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OPEN SOURCE VULNERABILITY
PREDICTION WITH MACHINE LEARNING
ENSEMBLE

BACKGROUND

[0001] The disclosure generally relates to the field of
information security, and more particularly to software
development, installation, and management.

[0002] Modern software development relies upon open
source libraries to allow the rapid prototyping and develop-
ment of new code. As open source libraries are created and
revised, bug fixes and vulnerabilities are not always publicly
published. Relevant forums and developer notes often con-
tain pertinent information regarding the stability of open
source libraries, but it is difficult to use this information due
to the large volume of data.

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] Embodiments of the disclosure may be better
understood by referencing the accompanying drawings.
[0004] FIG. 1 depicts the training and deployment of an
automatic vulnerability identification system for open
source libraries.

[0005] FIG. 2 depicts example client systems interacting
with a vulnerability database and an automatic vulnerability
identification system through a client request manager.
[0006] FIG. 3 is a flowchart of example operations for
generating a classifier ensemble for flaw identification.
[0007] FIG. 4 depicts an example automatic vulnerability
identification system.

[0008] FIG. 5 depicts the use of a natural language pro-
cessor for generating vulnerability vectors.

[0009] FIG. 6 is a graph depicting metrics for an automatic
vulnerability identification system.

[0010] FIG. 7 depicts an example computer system with
an automatic vulnerability identification system.

DESCRIPTION

[0011] The description that follows includes example sys-
tems, methods, techniques, and program flows that embody
embodiments of the disclosure. However, it is understood
that this disclosure may be practiced without these specific
details. For instance, this disclosure refers to K-nearest
neighbors in illustrative examples. Aspects of this disclosure
can be also applied to other machine learning algorithms. In
other instances, well-known instruction instances, protocols,
structures and techniques have not been shown in detail in
order not to obfuscate the description.

INTRODUCTION

[0012] To aid in software development, software devel-
opers typically adopt issue-tracking and source control man-
agement systems. These tools are popular for open source
projects and modern software development. Developers
work on reported issues in these systems, then commit
corresponding code changes to a source control management
system. Bug fixes and new features are frequently merged
into a central repository, which is then automatically built,
tested, and prepared for a release to production, as part of the
DevOps practices of continuous integration and continuous
delivery (“CI/CD”). However, numerous security-related
issues and vulnerabilities are identified and patched without
public disclosure due to the focus on fast release cycles and
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the lack of manpower and expertise. An estimated 53% of
vulnerabilities in open source libraries are not disclosed
publicly. In addition, fixes to these undisclosed vulnerabili-
ties are sometimes not reported (“silent fixes™).

[0013] Overview

[0014] A system to create a stacked classifier model com-
bination or classifier ensemble has been designed for iden-
tification of undisclosed flaws (e.g., bugs and vulnerabili-
ties) in software components (e.g., open source libraries) on
a large-scale. This classifier ensemble is capable of at least
a 54.55% improvement in precision. The system uses a
K-folding cross validation algorithm to partition or split a
sample dataset and then train and test a set of N classifiers
with the split dataset. At each test iteration, trained models
of'the set of classifiers generate probabilities/predictions that
a sample has a flaw, resulting in a set of N probabilities or
predictions for each sample in the test data. With a sample
size of S, the system passes the S sets of N predictions to a
logistic regressor along with “ground truth” (represented
with labels) for the sample dataset to train a logistic regres-
sion model. The trained classifiers and the logistic regression
model are stored as the classifier ensemble. The classifier
ensemble can then be used to generate a probability that a
software component or project has flaw. Output from the
classifier ensemble can be inserted into a database of iden-
tified flaws, which can then be used to guide developers in
open source library selection in rapid software development.
For instance, an agent can be programmed to monitor or
analyze a software project and access the database to iden-
tify vulnerabilities in the software project.

