replacing the
source code with a generic identifier (¢ g., an identificr representing the type of the source code
construct), to generate a deidentified representation of the source code. The manner by which the
source code 18 modified may be specified by a set of deidentification policies that are mdicate

i the mules 321, installed on or otherwise accessible to the code de-identificr 126, ctc.
Deidentification of the AST{(s} associated with the fix suggestions 323 produces a corresponding
number of deidentificd ASTs, mcluding a deidentified AST 337, The code de-identifier 126 can
then nsert mappings 335 which associate an indication of the deidentified source code
corresponding to the nodes 305, 329 with an indication of their respective original
represcntations into a repository 317 of de~-identificd code mappings as similady described in
reference to Figure 2. Mappings determined and stored during prediction stage deidentification
may later be leveraged for retraining the fix saggestion pipeline 331 and/or for program

debugging operations.

W

10

20

o
(4

WO 2022/103382 PCT/US2020/059775

18636} Atstage D, the remediation service 319 determines deidentified fix suggestions 313
based on the deidentified AST(s) created by the code de-identifier 126, For instance, for the
deidentified AST 337, the remediation service 319 can “reconstruct” the fix suggestion based on
the deidentified AST 337 to result in the respective one of the deidentified fix suggestions 313,
Reconstruction of fix suggestions can be considered transforming a deidentified AST to the
source code which it represents to generate the corresponding deidentified fix suggestion, where
deidentificd source code constructs indicated in the deidentified AST are camed over into the
deidentified fix suggestion. The deidentified fix suggestions 313 are thus deidentified versions of

the fix suggestions 323 output by the trained fix suggestions pipeling 315

10637} At stage E, the remediation service 319 returns the deidentified fix suggestions 313 to the
agent 117, The remediation service 319 may first determine the deidentified fix suggestions 313
having a source organization which 1s the same as the owning/controliing organization of the
software project in which the flaw 333 was detected and are thus ntra-organization fixes. Those
of the dewdentified fix suggestions 313 determined to be intra~-organization fixes can be
associated with a label or weight based before the remediation serviee 319 retums the
deidentified fix suggestions 313 to the agent 117 to indicate which suggested fixes may have

priornty over the others.

{8638} Figures 4-8 are flowcharts corresponding to example operations of a remediation service
for deidentifyving code for cross-organization remediation knowledge. Description of these
example operations will refer to a remediation service as perforning the example operations,
where a code de-identifier can execute on the remediation service as described in reference to the
carligr figures, but naming of the actor is for convenience. Naming and organization of program
code can be arbitrary and can vary by platform, developer, etc. Further, some of the blocks in
Figures 4-8 are depicted with dashed lines. Such blocks represent examples of operations that
can be optionally performed, such as configurable setiings of the remediation service. However,
thig depiction of the blocks should not be interpreted as the operations in the blocks depicted

with solid lines being required operations.

103639} Figure 4 15 a flowchart of example operations for deidentifying code for cross-
organization remediation knowledge. Figure 4 refers to the remediation service as performing the

example operations.

{8040} At block 401, the remediation service obtains a program code fix to a flaw idenufied m a
software project, where the program code fix 18 associated with a first organization. The

13

N

10

20

WO 2022/103382 PCT/US2020/059775

remediation service may obiain the program code fix and identified flaw from training data used
to train a fix suggestion machine leaming model pipeline. In other examples, the remediation
service may obtain the program code fix based on output of rumning 3 frained fix suggestion

machine learning model pipeline with the identified flaw as input.

{8641} Atblock 403, the remediation service determines structural context of the program code
fix. The remediation service can determine an AST of the program code fix and/or conirol flow
graph of the program code fix. For mstance, to determine the structural context represented by an
AST, the remediation service may determine the AST based on diffcrences between source code
of the program code flaw and source code of the program code fix. In other examples, the
remediation service may obtain a structural context previously determined for the program code

fix {c.g., during training of a fix suggestion machine learning model pipeline}.

{0042} At block 403, the remediation service determunes 1f the program code fix comprises
program code that 1s potentially wdentifving of the first organization based, at least in part, on the
stractural context of the program code fix. The remediation service evaluates the stroctural
context to determine if any of the indicated code clements {e.g.. AST nodes representing source
code constructs) are potentially identifving of the first organization. For mstance, potentially
wdentifying program code can be determmed based on code elements indicated in the structural
context satistying one or more rales, criteria, ete. for determining program code that could
potentially identify its source. As an example, the rules or criteria may indicate that program
code that does not correspond 1o an open source code unit(s) or standard code unit{s) and/or
naming conventions are to be considered program code that is potentially identifving of its

SOUICo.

{8643} Atblock 407, based on determining that the program code fix comprises program code
that 1s potentially identifving of the first organization, the remediation service deidentifies the
program code fix based, at feast in part, on moditving the potentially identifving program code.
The remediation service modifies the program code 1n a manner which removes the potentially
wdeniifving mformation which if tncludes. For instance, the potentially identifving program code
can be modificd through obfuscation, removal, removal and replacement with a placcholder or

wdentifier, cic.

0044} As mentioned above, the remediation service employs the machive learrung model
> " <
pipeline, or fix suggestion pipehine, fo provide predicied fix suggestions. The fix suggestion
pipeline is trained to leamn structural context of different fixes across different types of flaws.

14

W

10

WO 2022/103382 PCT/US2020/059775

The structural context can be described m terms of inhernitance, variable declarations, calls, etc.
Structural context for program code can be expressed with an AST or control flow graph. Afier
caming features for different structural contexts, the fix suggestion pipeline is tramned to cluster
fixes by Haw tyvpe and structural context. Figares 3-6 are flowcharts of example operations for
training the fix suggestion pipeling to generate fix suggestions and use the trained fix suggestion

pipehine.

{0045 Figure 5 15 a flowchant of exanple operations for training a fix suggestion pipeline that
generates deidentified code flaw fix suggestions. The fix suggestion pipeline 15 formed with two
machine leaming models in this illustration, which include a convolutional nevral network
{CNN) model and a clustering model. Embodiuments are not fimited to a CNN and a clustering
model. For instance, a recurrent neural network and traditional feature leaming algorithi can be
trained. The resulting trained fix suggestion pipeline includes the program code for the
mdividual models and program code that couples the models. The description of Figure § refers

to the remediation service as performing the oxample operations.

10646} At block 501, the remediation service retrieves labelled training data curated from fixes
and corresponding flaws. The fixes and flaws are identified by one or more source file names
and timestamps and/or commit identifiers. The fixes and flaws also may indicate the respective

source organization.

{8047} At block 502, the remediation service begins rerating over each of the flaw/fix pairs. As
an example, a repository can index ¢ntries by flaw type with references to corresponding

mastances of the flaw type and corresponding fixes.

{8648} At block 503, the remediation service gencrates a structural context representation that
mdicates context for the fix and the comresponding flaw. For instance, the remediation service
can generate an AST or control flow graph for the fix and corresponding flaw as the structural
gontext representation. In the case of generating an AST for the structural context representation,
the remediation service determings a difference between the source code file(s) containing the
flaw and the source code file(s) contaming the fix. The remediation service then generates an
AST from the difference between the flaw source code file{s) and the fix source code file(s}. The
remediation service can use a tool that parses source code files, determines a difference between

the parsed files, and creates an AST therefrom.

W

10

20

WO 2022/103382 PCT/US2020/059775

{8649} At block 503, the remediation service deidentifies the fix. The remediation service can
deidentify the fix based on iterating over each indication of a code clement 11 the structural
context representation {e.g., cach AST node} and evaluating the corresponding code element
against one or more criteria, rales, ete. for determining potentially identifying program code. For
example, such critenia or rules may indicate that code clements which do not correspond to an
open source code unit(s) or a standard code unit{s) and/or names assigned to code elements (c.g.,
variable names) constitute potentially identifving program code. Code elements indicated in the
struciural context representation determined to correspond to potentially identifving program
code are deidentified based on modityving the potentially idendifving program code, where the
modifyving removes the potentially identifymg information included therein {(¢.g., through
chfuscation, removal and optional replacement with a genenie identifier or placeholder, etc).

Deidentification s further described with additional detail in reference to Figures 7-8.

18038] At block 507, the remediation service gencrates a vector representation of the structural
comtext representation. Generating the vector representation allows the structural context to be
fed or input into a machine leaming model, in this case a CNN. The vector representation also
decomposes the structural context mformation expressed in the structural context representation

o features of structural context.

{8651} Atblock 509, the remediation service inputs the vector representation into the CNN (o
train the UNN to learn features of structural context for the fix and flaw type. The last fully
connected laver is a feature vector that is classified by the classification algorithm of the CNN,

for example classifications of the feature with a confidence or prediction value per flaw type.

{8652} Atblock 510, the remediation service determines whether there 1s additional labelled
tratming data to foed into the CNN. If there 18 additional training data, ther operation returns to
block 502 to begin preprocessing the next set of traiming data. If not, then operation flows to
block 512, Training of the UNN model can end with rterating over all training data o7 satisfying
the training termination criterion. After traming, the trained CNN is saved as the front stage part

of the fix suggestion pipeline.

{8653} Atblock 512, the remediation service beging iterating over cach of the vector
representations generated from the CNN training. These can be generated before training of the
maodels begins. Each of the vector reprosendation is labelled with the flaw type being fixed by the

program code represented by the vector representation.

16

(4]

1

20

WO 2022/103382 PCT/US2020/059775

{06541 Atblock 513, the remediation service inputs the vector representation into the trained
CNN. The last laver feature vector generated from the trained UNN model 18 retrieved while the

classification can be discarded.

10685} Atblock 513, the remediation service inpuis the feature vector from the trained UNN
maodel nto a clustering model. Ths trains the clustering model to cluster fixes with similar

structural context by flaw type.

8656 Atbock 316, the remediation service determines whether there is an additional vector
representation for training the clustering model. If so, operation returns to bock 512 to process
the next vector represerdation. Otherwise, operation continues to block 517 because training of
the clustermg model 1s ternunated. As with the CNN training, clustering model traimmg
termimates when a traiming termination cniterion 1s satisfied. In some cases, ierating over all of

the training data may be the tratning fermination crterion.

106587) At block 517, the remediation service creates a fix suggestion pipeline with the trained
CNN model and the trained clustering model. Aninput vector to the pipeline would be first input
mto the trained CNN model. A final laver feature vector generated by the trained CNN model s

then passed as mput into the trained clustenng model.

[3058] The example operations described in Figure 5 assume that the traning data retnieved for
training the {ix suggestion model originated from program code belonging to or controlled by an
organization. However, traiming data can also include program code retnieved from public
repostiorics, such as open source repositories. In the cases where flaw/fix data originating from a
public repository are used as input during one or more iterations of training and the flaw/fix data
thus are not associated with an owning/controlling organization, deidentification operations

described at block 505 can be omitted.

16039] Figure 6 is a flowchart of example operations for obtaining and deidentifying fix
suggestions from a tramed fix suggestion pipeline. For consistency, Figure 6 is described with

reference to the remediation service.

{8060} At block 601, the remediation service generates a structural context representation that
mdicates context for a detected flaw. For instance, the remediation service can generate an AST
or control flow graph for the detected flaw as the structural context representation. In the case of

generating an AST for the structural context represeniation, the remediation sCrvice may receive

W

1

20

WO 2022/103382 PCT/US2020/059775

the source file(s) for the detected flaw from an agent which detected the flaw (e.g., as a rosuit of
a vulnerability scan). The remediation service may retrieve the source file(s) based ona
description of the detected flaw communicated from the agent. Embodiments can program the
agent to use a tool to generate the AST or obtain an intermediate representation from a compiler

front end.

18051} At block 603, the remediation service gencrates a vector representation of the structural
cordext representation. The remediation service can use the same word embedding model

employed for the pipeline training.

10062} At block 605, the remediation service mputs the vector representation tute the trained
NN model. From the trained UNN model, the remediation service obtamns a feature vector

corresponding to a last laver of the trained UNN model.

[68063] At block 607, the remediation service mpuis the obtained feature vector mto the trained
chistering model. The clustering model determines a cluster for the feature vector. Membership
of the feature vector n one of the fix structural context clusters mdicates similarity of struciural
context. Although the clustering model was trained with feature vectors of fixes, the feature
vectors encoded structural context information of g fix for a flaw type. The feature vector of the
flaw will most likely encode a structural context similar to that of one or more fixes for flaws of
the same type. This clustering also allows discrimination between fixes of a same flaw type 1o

different structural contexts.

18064} At block 609, the remediation service selects up to M of the nearest neighbors m the
determined cluster. The sclection limit can be a configuration value commanicated from the

remediation agent or a parameter of the pipeling,

8665} At block 610, the remediation service tterates over gach of the selected cluster members.
In particular, the remediation service iterates over each of the M nearest neighbors sclected at

block 609,

{3066} At block 611, the remediation service determines the fix associated with the selected
cluster member. The remediation service mamntains references or associations between the
feature vectors that form the clusters of the trained clustering model and the corresponding
program code fixes. The program code fixes can be identified at different granulanties. For

rstance, a program code fix can be wdentified by source file name, line numbers, and commit

1%

(4]

10

20

o
(4

36

WO 2022/103382 PCT/US2020/059775

wlentifier (e.g., branch and timestamp}. The program code fixes can also be associated with an

1D, label, ctc. which indicates the respective source organization.

10667) At block 613, the remediation service deidentifics the determined fix. The remediation
service determines structural context of the determined fix, such as by obtaning structural
context previously deternuned and stored for the fix during training of the fix suggestion
pipeline. The remediation service can deidentify the determined fix based iterating over cach
mdication of a code element m the structural context representation {e.g., cach AST node) and
evaluating the corresponding code element against one or more criteria, rules, ete. for
determining potentially identifving program code. For example, such criteria or nies may
mdicate that code elements which do not correspond o an open source code unit(s} or a standard
code wnit{s}) and/or narmes assigned to code clements {¢.g., variable names} constitute potentially
wdentifying program code. Code elements indicated in the structural context representation
determined to correspond to potentially identifving program code are deidentified based on
modifying the potentially identifying program code, where the modifying removes the
potentially identifving information included therem {(¢.g., through obfuscation, removal and
optional replacement with a generic identifier or placcholder, ete). Deidentification 1s further

described with additional detail in reference to Figures 7-8.