Example Illustrations

[0015] FIG. 1 depicts the training and deployment of an
automatic vulnerability identification system for open
source libraries. A list of open source data sources 100 is
shared with a data scraper 108. The data scraper 108 scrapes
data sources from a number of open source data repositories
104 via a network 106 to accumulate commit messages and
bug reports (hereafter “CBR data”) 110. A natural language
processor (hereafter “NLP”) 112 processes the CBR data
110. The NLP 112 generates vulnerability vectors 114 based
on the CBR data 110 and provides them to a vulnerability
classifier ensemble generator (“generator”) 116. The gen-
erator 116 uses the vulnerability vectors 114 and “ground
truth” labeled vulnerability data 102 to generate a vulner-
ability classifier ensemble 118. The vulnerability classifier
ensemble 118 is deployed to identify vulnerabilities in
software components which may be in a software project,
open source project, and/or open source library. The
ensemble 118 generates a probability value that a software
component has a flaw and this probability value in associa-
tion with identification of the software component is inserted
into a vulnerability database 120.

[0016] Referring back to the data scraper 108 prior to
generation of the classifier ensemble 118, the data scraper
108 collects the CBR data 110 from the open source data
repositories 104 over the network 106 based on the list of
open source libraries 100. The data scraper 108 collects
CBR data 110 by collecting “software artifacts” based on
relevant text. A software artifact may be a commit message,
comment in a forum, bug report, issue, text extracted from
any one of these, etc. The scraper 108 determines relevant
text based on known organizational structures for data in the
open source data repositories 104. For example, a forum
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may be known to label topics by open source library name
and organize comments with a particular spacing. The data
scraper 108 can extract the text from each comment of each
relevant topic. In general, the data scraper 108 is pro-
grammed to gather data from interfaces oriented toward
human accessibility. The data scraper 108 can also be
configured to gather data from data repositories with various
formats.

[0017] Example data sources of the CBR data 110 include
forums, open source library repositories, and blog posts,
which are elements of the open source data repositories 104.
The CBR data 110 may contain a combination of natural
language and code-specific language. The NLP 112 is
designed to process this language combination of the CBR
data 110. The code-specific language may include universal
resource locators (“URLs”), types of software vulnerabili-
ties, abbreviations (e.g., XSS), acronyms, and other software
development or programming specific terminology. Commit
messages and bug reports, titles, descriptions, comments,
numbers of comments, attachment numbers, labels, dates of
creation, and last edited dates may be extracted by the data
scraper 108 as the CBR data 110, as this information is
generally available in most bug reports and is relevant to
vulnerability detection. Among the selected features, titles,
descriptions, comments, and labels are text features that
contain semantic information which can be processed by the
NLP 112. The numbers of comments and attachments are
numeric features which may reflect the attention and reso-
Iution a bug report received. Similarly, the difference
between the created and last edited date reflects the resolu-
tion time, allowing vulnerabilities to be correlated with
corresponding versions of open source libraries.

[0018] The NLP 112 takes the CBR data 110 as input and
performs language processing operations to generate the
vulnerability vectors 114. The vulnerability vectors 114
comprise frequency counts of tokens (words or phrases)
from the CBR data 110 which indicate the presence of a
vulnerability. The NLP 112 generates the vulnerability vec-
tors 114 by recording words or phrases in the CBR data 110
indicative of vulnerabilities. The NLP 112 may have been
manually trained by embedding words known to be indica-
tive of vulnerabilities into a vector space to generate rela-
tionships between different words. Words or phrases in the
CBR data 110 are then evaluated based on their proximity or
association with the words embedded in the vector space.
The functionality of the NLP 112 is explored in greater detail
by the FIG. 4 description below.

[0019] The NLP 112 provides the vulnerability vectors
114 as input to the generator 116. The generator 116 uses the
vulnerability vectors 114 and the vulnerability data 102 to
generate a classifier ensemble based on training a number N
of classifiers with a K-splitting algorithm and using logistic
regression. Using N classifiers improves performance for
imbalanced datasets.

[0020] The generator 116 trains and tests the N classifiers
to accurately identify vulnerabilities by classifying the vul-
nerability vectors 114 and validating identifications with the
vulnerability data 102. This training and testing generates
for each vulnerability vector a prediction from each trained
classifier. Assuming S of the vulnerability vectors 114 were
in the testing data, the generator 116 generates S sets of N
predictions. The generator 116 then uses the predictions
made by the N trained classifiers with the vulnerability data
102 to train a logistic regression model. The generator 116

Feb. 20, 2020

forms the ensemble 118 by combining the trained N classi-
fiers with the trained logistic regression model. To combine,
the generator 116 can create program code that linearly
combines output probabilities for a software component
from the trained N classifiers to the logistic regression model
and program code to fit the linearly combined probabilities
to the probability distribution of the logistic regression
model.

[0021] The ensemble 118 can be used in coordination with
the NLP 112, as well as the data scraper 108 The NLP 112
can be used to generate vectors from information about a
code unit or a software project. The data scraper 108 can
operate in conjunction with the NLP 112 and the ensemble
118 to periodically or on demand scrape one or more target
repositories. The vulnerability database 120 is updated with
results from the ensemble 118. The vulnerability database
120 can be accessed prior to employing the ensemble 118 to
avoid repeated processing of the same open source compo-
nents. Embodiments may further enhance the quality of the
database 120 with expert evaluation of the components
identified as having or being vulnerabilities by the ensemble
118. The open source components (e.g., libraries or projects)
can be stored in association with the vulnerability prediction
or probability value. When presented for evaluation, the
database 120 can present the components identified as
vulnerabilities with their associated confidence values for
sorting or filtering to allow the experts to evaluate more
efficiently.

[0022] The client systems 126a-c submit requests for
vulnerability identification by sharing the client data 124
with the client request manager 122. The client manager 122
acts as an interface between the client systems 126a-c and
both the ensemble 118 and the vulnerability database 120.
The client request manager 122 receives the client data 124
from the client systems 126a-c. The received client data 124
may comprise operational parameters and a list of open
source libraries with specified versions. The operational
parameters may include a Boolean denoting whether a client
system has requested a new search of the open source
libraries or a probability threshold for vulnerability identi-
fication. The client request manager 122 may provide
received client data 124 to the AVIS 118 and the vulnerabil-
ity database 120 for vulnerability identification as appropri-
ate.

[0023] The client request manager 122 accesses the vul-
nerability database 120 to determine whether appropriate
vulnerability information is available for the open source
libraries in the client data 124. In some cases, the vulner-
ability database 120 may return query results that indicate
appropriate information is available for some open source
libraries in the client data 124 but not others. In such cases,
the ensemble 118 can process the client data 124 based on
those open source libraries for which the vulnerability
database 120 does not have information. The new data is
stored or merged with existing data in the vulnerability
database 120. The vulnerability database 120 then returns
appropriate information for each of the open source libraries
in the client data 124 to the client request manager 122.

[0024] For example, the client system 126a may request
vulnerability data for an open source library titled “openL.i-
braryV1.1”. The client system 126a sends the request to the
client request manager 122, which accesses the vulnerability
database 120 accordingly. The vulnerability database 120
returns results that indicate whether or not any known
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vulnerabilities for “openlibraryV1.1” are stored therein.
The vulnerability database 120 may report that the open
source library “openl.ibraryV1.1” has vulnerabilities. If the
vulnerability database 120 does not contain vulnerability
data for “openLibraryV1.1”, this result can trigger the client
request manager 122 to invoke the ensemble 118 to auto-
matically identify vulnerabilities for “openlibraryV1.1”.
The identified vulnerabilities are then stored in the vulner-
ability database 120 and communicated to the client request
manager 122, which returns the relevant vulnerability data
to the client system 126a. In some cases, the client system
126a may directly request a new search be performed for
“openLibraryV1.1” to ensure that vulnerabilities are
detected. This request may be made based on operational
parameters specified by the client system 126« in the client
data 124.

[0025] FIG. 2 depicts example client systems interacting
with a vulnerability database and an automatic vulnerability
identification system through a client request manager. A
client request manager 202 transmits client data 224a and
224b between client systems 222a and 2224, a vulnerability
database 204, and an automatic vulnerability identification
system (AVIS) 212. The vulnerability database 204 com-
prises open source library data 206a-d. The AVIS 212
comprises an AVIS controller 214, a data scraper 216 with
access to open source data repositories 232 over a network
230, an NLP 218, and a vulnerability classifier ensemble
220. The AVIS 212 generates client vulnerability data 226a
from the client data 224aq.

[0026] For the example system, the client request manager
202 and the vulnerability database 204 are shown to exist on
the same device. This allows the client request manager 202
direct access to the open source library data 206a-d. In some
cases, the client request manager 202 and the vulnerability
database 204 exist on different devices and may interact over
a wired or wireless connection. In some cases, the client
request manager 202, the vulnerability database 204, and the
AVIS 212 may exist on the same device.