{8668} Atblock 614, the remediation service determines if the deidentified fix satisfies at least a
first organization specificity criterion. Some fix suggestions originating from an organization’s
program code, such as those utilizing proprictary or tnternal hibrarics, may be of fuuited vtility to
external organizations. The remediation service may address this by limiting inter-organizational
fixes based on at least a first critevion for oreanization specificity. Organization specificity refors
1o the specificity of a fix to s source organization. For instance, a fix which inchudes one or
more proprietary or internal code units would have a hugher specificity to its source organization,
while a fix in which dewdentification wags imited to obfuscating/removing names given to
variables, standard data types, cte. would have a lower specificity to its source organization. The
reracdiation service may evaluate the deideuntified fix based on one or more heuristics to
determine 1ts organization specificity or identify an organization specificity that was determme
for the deidentified fix during deidentification. Organization specificity associated with
deidentified fixes may be indicated with a percentage, value, rank, eic. and compared to a
threshold, for example, indicated in the criterion. The remediation service can be additionally
configured to limit fix suggestions to intra-crgamization fixes. In this case, if the deidentified fix
is associated with a source organization different from that of the detected flaw, the remediation

19

(4]

10

WO 2022/103382 PCT/US2020/059775

service may determine that the deidentified fix does not satisfy the criterion. I the deidentified
fix does not satisty the organization specificity criterion, operations condinue at block 615, ifthe

deidentified fix satisfies the organization specificity criterion, operations continue at block 616,

10669} At block 613, the remediation service removes the fix and selects the next nearest
member of the cluster. The remediation service may attempt to replace fixes deternmined not to
satisfy the organization specificity criterion to increasc the utility of fixes presented as
suggestions while alse prescuting a total of M fixes. The remediation service can then proceed
with determiming and deidentifving the associated fix for the next nearest member. The
remediation service may track the camulative nomber of fix removals and discontinue selection
of the next nearest member{(s} once a threshold corresponding 1o a configurable number of
removal and replacement instances has been met. As an example, the remediation service may
discontinue replacement of removed fixes after the two next nearcst members of the chuster have
been selected. Any subscquent fixes determined not to satisfy the criterion will then be removed

without replacement.

10670] At block 616, the remediation service determines if an additional selected chister member
1s remaming. 1 an additional selected cluster member remains, operations continue at block 610,
If there are no selected cluster members remaining, cach of the relevant fixes has been

deidentified, and operations contimue at block 619,

{3871} At block 619, the remediation service communicates the dewdentified fixes as suggested
fixes. The suggested fixes can be communicated to the agent which mitially communicated the
detected flaw to the remediation service. The reraediation service may first assign a rank,
priority, ¢tc. to each of the deidentitied fixes based on the organization specificity of the fixes
before the fixes are commumicated as suggestions. The remediation service may also account for
the respective source organization of the deidentified fixes when assigning the rank or prionty.
For mstance, the remediation service can associate a highest prionity or rank with deidentified
fixes for which the respective souree organization 1s the same as the organization affiliated with
the detected flaw, while detdentified fixes affiliated with pecr organizations can be associated

with a lower rank or priority.

18672} In Figure 6, the example operations describe prediction-stage deidentification of fixes,
which can occur if the fix suggestion pipeline 15 not trained with deidentified flaw/fix training
data. In implementations in which the fix suggestion pipeline was trained with deidentified
flaw/fix traiming data and the frained fix sugeestion pipehine thus cutputs deidentified fixes, the

24

(4]

10

20

WO 2022/103382 PCT/US2020/059775

deidentification operations described in Figure 6 can be omitted during retrieval of suggestaed
fixes for a flaw from the traned fix suggestion pipehine. For mstance, the remediation service

can omit the dewdentification operations described at block 613,

{8073} The example operations m Figure 6 also describe deidentifying cach of the fixes
associated with the selected cluster members. In some implementations, the remediation service
can determine whether the fixes determined at block 611 are intra-organization fixes. The
remediation service may be configurable to allow intra-organization fixes to bypass
deidentification such that the intra-organization fixes mcluded in the suggested fixes mamtam
their original representations (1.¢., are not detdentified}. In sach cases, upon determining that a
fix determined at block 611 is an intra-organization fix, the deidentification operations described

at blocks 613 and 614 can be omitted for the determined intra-organization fix.

{8874} Figures 7-8 are a flowchart of example operations for deidentifving a fix based on s
structural representation. The example operations refer to a remediation service as performing
the depicted operations for consistency with the earlier figures. The functionality of the
remediation service described in Figures 7-8 can be invoked during traming of a fix suggestion
pipeling to deidentity training data input into the fix suggestion pipeline or after a trained fix
suggestion pipeline outputs fix predictions to deidentify the fixes {¢.g., as described in reference
to Figure 5 and Figure 6, respectively). Figures 7-8 also deseribe determining an AST that
mdicates structural context for a fix. Embodiments are not limited o determining structural
cordext for a fix based on determining an AST. For instance, a control flow graph which

mdicates structural context for the fix can be determined.

[66758] Atblock 701, the remediation service determnes an AST that mdicates structural context
for a fix to be detdentified. The process by which the AST is determined can vary depending on
whether the remediation service 1s deidentifying a fix to be used as training data during traiming
of a fix suggestion pipchine or deidentifying a fix prediction output by the trained £ix suggestion
pipeline before communicating the fix as a suggested fix. During training stage deidentification,
the remediation service determimes the AST by generating an AST for the fix, such as based on
deternuning differences between a source code file(s) of the fix and a source code file(s} of a
corresponding flaw. Duning prediction stage deidentification, the remediation service can
determine an AST based on obtaining an AST previcusly determined and stored for the fix

durning training of the fix suggestion pipeling.

21

W

10

20

o
(4

WO 2022/103382 PCT/US2020/059775

{8076} At block 703, the remediation service selects a policy for deidentification of program
code. The policy indicates the process o7 technigue for removing potentially identifving
mformation from program code. For instance, the policy mav indicate that potentially identifymng
program code of the fix is to be deidentified based on obfuscating the program code, removing
the program code, or removing and replacing the program code with a placcholder or identificr.
The deidentification policy that s to be used may be a configuration setting of the remediation

SETVICE.

{88677} At block 704, the remediation service begins iterating over each node in the AST. Eac
of the nodes in the AST corresponds 1o a source code construct ocourring m program code of the
fix. Values of each of the source code constructs may be denoted 1o a property, attribute, value,
cte. of the corresponding node. Operations continue to transition point A, which confinues at

block 805 of Figure 3.

{3078} At block 805, the remediation service evaluates the source code construct corresponding
to the node against one or more rules for determining code clements which are potentially
wdentifving of a source organization of the fix. The remediation service can, for mstance,
evaluate a value(s) of at least a first node property, attribute, etc. against the rules. The rules may
mdicate that code elements {e.g., source code constructs mdicated m AST nodes) that do not
correspond to an open source code unit(s) or standard code voit(s) should be considered
potentially identifying of their respective source. Ag an example, the rules may indicate a listing
of “known” code units, including open source code units and standard code units, which do not
wdentify a particular organization or other source. The rules can then dictate that code clements
corrgsponding to a code unit(s}) that cannot be identified in the Hsting of known code units are o
be deterouned to include potentially identifving information. Aliematively or in addition, the
rules may indicate that naming conventions used for code elements should be considered
potentially identifying of the respective source {¢.g., variable names, class names,

routine/subroutine names, ¢tc.).

166791 At block 807, the remediation service determines if at least a first rule s satisfied. At
cast a first of the rules can be satisfied if the source code construct corresponding o the node s
determined not {0 correspond to an open source code unit{s) or standard code unii(s) and/or if the
source code construct inchudes a name assigned by a member of the source orgamization, for

example. if a rule 1s satisfied, operations continue at block 806, if no nules are satisfied,

7

operations continue fo transition poindt B, which continues at block 718 of Figure 7.