[0027] The vulnerability database 204 contains the open
source library data 206a-d for four different open source
libraries. The open source library data 206a comprises a
table of version histories for the open source library with
associated vulnerability data. The vulnerability data may
comprise a number of vulnerabilities for each version of the
open source library and probabilities associated with each
identified vulnerability. In some cases, each of the number of
vulnerabilities may be identified and alternative open source
libraries may be added to the vulnerability data manually or
automatically from predetermined vulnerability data reposi-
tories. Similar information is contained in the open source
library data 2065-d.

[0028] The client request manager 202 receives the client
data 224a and 2245 from the client systems 222a and 2225.
The client request manager 202 determines whether relevant
information is present on the vulnerability database 204. For
example, the client data 2245 from the client system 2224
may pertain to the open source library 4, which has relevant
information in the vulnerability database 202 stored in the
open source library data 206d. Thus, the client request
manager 202 may send the open source library data 2064 to
the client system 22254 as the client vulnerability data 2265
in response to the request made by the client system 2225.
[0029] If the vulnerability database 202 does not have
relevant information based on the client data 224a, the client
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request manager 204 invokes the AVIS 212. The client
request manager 204 shares the client data 224a with the
AVIS controller 214. The AVIS controller 214 initiates a
series of operations to identify vulnerabilities using the data
scraper 216, the NLP 218, and the vulnerability classifier
ensemble 220. Once identified, vulnerability data is returned
to the client request manager 202 as the client vulnerability
data 226a by the AVIS controller 214. The client request
manager 204 can store the client vulnerability data 226a as
open source library data on the vulnerability database 204
and returns the client vulnerability data 226a to the client
system 222a.

[0030] The data scraper 216 takes as input the client data
224q from the AVIS controller 214. The data scraper 216
collects commit messages and bug reports pertaining to open
source libraries listed in the client data 224a by scraping data
from open source data repositories 232 over the network
230. The data scraper 216 outputs the aggregate information
as CBR data to the NLP 218.

[0031] The NLP 218 analyzes the CBR data from the data
scraper 216 to generate a set of vulnerability vectors. The
vulnerability vectors comprise information indicative of
vulnerabilities from the CBR data. The generated vulner-
ability vectors are sent to the vulnerability identifier 220 for
processing. The functionality of the NLP 218 and the
vulnerability vectors is explored in greater detail by the FIG.
5 description.

[0032] The vulnerability classifier ensemble 220 generates
a vulnerability probability value for each of the vulnerability
vectors. Any identified vulnerabilities are returned to the
AVIS controller 214, which returns the identified vulner-
abilities as the client vulnerability data 226a to the client
request manager 204. The generation of the vulnerability
identifier 220 is explored in greater detail by the FIG. 3
description.

[0033] The client request manager 202 stores the received
client vulnerability data 226a as open source library data or
merges it with existing open source library data 206a-d. Any
open source library data relevant to the client data 224a is
returned to the client system 2224 as the client vulnerability
data 226a.

[0034] In some cases, the vulnerability database 202 and
the AVIS 212 may communicate to identify and store
vulnerabilities in open source libraries without being
prompted by a client system. The vulnerability database 202
may also request the identification of vulnerabilities for open
source libraries based on the passing of a predetermined
amount of time since the last update to the vulnerabilities of
the open source library.

[0035] FIG. 3 is a flowchart of example operations for
generating a classifier ensemble for flaw identification. The
description of FIG. 3 refers to a generator as performing the
example operations for consistency with FIG. 1. The gen-
erator has access to program code that implements N clas-
sifiers. The number and type of classifiers can vary.

[0036] Atblock 302, a generator partitions software devel-
opment data with M samples into K datasets or folds. The M
samples may be M software artifacts or M messages, com-
mits, etc. The folding parameter K may be chosen based on
a number of open source components indicated in the
software development data. The generator may invoke a
defined function/method for K-fold cross validation and pass
as parameters the value for K and a reference(s) to the
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dataset including the M samples. By partitioning the soft-
ware development data, classifiers can be trained and tested
without overfitting.

[0037] At block 304, the generator begins an operative
loop from 1 to K (or 0 to K-1) according to the splitting/
folding algorithm being used. The loop comprises the opera-
tions of blocks 306, 308, 310, and 312.

[0038] At block 306, the generator begins a nested loop
N=1 to M, for the M classifiers. The loop comprises the
operations of blocks 308 and 310. The classifier of a current
iteration is referred to as the N classifier.

[0039] At block 308, the generator trains the N classifier
on all but the D” dataset and tests the N classifier with the
D fold. This allows the N classifier to be trained with a
large dataset while reserving the D? fold for testing. The
generator uses indices provided from invocation of the
K-fold function on the dataset as parameters into a function
defined for training each classifier. For instance, a classifi-
cation label of “1” may indicate that a data sample has a flaw
based on expert knowledge or “ground truth.” The generator
can be programmed to interpret a probability above 0.5 as
classification related to a flaw and a probability of 0.5 and
below as not related to a flaw. The generator can convert the
probability to a binary classification value unless the clas-
sifier being trained generates a binary classification value. In
addition, a classifier being trained may have a designated
output for a first classification and a designated output for a
second classification. The output node of the classifier with
the greater probability would be selected by the generator.
After a training iteration that involves training a classifier
with samples in the training folds produces a trained clas-
sifier, the generator uses the index or indices into the test
fold for the Dth iteration to input samples of the Dth fold into
the trained model. For example, training the K-nearest
neighbors classifier comprises training the classifier on each
data sample (e.g., vector corresponding to a software arti-
fact) in all folds other than the D fold. This training of the
Nth classifier generates or results in a trained K-nearest
neighbors classifier. The trained K-nearest neighbors clas-
sifier is then tested with the Dth fold by inputting the
samples from the Dth fold. For each data sample S in the
testing fold, the generator stores the prediction. Thus, the
generator stores a probability PNs made by the N classifier
for the sample S in the D™ fold as the N* component of a set
or vector of predictions for sample S.

[0040] At block 310, the generator stores the predictions
of the N* trained classifier for samples in the D” dataset fold
as the N” component of the S” probability vector. This
iterative training and testing of each classifier for each
dataset fold yields SxM predictions which are stored as
probability vectors. The stored probabilities can be associ-
ated with the corresponding classification labels for the
samples within the probability vectors or a separate data
structure. Embodiments can associate the classification
labels with the probabilities different. For example, these
can be associated by sample identifiers or the structures can
be ordered consistently to allow for a same index to be used
across structures for a same data sample. The probability
vectors contain the predictions of the N classifiers for the S
samples and are used for training a logistic regression
model.

[0041] At block 312, the generator determines whether
there is an additional classifier to train and test. For example,
the generator determines whether the loop control variable N
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is equal to M. If there is an additional classifier to train and
test, the flow of operations returns to block 306. If there is
not an additional classifier, the flow of operations continues
to block 314.

[0042] At block 314, the generator determines whether
there is an additional dataset fold or partition. For example,
the generator determines whether the loop control variable is
equal to K. If there is an additional fold, the flow of
operations returns to block 304. Otherwise, the flow of
operations continues to block 316.

[0043] At block 316, the generator feeds classified vul-
nerability data (classification labels) and the probability
vectors to a logistic regressor. The logistic regressor trains a
logistic regression model with the classification labels and
probability vectors. The logistic regressor trains a model
based on a logistic probability distribution given by:

p(x) = (1 + e’(ﬁo{ﬁﬁ'?))?l,

where p(x) is the probability of a prediction being accurate,
X is a probability vector, and §, and 3, are parameters that
best fit a logistic probability curve to the probability vectors.
The parameters §, and 3, are determined by fitting the above
equation to the classified vulnerability data as a function of
the probability vectors. Once determined, the parameters 3,
and B, specify the logistic probability distribution or the
trained logistic regression model. To train the logistic regres-
sion model, the regressor linearly combines the probabilities
of each probability vector and accepts as input features the
linearly combined probabilities and the corresponding clas-
sification labels. The regressor can use stochastic gradient
descent to estimate the values of the model parameters or
coeflicients f, and [3,. Training continues until a specified
accuracy threshold is satisfied.