W

10

30

WO 2022/103382 PCT/US2020/059775

{8688 At block 209, the remediation service modifies the source code construct 1o generate a
deidentified representation. The remediation service modifies the source code construct
according to the selected deidentification policy. For instance, if the pobicy indicated that code s
to be modified through obfuscation, the remediation service can obfuscate the potentially
wdentifving mformation indicated by source code construct {e.g., by generating a randomly
generated string of characters which will replace the potentially identifying information). If the
policy indicated that code 1s to be modified through removal and replacement, the remediation
service can determine a placcholder or identifier with which to replace the potentially identifving
code. As an cxample, the remediation service can determine a type of the source code construct
and replace the source code construct with a generic identifier indicating the type. The
remediation service may determine the tvpe of the source code construct based on a set of
mappings between source code constructs of the source organization and corrgsponding types

previously determined and generated that is accessible to the remediation service.

{0681} Atblock 211, the remediation service determines a source organization specificity of the
source code construct. The source orgamzation specificity indicates the degree to which the
source code constract is specific to s source organization. The remediation service can
determine a value, score, or other metrie for the source code construct indicating specificity to #s
source organization based on a set of heunstics, for example. The heurnistics may indicate that
source code constructs having a higher degree of source orgamization specificity can mclude
those associated with proprictary or mternal code units, while source code constructs having a
low degree of source organization specificity can include names used for variables, classes,
routines/subroutines, etc. The remediation service can evaluate the source code construct based
on the heuristics and determine a corresponding value, score, eic. indicative of degree of
spacificity to ifs source organization to be assigned to #s deidentified representation. As an
exaraple, heuristics can be implemented such that code elements and features thereof are
associated with a corresponding speciticity score. The remediation service can then assign the
source code construct a defanlt spectficity value of zero and evaluate of the source code
construct based on the heunstics, increasing the score as neoded. The remediation service may
also mamtain a cumulative source organization specificity for the fix that 1s updated upon cach
specificity determmation instance based on the determined source organization specificity of

each deidentified source code construct.

{8682} Atblock 813, the remediation service associates an indication of the source organization
specificity with the deidentified representation of the source code construct. The remediation

23

(4]

10

30

WO 2022/103382 PCT/US2020/059775

service can associate a label, tag, etc. indicating the source organization specificity with the

deidentified representation.

10683} At block 815, the remediation service sfores an association between an indication of the
source cade construct and an indication of its deidentitied representation. The remediation
service can insert the association along with the orgamization 1D in a repository that stores
associations between source code constructs and their deidentified representations {e.g., a
rclational databasc). The remediation service may assign a label, tag, 1, etc. unigue to the
deidentified representation for the orgamzation 1D prior to insertion into the repository. The
remediation service can therefore access the association during subsequent presentation of
deidentified fix sugpestions from the repository based on organization IDs and/or deidentified
representations of source code constructs so that original representations can be presented to
users within the organization from which the deidentificd fix suggestion oniginated. The
reposttory may also be quenied during subsequent deidentification operations (e.g., at block 809}
to determine whether a deidentified representation of a source code construct corresponding fo
an AST node has already been generated. Operations continue to transttion poiut B, which

continues at block 718 of Figure 7.

{6684} Atblock 718, the remediation service determmnes if an additional node of the AST s
rematning. If there is an additional node remaining, operations contimie at block 704, If there are

0o nodes of the AST remaining, operations continue at block 719.

10685} At block 719, the remediation service mdicates the deidentified fix. if one or more source
organization specificitics were determined dunng deidentification of the fix, the remediation
service can indicate an aggregate of the source organization specificities with the deidentified
fix. For instance, the remediation service can indicate the cumuslative source orgamzation
specificity resulting from deidentification along with the deidentified fix. The aggregate source
organization specificity can be leveraged to inform a deterroination of whether to later present
the fix as a fix suggestion based on one or more organization specificity critena {(¢.g., as

described in reference to Figure 6 at block 614).
Vanations

{8086} The flowcharis are provided to aid in understanding the illustrations and are not to be
used to limit scope of the claims. The flowcharts depict example operations that can vary within

the scope of the claims. Additional operations may be performed; fower operations may be

24

W

10

20

o
(4

WO 2022/103382 PCT/US2020/059775

performed; the operations may be performed in paralicl; and the operations may be performed in
a different order. For example, the operations depicted 1n blocks 704 to 718 can be performed in
parallel or concurrently for each of the nodes. It will be understood that each block of the
flowchart ithustrations and/or block diagrams, and combinations of biocks in the flowchart
tHustrations and/or block diagrams, can be implemented by program code. The program code
may be provided to a processor of a general purpose computer, special purpose computer, or

other programmable machine or apparatus.

{8087} As will be appreciated, aspects of the disclosure may be embodied as a system, method or
program code/instructions stored in ong or more machine-readable media. Accordingly, aspects
may take the form of hardware, software {inchuding firmware, resident software, micro-code,
gte.}, or a combination of software and hardware aspects that may all generally be referved 1o

2% ¢,

herein as a “circuit,” “module” or “system.” The functionality presented as mdividual
moduoles/umis 1 the example llustrations can be organized differenily in accordance with any
ong of platform {operating system and/or hardware}, application ccosystem, interfaces,

progravuner preferences, programming language, admuustrator prefercnees, ete,

10688} Any combination of one or more machine readable medium{s) may be utilized. The
machine readable medium may be a machine readable signal medivm or a machine readable
storage medium. A machine readable storage medium may be, for example, but not limited {0, a
sysiem, apparatus, or device, that employs any one of or combination of electronic, magnetic,
optical, electromagnetic, nfrared, or semiconductor technology to store program code. More
specitic examples (a non-exhaustive hist) of the machine readable storage medium would include
the following: a portable computer diskette, a hard disk, a random access memory (RAM), a
read-only memory {(ROM), an erasable programmable read-only memory (EPROM or Flash
memory}, a portable compact dise read-only memory {CB-ROM3, an optical storage device, a
magnetic storage device, or any suitable combination of the foregoing. In the context of this
document, a machine readable storage medium may be any tangible medium that can contain, or
store a program for use by or 1 connection with an instruction execution sysiom, apparatus, or

device. A machine readable storage medium s not a machine readable signal medium,

{8689} A machine readable signal medium may include a propagated data signal with machine
readable program code embodied therein, for example, in baseband or as part of 8 carrier wave.
Such a propagated signal may take any of a variety of forms, clading, but not Hmited to,

clectro-maagnetic, optical, or any suitable combination thereof. A machine readable signal

25

(4]

1

20

WO 2022/103382 PCT/US2020/059775

medium may be any machine readable mediom that 1s not a machine readable storage mediwm
and that car coranwnicate, propagate, or transport a program for use by or in connection with an

mstruction execution system, apparatus, or device.

{0698} Program code embodicd on a machine readable mediuvm may be transmitied using any
appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF, ete.,

or any suitable combination of the foregoing.

6691} Computer program code for carrving out operations for aspects of the disclosure may be
written in any combination of one or more programming languages, includiog an object oriented
prograroming language such as the Java® programuoung language, C++ or the like; a dynamic
programming language such as Python; a seripting language such as Perd programming language
or PowerShell script language; and conventional procedural programming languages, such as the
"C" progranmuming language or similar programiming languages. The program code may execute
enfircly on a stand-alone machine, may execuie in a distributed manner across multiple
machines, and may execuie on ong machine while providing resulis and or aceepting inpot on

ancther machine.

18092} The program code/instructions may also be stored in a machine readable medium that can
direct a machine to function in a particular manner, such that the mstructions stored in the
machine readable medium produce an article of manufacture including instructions which

mmplement the function/act specitied in the flowchart and/or block diagram block or blocks.