[0044] A predetermined probability threshold can be used
to turn the logistic regression model into a binary classifier.
For example, if a probability threshold of p=0.5 is used,
vulnerability vectors which give a probability p(x)=0.5 will
return a 1 (indicating a vulnerability) and vulnerability
vectors which give a probability p(x)<0.5 will return a 0
(indicating no vulnerability). The selection of a probability
threshold is discussed in greater detail by the FIG. 6 descrip-
tion.

[0045] At block 318, the generator stores as a classifier
ensemble a combination of the M trained classifiers and the
trained logistic regression model that satisfies the accuracy
threshold, which may be based on specified precision and
recall rates. To create the classifier ensemble, the generator
constructs program code that passes an input vector for a
software artifact or software component to each of the M
trained classifiers, stores the outputs of the M trained clas-
sifiers as a set or vector, and passes that set or vector of M
trained classifier outputs to the trained logistic regression
model. The output of the trained logistic regression model
can be a binary classification that is then associated with the
software component represented by the input vector, or can
be a probability value that is associated with the software
component.

[0046] The above training refers to an initial training and
testing to form a classifier ensemble. This initial training
would likely have a large-scale training data set that encom-
passes a large time period (e.g., years or months). After
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training and deployment, the classifier ensemble continues
to be trained with smaller training datasets, depending upon
use. In contrast to the initial training, the output of subse-
quent training is used (e.g., stored for expert evaluation
and/or inserted into a vulnerability database). The subse-
quent “training” datasets may be obtained from scheduled,
periodic running of the data scraper or specific invocation of
the data scraper to collect CBR data from a particular data
source or set of data sources. Furthermore, classifier
ensembles can be trained for different data sources. For
example, a classifier ensemble can be trained for each flaw
(bug or vulnerability) tracking tool or repository. Classifier
ensembles can be trained for different open source reposi-
tories.

[0047] FIG. 4 depicts an example automatic vulnerability
identification system. Vulnerability data 410 and classified
vulnerability data 411 are both partitioned into K datasets
which are fed to a K-stacking algorithm to generate K sets
of training data 412 and testing data 414, respectively. The
training data 412 is used to train a set of classifiers 416a-f.
The training data 412 and the testing data 414 are fed to the
classifiers 416a-f to generate classifier data 418a-f. The K
sets of the classifier data 418a-f are combined as probability
vectors folded together to form K-fold classifier data 420
and classified vulnerability data 411 are fed to a logistic
regressor 422 which outputs a trained logistic regression
model 424. An AVIS 426 with an AVIS controller 428, a data
scraper 430, and a natural language processor 432 combines
the logistic regression model 424 and a set of trained
classifiers 422 to form the classifier ensemble 434.

[0048] Each of the classifiers 416a-f are iteratively trained
K times with different folds. Specifically, the classifiers
416a-f are iteratively trained with all but the holdout fold or
partition of the vulnerability data 410 and the classified
vulnerability data 411. The trained classifiers 416a-f gener-
ate a set of classifier data 418a-f for the holdout partition of
the vulnerability data 410 in each iteration.

[0049] As the classifiers 416a-fare trained and tested, each
of the K sets of classifier data 418a-f are combined as the
probability vectors 420. Once K iterations of the training and
testing have been run, the probability vectors 420 and the
classified vulnerability data 411 are fed to the logistic
regressor 422, where the probability vectors 420 and the
classified vulnerability data 411 are used to generate the
logistic regression model 424.

[0050] The logistic regressor 422 determines a logistic
probability distribution based on the vulnerability vectors
420 and the classified vulnerability data 411. The logistic
regressor 422 fits a logistic probability distribution to the
classified vulnerability data 411 as a function of the prob-
ability vectors 420. The fitting process comprises determin-
ing N+1 parameters (where N is the number of classifiers)
which most closely fit a logistic probability distribution to
the vulnerability data 411.

[0051] The trained classifiers 422 and the output of the
logistic regressor 422 are sent to form the ensemble of
classifiers 434 by an AVIS 426. The AVIS controller 428,
invokes the different elements of the AVIS 426 to automati-
cally identify flaws in input software artifacts. If a software
artifact is input, then the NLP 432 will process the software
artifact and generate a software artifact vector. The AVIS
controller 428 then passes the software artifact vector to
classifier ensemble 434, which generates a probability value
indicating a probability that the corresponding software
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component has a flaw. If an open source repository or other
target is submitted to the AVIS 426, then the data scraper 430
is invoked to scrape the identified target and pass the scraped
software artifacts to the NLP 432.

[0052] FIG. 5 depicts the use of a natural language pro-
cessor for generating vulnerability vectors. Based on a list of
open source libraries 502, a number of open source data
repositories 504 are scraped over a network 506 by a data
scraper 510 to collect CBR data 512. The CBR data 512 is
sent by the data scraper 510 to an NLP 514. The NLP 514
generates vulnerability data 516, which comprises a set of
vulnerability vectors 518. The NLP 514 outputs counts of
words or phrases in vulnerability detection vectors 520A-C
based on an embedding of the CBR data 512 in a vector
space 522.

[0053] The NLP 514 performs operations to classify
words and phrases from the CBR data 512 according to their
indication of vulnerabilities to generate the vulnerability
data 516. The vulnerability data 516 comprises a set of
vulnerability vectors 518, which are frequency counts of
words or phrases indicative of vulnerabilities as classified by
the NLP 514. The association of words and phrases with
vulnerabilities is determined by the vulnerability detection
vectors 520A-C. The vulnerability detection vectors 520A-C
may be manually determined based on words or phrases
known to indicate vulnerabilities in open source libraries.
The size of each of the vulnerability detection vectors
520A-C may range from several terms to hundreds of terms;
for example, a typical vulnerability detection vector may
comprise 200 words or phrases (tokens). A corresponding
vector space 522 is constructed with dimension equal to the
sum of dimensions of the vulnerability detection vectors
520A-C.

[0054] The NLP 514 embeds the CBR data 512 into the
vector space 522 based on the distribution of words or
phrases in the CBR data 512. By embedding the CBR data
512 into the vector space 522, each of the words or phrases
in the CBR data 512 can be compared to words or phrases
in the vulnerability detection vectors 520A-C based on their
cosine similarity. The cosine similarity of two vectors is
given by:

imilarit o= A8
similarity= cost = ————
[IAlnBI

[0055] Wherein A and B are vectors and 6 is the angle
between them. A similarity of 1 indicates identical parallel
vectors while a similarity of O indicates orthogonal vectors.
Each of the components of the vulnerability detection vec-
tors are mutually orthogonal vectors in the vector space 522.
New words or phrases can be embedded in the vector space
522 based on their association with words already in the
vector space 522.

[0056] As the CBR data 512 is classified by the NLP 514,
words and phrases are embedded in the vector space 522
based on their proximity to words in the vector space 522.
For example, a new word in the CBR data 512 can be
embedded in the vector space by taking the sum of each
vector corresponding to a word or phrase in the vulnerability
detection vectors 520A-C and dividing by the distance of the
two words. For example, if some CBR data 512 comprises
the phrase “The exploit renders my computer unresponsive
due to injection of faulty data”. Embedding the word “unre-
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sponsive” is possible by using the words “exploit” (which is
4 words away), “injection” (which is 3 words away) and
“faulty” (which is 5 words away) to generate a vector for
“unresponsive in the vector space. By adding each weighted
word association to a vector with dimension equal to the sum
of the dimensions of the vulnerability detection vectors
520A-C, the vector for the word “unresponsive” may be
represented by:

[0057] (O, 1/4,0,...,0,1/3,0,...,0,1/5,0,...)
[0058] Wherein the entry 1/4 corresponds to “exploit”, the
entry 1/3 corresponds to “injection”, and the entry 1/5
corresponds to “faulty”. In this way, every word or phrase in
the CBR data 512 can be embedded into the vector space
522. In some cases, words in the CBR data 512 may be
associated with one another as part of the embedding
process. In some cases, the embedding may use a different
weighting scheme to associate words and phrases. In some
cases, there may exist a threshold to remove associations
between words which are distant. For example, the associa-
tion of two words with more than 50 words between them
may be ignored. Such thresholds are illustrated by the
ellipses about words or phrases in the vulnerability detection
vectors 520A-C in the vector space 522. Any words outside
of the three ellipses would be ignored when generating the
vulnerability data 516.