18093} Figure U depicts an example computer system with a remediation service that includes a
code de-identifier. The computer system mchides a processor 901 {possibly inchuding multiple
processors, multiple cores, multiple nodes, and/or implementing multi-theeading, ¢t} The
coraputer systers includes memory 967, The memory 907 may be systern memory {(¢.g., one or
more of cache, SRAM, DRAM, zero capacitor RAM, Twin Transistor RAM, eDRAM, EDQ
RAM, DDR RAM, EEPROM, NRAM, RRAM, SONOS, PRAM, ¢tc.) or any one or more of the
above already described possible realizations of machine-readable media. The computer system
also mcludes a bus 903 (e g, PCL ISA, PCE-Express, HyperTransport® bus, InfiniBand® bus,
NuBus, gtc.} and a network mterface 905 (e.g., a Fiber Channel interface, an Ethernet inferface,
an indernet small computer svstem interface, SONET interface, wircless interface, etc.). The
system also includes remediation service 911 with code de-identifier 913, The remediation
service 911 trains a fix suggestion machine leaming model pipeline with mulii-organization
flaw/fix traring data and provides suggested fixes to Haws detected 1n a software project based

26

W

10

20

o
(4

WO 2022/103382 PCT/US2020/059775

on running the trained fix suggestion machine learning model pipeline with detected flaws as
mput. The remediation service 911 invokes the code de~identifier 913 to deidentify flaw/fix
training data and/or program code fixes output by the trained fix suggestion maching leaming
model pipeline based on modification of the program code determined to include information
which potentially identifies the owning/controlling organization of the respective program code.
Any one of the previously descrbed functionalities may be partiaily (or entirely) impleroented in
hardware and/or on the processor 901, For example, the functionality may be implemented with
an apphication specific integrated circut, in logic implemented 1n the processor 901, in a co-
processor on a perpheral device or card, ete. Further, realizations may nclude fewer or
additional components not iHlustrated in Figure 9 {(e.g., video cards, audio cards, additional
network interfaces, peripheral devices, et} The processor 961 and the network interface 905
are coupled to the bus 903, Although iflustrated as being coupled to the bus 903, the memory

507 mav be coupled to the processor 901,

18694} While the aspocts of the disclosure are descnibed with reference o various
mmplementations and exploitations, it will be understood that these aspects are illustrative and
that the scope of the claims 13 not limited to them. In gencral, technigues for deidentification of
program code for cross-organization remediation knowledge as described herein may be
mmplemented with facilitics consistent with any hardware svstem or hardware systems. Many

variations, modifications, additions, and improvements are possible.

{3095} Plural instances may be provided for components, operations or structures described
herein as a smgle instance. Finally, boundaries between various components, operations and
data stores are somewhat arbitrary, and particular operations are itlustrated 1n the confext of
specific illustrative configurations. Other allocations of functionality are envisioned and may
fall within the scope of the disclosure. In general, structures and functionality presented as
separate components in the example configurations may be implemented as a combined structare
or component. Similarly, structures and functionality presented as a single component may be
mplemented as separate components. These and other variations, modifications, additions, and

mmprovements may fall within the scope of the disclosure.

{8696} Use of the phrase “at least one of” preceding a list with the conjunction “and” should not
be treated as an exclusive list and should not be construed as a list of categories with one ttem

from ecach category, unless specifically stated otherwise. A clause that recites “at least ong of A,

10

[
¥4

20

WO 2022/103382 PCT/US2020/059775

B, and €7 can be infringed with only one of the listed ttems, multiple of the listed items, and one

or more of the ttems in the list and another e not listed.

Example Embodiments
18697} Example embodiments inchude the following:

6698} Embodiment 1. A method comprises obtaining a program code fix to a flaw identified o
a software project, wherein the program code fix is associated with a first organization.
Structural context of the program code fix is determined. It s determined if the program code fix
comprises program code that 1s potentially identifying of the first organization based, at least in
part, on the stroctural context of the program code fix. Based on determining that the program
code fix comaprises program code that is potentially identifving of the fust organization, the
program code fix is deidentified based, at least in part, on modifying the potentially identifymg

program code.

{8699} Embodiment 2: The method of Embodiment 1, wheren determining structural context of
the program code fix comprises determining an abstract syntax tree of the program code fix or a

control flow graph of the program code fix.

18108} Embodiment 3: The method of Embodiment 2, wherein determining the abstract syatax
tree of the program code fix comprises deternining the abstract syntax tree based, at least in part,

on differences between source code of the flaw and source code of the program code fix,

{3101} Embodiment 4: The method of Embodiments 2 or 3, wherein deterouning 1f the program
code fix comprises program code that 1s potentially identifving of the first organization
comprises, evaluating nodes of the structural context of the program code fix against one or more
rules for determining potentially identifving program code; and determining f at least a first of

the nodes satisfies a first of the one or more rules.

{3102} Embodiment 5: The method of Embodiment 4, wherein the one or more rules comprise
rules to determine that program code is potentially identifying if the program code does not

corrgspond o standard code anits or open source code anits.

{8103} Embodiment 6; The method of one of Embodiments 1-5, wherein modifying the
potentially identifying program code comprises obfuscating or removing at least a first source

code construct corresponding to the potentially identifying program code, wherein the

28

(4]

10

[
¥4

20

WO 2022/103382 PCT/US2020/059775

obtuscating or removing generates a deidentified representation of the first source code

construct.

10104} Embodiment 7: The method of Embodiment 6, wherein removing the first source code
counstruct compnses determining an indication of a type of the first source code construct and

replacing the first source code construct with the mdication of the type.

[3105] Embodiment 8: The method of Embodiments 6 or 7, further comprising generating and
storing an asscoiation between the first sosrce code construct and the deidentificd representation,

wherein the association also identifies the first organization.

{8186] Embodiment 9: The method of one of Embodiments 1-8, wherein obtaining the program
code fix to the flaw comprises obtaining the program code fix o the flaw from a repository of

labelled program code fixes and corresponding flaws.

10197} Embodiment 10: The method of one of Embodunents 1-9, further comprising
determining one or more suggested program code fixes to the flaw, wherein obtaning the
program code fix to the flaw comprises obtaming the program code fix from the one or more

suggested program code fixes.

10108} Embodiment 11; One or morg non-transitory machine-readable media comprising
program code for deidentifyving a program code fix associated with a first organization, the
program code to: generate a structural representation of the fix, wheremn the structural
representation indicates a plarality of source code constructs; determine whether at least a first
source code construct of the plurality of socurce code constructs inciudes information which is
potentially identifying of the first organization based, at least in part, on the structural
representation of the fix; and based on a determination that the first source code construct
mcludes mformation that is potentially identifving of the first organization, modify the first
source code construct, wherein the modification of the first source code construct removes or

obfuscates the potentially identifymg information.

{3109} Embodiment 12: The non-transitory machine-readable media of Embodiment 11, wheren
the program code to determune whether the first source code construct is potentially identifving
of the first organization comprises program code (o determine whether the first source code
constrict does not correspond o one or more standard code units or 0ne OF MOTE OPen SOUICS

code units,

29

(4]

1

20

WO 2022/103382 PCT/US2020/059775

{8118} Embodiment 13; The non-transiiory machine-readable media of Embodiments 11 or 12,
wherein the program code to remove the potentially wdentifving nformation comprises prograr
code to replace the first source code construct with an identifier that indicates a type of the fivst

source code constract.

{8111} Embodiment 14; The non-transifory machine~-readable media of one of Embodiments 11-
13, wherein the program code to generate the structural representation of the fix comprises
program code to gencrate an abstract syntax tree of the fix, wherein the abstract syntax tree
comprises a plurality of nodes, wherein cach of the plurality of nodes corresponds to a respective

one of the plurality of source code constructs.

18112} Embodiment 15 An apparatus comprises a processor and a machine-readable medium.
The machine-readable medium has program code executable by the processor to cause the
apparatus to obtain one or more program code fixes to a flaw wdentified 10 a software project,
wherein each of the program code fixes is associated with a corresponding one of a plurality of
source organizations, and wheregin the softwarg project 18 associated with a first organization,
The program code is also executable by the processor to cause the apparatus to, for each program
code fix of the one or mare program code fixes and corresponding one of the plurality of source
organizations, determine a structural context of the program code fix; determine 1f the program
code fix comprises program code that is potentially identifying of the corresponding one of the
plurality of source organizations based, at least in part, on the structural context of the program
code fix; and based on a determination that the progrars code fix comprises program code that is
potentially identifying of the corresponding one of the plurality of source organizations,
deidentify the program code fix based, at least in part, on modification of the potentially

identifving program code.

{8113} Embodiment 16 The apparatus of Embodiment 15, wherein the program code executable
by the processor to cause the apparatus to determine the structural context of the program code
fix comprises program code executable by the processor to cause the apparaius o determineg an

abstract syntax tree or control flow graph of the program code fix.

{8114} Embodiment 17; The apparatus of Embodiment 16, whergin the program code executable
by the processor to cause the apparatus to determine f the program code fix comprises program
code that 18 potentially identifymg of the corresponding source organization compriscs programnm

code executable by the processor to cause the apparatus to gvaluate nodes of the abstract syntax

N

1

WO 2022/103382 PCT/US2020/059775

tree or control flow graph against one or more rules for determining potentially identifving

program code.

10115} Embodiment 18; The apparatus of Embodiment 17, firther comprising program code
executable by the processor to cause the apparatus to determine that the program code fix
comprises program code that is potentially identifying of the corresponding source organization
based, at least in part, on at least a first of the nodes satisfying a first of the one or more rules,
wherein the one or more rules comprise rules to determine that program code is potentially
wdentifving if the program code does not correspond to one or more standard code units or one or

more open source code untis.

{8116] Embodiment 19: The apparatas of one of Embodiments 13-18, wherem the determmation
of structural context, determination if the program code fix comprises program code that is
potentially identifying of the corresponding one of the plurality of source organizations, and
deidentification of the potentially identitving program code for cach program code fix generates

a plurality of deidentified program code fixes.

{8117} Embodiment 20; The apparatus of Embodiment 19, further comprising program code
executable by the processor to cause the apparates to, for cach of the plurality of deidentified
program code fixes, determine if the corresponding one of the plurality of source organizations is
the same as the first organization; and based on a determination that the corresponding one of the
plurality of source organizations 1s the same as the first organization, associate, with the
deidentified program code fix, a rank or mdication that the deidentified program code fixisa

high priorty fix.

3
pemt

WO 2022/103382 PCT/US2020/059775

WHAT IS CLAIMED 15

1. A method comprising:
obtaining a program code fix to a flaw identificd in a software project, wherein the
program code fix is associated with a first organization;
determming structural context of the program code fix;

5 deternining 1f the program code fix comprises program code that is potentially
wdentifying of the first organization based, at least in part, on the structural context
ot the program code fix; and

based on determmning that the program code fix comprises program code that is
potentially identifving of the first organization, deidentifying the program code

16 fix based, at least m part, on modifying the potentially identifving program code.

2. The method of claim i, wherein deternuning structural context of the program code fix
coroprises determining an abstract svntax tree of the program code fix or a control flow graph

of the program code fix.

3. The method of claim 2, wherein determining the abstract syntax treg of the program code
15 fix comprises determining the abstract syntax troe based, at least in part, on differences

between source code of the flaw and source code of the program code fix,

4. The method of claim 2, wherein determining if the program code fix comprises program
code that is potentially idendifving of the first organization comprises,
evaluating vodes of the structural context of the program code fix against one or more
20 rules for determining potentially identifying program code; and

determining if at least a first of the nodes satisfies a first of the one or more rules.

5. The method of claim 4, wherein the one or more rules comprise nules to determine that
program code is potentially identifving if the program code does not correspond to standard

code units or open source code unifs,

23 6. The method of claim 1, wherein modifving the potentially identifying program code
comprises chfuscating or removing at least a first source code construct corresponding to the
potentially identifying program code, wherein the obfuscating or removing gencrates a

deidentified representation of the first source code counstruct.

Z

3

¥4

10

20

WO 2022/103382 PCT/US2020/059775

7. The method of claim 6, wherein removing the first source code construct comprises
determining an indication of a tvpe of the first source code construct and replacing the first
source code construct with the mdication of the type.

3. The method of claim 6, further comprnising generating and storing an association between
the first source code construct and the deidentified representation, wherein the association

also identifies the first organization.

8. The method of claim 1, wherein obtaining the program code fix to the flaw comprises
obtaining the program code fix to the flaw from a repository of labelled program code fixes

and corresponding flaws.

10. The method of claim 1, further comprising determining one or more suggested program

code fixes to the flaw, wherein obtatiung the program code fix to the flaw comprises

obtaining the program code fix from the one or more suggested program code fixes.

11, One or more non-transttory machine-readable media comprising program code for

deidentifving a program code fix associated with a first organization, the program code to

generate a structural representation of the fix, wherein the structural representation

indicates a plurality of source code constructs;

determine whether at least a first source code construct of the plurality of source code
constructs includes information which is potentially identifying of the first
organization based, at least 1n part, on the structural represerdation of the fix; and

based on a determination that the first source code construct includes information that is
potentiaily identifving of the first organization, modify the first source code
construct, wherein the modification of the first source code construct removes or

obfuscates the potentially identifving mformation.

12. The non-transitory maching-readable media of claim 11, wherein the program code to
determine whether the first source code construct is potentially identifying of the first
organization comprises program code to deternine whether the first source code construct
does not correspond to ong or more standard code units or one or more open source code

units.

3
L2

¥4

10

30

WO 2022/103382 PCT/US2020/059775

13. The non-transitory machine-readable media of claim 11, wherein the program code to
remove the potentially idendifving mformation comprises program code to replace the first
source code construct with an dentifier that indicates a tyvpe of the first source code

constract.

14, The non-transitory machine-readable media of claim 11, wherein the program code to
generate the structural representation of the fix comprises program code to generate an
abstract svntax tree of the fix, wherein the absiract syntax {ree comprises a plurality of nodes,
wherein cach of the plurality of nodes corresponds to a respective one of the plurality of

source code constructs.

15. An apparatus comprising’
a processor; and
a machine-readable mediom having program code executable by the processor to cause
the apparatus 1o,
obtain one or more program code fixes to a flaw identified i a software project,
wherein each of the program code fixes 15 associated with a corresponding
one of a plurality of source organizations,
wherein the software project is agsociated with a first organmization;
for cach program code fix of the one or more program code fixes and
corresponding one of the plurality of source orgamizations,
determine a structural context of the program code fix;
determine it the program code fix comprises program code that is
poientially dentifving of the corresponding one ot the plurality of
source organizations based, at least part, on the structural
contoxt of the program code fix; and
based on a determination that the program code fix comprises program
code that is potentially identifving of the corresponding one of the
plurality of source orgamizations, deidentify the program code fix
based, at least in part, on modification of the potentially

identifving program code.

16. The apparatus of claim 15, wherein the program code executable by the processor {o

cause the apparatus to determine the structural context of the program code fix comprises

3
o

¥4

10

WO 2022/103382 PCT/US2020/059775

program code executable by the processor to cause the apparatus to detcrmine an abstract

syntax tree or control flow graph of the program code fix.

17. The apparatus of claim 16, wherein the program code executable by the processor to
cause the apparatus to determing if the program code fix comprises program code that is
potentially identifving of the corresponding source organization comprises program code
executable by the processor to cause the apparatus to evaluate nodes of the abstract syntax
tree or control flow graph agamnst one or more rules for determining potentially identifying

program code.

18. The apparatus of claim 17, further comprising program code executable by the processor
to cause the apparatus to determing that the program code fix comprises program code that is
potentially identifving of the corresponding source organization based, at least in part, on at
least a first of the nodes satisfying a first of the one or more nules, wherein the one or more
rules comprise rules to determine that program code is potentially wentifying 1f the program
code does not correspond 1o one or more standard code units or OnRC OF MOTS OPEn SOUNCS

code units,

19. The apparatus of claim 15, wherein the determination of structural context, determination
if the program code fix comprises program code that s potentiaily entifying of the
corresponding ove of the plurality of source organizations, and deidentification of the
potentially wdentifving program code for cach program code fix generates a plurality of

deidentified program code fixes.

20, The apparatus of clamm 19, further comprising program code executable by the processor
to cause the apparatus to, for cach of the plurality of deidentified program code fixes,
determine if the corresponding one of the plurahity of source organizations is the same as
the first organization; and
based on a determination that the corresponding one of the plurality of source
organizations 18 the same as the furst orgamization, associate, with the deidentified
program code fix, a rank or indication that the deidentified program code fixisa

high priorty fix.

3
(]

PCT/US2020/059775

WO 2022/103382

1/9

.

A

eieq Buiel | xiymely

uoneziel -

'

/
f
{

TR | S
JRBURUBEY m

- -eaepey /

nnn nnnme anane ianan W

E7T J2URIL [BPOYY

\\\

!

\\\\\

\\\\\\\\\\\\\\

\

\\\\\\\\\ \\\\\\\\\\\\\

\\\\

Y

. \\\

.
\\\\\\\

i, \\\\\\
\\\\\\\ \\\\“\c

\\\\\\\

A

\\\\\\\\\\\\\

6Ll
SOIISS UONBIPSILSY

L Old

\

1] ™
100 JusuidopAs slemyos A
™
20} e |
suypdid G
uoneBou| snonuiuo)
e’ U
m
A [
1831 awng |
/j M
iiiiiiiiiiiiiiiiiiiiiii =,
e vE0l

801

.

BULEDS
Ayagessun

iy
S

PCT/US2020/059775

WO 2022/103382

218

¢ Oid

3000 QHHINIWIC T 3000 OH0
3000 QHHINIAET | 3000 OHO
£ 0 b T4
Buiddeypy spoo I
3000 GA-HINIQIEC | 3000 DHO siul e «
R peyuapI-8(T €L -QURASUOD) e 5T SISV
g , A pajeIRuan)
3000 CHAINIEC | 300D 9H0 \mx — m
91} -l bio 50 .mw Mzmwmm
-
£ o ™
w\\\\\m\\\\\“ \§ W 107, @ (ET 10s5000id5id) R meg
Vi o EH e B L Buiies| Xi/mel
o, \w\\\“ w\\\\\\“\\\\&sii auidid led LiC 1oV 4 e R e N] . R TT-ro | - uonRzel -y
\J m\\\\\\w\n\\m tonsebing || peunuepis GZ1 Bususpy L8Y (19y) 8811 S n
L7 \\\\\\\\\\\\\\ _ @ - \ -8(1 8po0 J f“rxmwc»m pessqy) ||
9 / 577 J8UR 1] BP0V YN -
¢ kY
4 T \
_ BTZ 2oniog uoepaway

PCT/US2020/059775

WO 2022/103382

39

£ie ”mmsﬁﬁmcouw
] £1g plBio

-

607 Qi jongsuco

- o s.....P
) £ig pbio N

£ Ol

3000 QAAINIQET T 3000 940
300D QIAINICIEA T 3000 940
T Bo

000 Q31UINIOIE] _ 3000 D¥E0

— leuw. e
sBuddeyy epon
I

510 0 B

2000 A3 ENIGET m 4003 D40

glL i bo

Xid paiuspia(

| 7T soupusp
-3} 3P0

K

A

” ” - N
- L
S1e

Xid

uonseling = | 1oy

A

-

~,
AN
- BTE 80IA10G UODRIDSLUAY
~
./ .
N ! i JBUIBLE [B00
,, v o (B R
, i, P 7 7 [e

- \\\\ i//_, nv L N\ m“\\m“mm\ \N“n\“m ((((((((((((((((((((N.@m \Mumm.momwwug&w‘hﬁwfl mﬂamm\wwm mwm m
— = TP % 2 Tee e T
ETF suosaBbng | w\\\\\ \\\N\\ \\\\\u b 2 e fuwies | ol mwamm“ 4

| suocusebbng | ; s 0 e updd [ite : e e

|-

Cglg

&

-

e Logee

WO 2022/103382 PCT/US2020/059775

4/9

N

) DEIDENTIFY CODE FOR CROSS-
| ORGAMIZATION REMEDIATION KNOWLEDGE /

i

OBTAIN A PROGRAM CODE FIXTO AFLAWIDENTIFIED IN A
401 1 SOFTWARE PROJECT, THE PROGRAM CODE FIX
ASSOCIATED WITH A FIRST ORGANIZATION

) 4
403 - | DETERMINE STRUCTURAL CONTEXT OF THE PROGRAM
CODE FIX

l

DETERMINE IF THE PROGRAM CODE FIX COMPRISES
PROGRAM CODE THAT 15 POTENTIALLY IDENTIFYING OF
THE FIRST ORGANIZATION BASED, AT LEASTIN PART, ON
THE STRUCTURAL CONTEXT OF THE PROGRAM CODE FIX

l

BASED ON DETERMINING THAT THE PROGRAM CODE FIX
COMPRISES PROGRAM CODE THAT 16 POTENTIALLY
407 - IDENTIFYING OF THE FIRST ORGANIZATION, DEIDENTIFY THE
PROGRAM CODE FIX BASED, AT LEAST IN PART, ON
MODIFYING THE POTENTIALLY IDENTIFYING PROGRAM CODE

405

FIG. 4

WO 2022/103382 PCT/US2020/059775

5/9

/" TRAINFIX SUGGESTION PIFELINE THAT GENERATES
DEIDENTIFIED CODE FLAW FiX SUGGESTIONS

v

501 - | RETRIEVELABELLED TRAINING DATA CURATED FROM FIXES AND
CORRESPONDING FLAWS

v

502 1> FOR EACH PROGRAM CODE FIX AND CORRESPONDING FLAW | /4&-----------“

¢

GENERATE STRUCTURAL CONTEXT REPRESENTATION THAT
503 = INDICATES CONTEXT FOR THE FIX AND THE
CORRESPONDING FLAW

v

505 DEIDENTIFY THE FiX

v

GENERATE VECTOR REPREGENTATION OF THE
DEIDENTIFIED STRUCTURAL CONTEXT REPRESENTATION

'

INPUT THE VECTOR REPRESENTATION INTO A CONVOLUTIONAL
508 NEURAL NETWORK ({CNN} TO TRAINTHE CNN TO LEARN
FEATURES OF STRUCTURAL CONTEXT FOR FIX AND FLAW TYPE

'

507 1

5107 ADDITIONAL LABELLED TRANING DATA? -

|
NO
¥

5§12 - FOREACHVECTOR REPRESENTATION

v

INPUT THE VECTOR REPRESENTATIONINTO
TRAINED CONVOLUTIONAL NETWORK MODEL

b

INPUT FEATURE VECTOR GENERATED AT LAST LAYER OF THE TRAINED
515 7 CNNMODEL INTO A CLUSTERING MODEL TO TRAIN CLUSTERING MODEL
| TO CLUSTER FIXES BY FLAW TYPE AND CONTEXT

v

513 "

516 1 ADDITIONAL VECTOR REPRESENTATION?

i
NO
¥
CREATE FIX SUGGESTION PIPELINE WITH TRAINED
CNN MODEL AND TRAINED CLUSTERING MODEL

517

WO 2022/103382

601

., GENERATE STRUCTURAL CONTEXT REPRESENTATION

PCT/US2020/059775

&6/9
}/"/GBTAEN AND DEIDENTIFY SUGGESTED FIXES FOR A\\\
\ FLAW FROM TRAINED FIX SUGGESTION PIPELINE /,,,/

v

THAT INDICATES CONTEXT FOR A DETECTED FLAW

;

503 GENERATE VECTOR REPRESENTATION OF THE
° 7 STRUCTURAL CONTEXT REPRESENTATION

‘

505 -~ | INPUT THE VECTOR REPRESENTATION INTO THE TRAINED
" CNNMODEL TO OBTAIN FEATURE VECTOR AT LAST LAYER
s07 - INPUT FEATURE VECTOR INTO TRAINED CLUSTERING MODEL TO
DETERMINE MOST RELEVANT CLUSTER OF FEATURE VECTORS
609 1 SELECT UP TO M OF THE NEAREST MEMBERS OF THE CLUSTER
; é . 610
» FOREACHSELECTED CLUSTERMEMBER
s1 DETERMINE FIX ASSOCIATED WITH THE SELECTED
) CLUSTER MEMBER
613 L DEIDENTIFY THE DETERMINED FIX 615
; * REMOVE FIX AND SELECT
VES ~ NEXT NEARESTMEMBER
 OFTHECLUSTER
) ~_~DOES THE DEIDENTIFIED FIX j
614 7 SATISFYANORGANIZATION = NG
" SPECIFICITY CRITERION?
.
YES
v 616
ADDITIONAL SELECTED CLUSTER MEMBER?
|
NO
¥
619

“L COMMUNICATE DEIDENTIFIED FIXES AS SUGGESTED FIXES

WO 2022/103382

PCT/US2020/059775

7/9

,,/"/ DEIDENTIFY FIXBASED ON TS
\\ STRUCTURAL REPRESENTATION

l /

751 - DETERMINE ABSTRACT SYNTAX TREE THAT INDICATES |
" STRUCTURAL CONTEXT FOR A FIX TO BE DEIDENTIFIED |

i

03 SELECT POLICY FOR DEIDENTIFICATION OF

PROGRAM COBRE

i

FOR EACH NODE IN ABSTRACT
SYNTAX TREE

Ay
Ay
Ay
—~ N
704 o
L
Ay
Ay
Ay

YES
8 ADDITIONAL NODE? N
Ei@

M8 INDICATE DEIDENTIFIED FIX

FIG. 7

WO 2022/103382 PCT/US2020/059775

8/9

EVALUATE CQRRESPND?NG SOURCECODE |
805 1 CONSTRUCT AGAINST RULE(S) FOR DETERMINING
POTENTIALLY IDENTIFYING CODE ELEMENTS

!

. ~
// N
7 ~

_ISARULES) - go
T SATISFIED? -

7

YES

MODIFY SOURCE CODE CONSTRUCT TO
GENERATE DEIDENTIFIED REPRESENTATION

i

§14 . DETERMINE SOURCE ORGANIZATION
~ SPECIFICITY OF SOURCE CODE CONSTRUCT

AT OGN OF SoRE
813 7 ORGANIZATION SPECIFICITY WITH DEIDENTIFIED
REPRESENTATION OF SQURCE COBE CONSTRUCT

l

STORE ASSQCIATION BETWEEN SOURCE CODE
CONSTRUCT AND DEIDENTIFIED REPRESENTATION

809 -

815

FIG. 8

WO 2022/103382 PCT/US2020/059775

9/9
901 (S) Network
i 7 interface
Processor (o
Bus
Code De-identifier | 0913
907 L4 Memory ()
"’ ' ' Remediation Service
h
911
L 803

FIG. 9

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US2020/059775

A,

CLASSIFICATION OF SUBJECT MATTER

IPC(8) - GO6F 9/44; GO6F 11/36; GO6F 9/45 (2021.01)
CPC - GO6F 11/3604; GO6F 8/30; GO6F 8/75; GO6F 8/37, GO6F 8/433 (2021.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B.

FIELDS SEARCHED

see Search History document

Minimum documentation searched (classification system followed by classification symbols)

sea Search History document

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

see Search History document

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

document

international symposium on Software testing and analysis. 16 July 2010 (16.07.2010) Retrieved
on 10 January 2021 (10.01.2021) from <https://bugcounting.net/pubs/issta10.pdf> entire

C. DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US 2017/0212829 A1 (AMERICAN SOFTWARE SAFETY RELIABILITY COMPANY) 27 July 1-20
2017 (27.07.2017) entire document

A US 2015/0339486 A1 (UNIVERSITY OF OTTAWA et al) 26 November 2015 (26.11.2015) entire | 1-20
document

A US 2015/0363294 A1 (THE CHARLES STARK DRAPER LABORATORY INC.) 17 December 1-20
2015 (17.12.2015) entire document

A US 2011/0258609 A1 (MACZUBA) 20 October 2011 (20.10.2011) entire document 1-20

A US 2013/0007701 A1 (SUNDARARAM) 03 January 2013 (03.01.2013) entire document 1-20

A _|WEI et al. "Automated fixing of programs with contracts.” In: Proceedings of the 19th 1-20

O

Further documents are listed in the continuation of Box C.

D See patent family annex.

*

U

“p»
“E”

“L

“o»
wpn

Special categories of cited documents:

document defining the general state of the art which is not considered
to be of particular relevance

document cited by the applicant in the international application

earlier application or patent but published on or after the international
filing date

document which maK throw doubts on priority claim(s) or which
is cited to establish t qf{pubhcanon date of another citation or other
special reason (as specified)

document referring to an oral disclosure, use, exhibition orother means
document published prior to the international filing date but later than
the priority date claimed

e

e

wyn

g

later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

document of particular relevance; the claimed invention cannot
be considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

document member of the same patent family

Date of the actual completion of the international search

16 January 2021

Date of mailing of the international search report

08 FEB 2021

P.O.

Name and mailing address of the ISA/US
Mail Stop PCT, Attn: ISA/US, Commissioner for Patents

Box 1450, Alexandria, VA 22313-1450

Facsimile No. 571-273-8300

Authorized officer

Biaine R. Copenheaver

Telephone No. PCT Helpdesk: §71-272-4300

Form

PCT/ISA/210 (second sheet) (July 2019)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - wo-search-report