[0059] Based on the embedding of the CBR data 512 in the
vector space 522, the NLP 514 generates the vulnerability
data 516 by summing the vectors of each word or phrase in
the CBR data 512 to generate the vulnerability vectors 518,
which comprise the vectors strong_vuln_count, medium_
vuln_count, and weak_vuln_count. These vectors are gen-
erated by summing the associations of each word in the CBR
data 512 with each word in the vulnerability detection
vectors 520A, 520B, and 520C, respectively.

[0060] A feature of the NLP 514 is that, because it
processes a combination of natural language and generic
computer science terms, it is “language agnostic” in the
sense that the programming languages of open source librar-
ies do not affect the ability of the NLP 514 to generate the
vulnerability data 516 for vulnerability identification.
[0061] FIG. 6 is a graph depicting metrics for an automatic
vulnerability identification system. The graph 600 has an
x-axis 602 measuring the probability threshold for predic-
tions made by an AVIS and a y-axis 604 depicting multiple
metrics for the AVIS. A line 606 depicts the recall rate of
predictions made by the AVIS and a line 608 depicts the
precision of predictions made by the AVIS. The two lines
606, 608 are dependent upon the probability threshold of the
AVIS (i.e., the probability threshold for accepting or reject-
ing predictions made by the AVIS as introduced by FIG. 3).
For various applications, it may be beneficial to increase or
decrease the probability threshold of the AVIS to ensure a
greater recall rate with lower precision or a greater precision
with lower recall rate.

[0062] The values shown in the graph 600 are taken from
a trained AVIS. The high values of precision and recall rate
are indicative of an improvement in the technology of
automatic vulnerability identification for open source librar-
ies. Predictions made by an AVIS can be sorted into one of
four categories when classified vulnerability data is avail-
able. The four categories are true positives, false positives,
true negatives, and false negatives. True positives corre-
spond to the AVIS correctly detecting a vulnerability. False
positives correspond to the AVIS incorrectly detecting a
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vulnerability. True negatives correspond to the AVIS cor-
rectly detecting no vulnerabilities. False negatives corre-
spond to the AVIS incorrectly detecting no vulnerabilities.
The precision of predictions made by the AVIS is a measure
of how many vulnerabilities were correctly detected based
on the number of true positives and false positives predicted
by the AVIS and is given by:

. true positives
Precision =

true positives + false positives

[0063] At equilibrium (where precision and recall rate
converge), a precision of over 50% is given by the disclosed
method by using a probability threshold of 80%. The recall
rate of predictions made by the AVIS is a measure of how
many vulnerabilities were detected based on the number of
true positives and false negatives predicted by the AVIS and
is given by:

true positives
Recall rate =

true positives + false negatives

[0064] At equilibrium, a recall rate of over 50% is given
by the disclosed method by using a probability threshold of
80%. With a lower probability threshold, a recall rate of over
80% can be achieved.

[0065] In some cases, clients may request the AVIS to use
a custom probability threshold in accordance with client
needs as an operational parameter in client requests. For
example, a project which requires a high level of stability
may specify a low probability threshold for the classifier
ensemble (e.g., a probability value<=0.3 is classified as not
related to a flaw) to maximize the recall rate. This would
guarantee the client the detection of a greater number of
vulnerabilities (at the cost of a larger number of false
positives as well). For clients which do not require as much
stability in their projects, a higher probability threshold may
be used to expedite the development process by identifying
potential vulnerabilities with high precision.

[0066] By adjusting the probability threshold of the AVIS,
the balance of precision to recall rate may be adjusted. As the
probability threshold of the AVIS decreases the recall rate
decreases while the precision rate increases. As a default, the
AVIS may use a probability threshold that produces equal
values for precision and recall rate.

[0067] Variations

[0068] The flowcharts are provided to aid in understanding
the illustrations and are not to be used to limit scope of the
claims. The flowcharts depict example operations that can
vary within the scope of the claims. Additional operations
may be performed; fewer operations may be performed; the
operations may be performed in parallel; and the operations
may be performed in a different order. For example, the
operations depicted in blocks 304-314 can be performed in
parallel or concurrently. It will be understood that each block
of the flowchart illustrations and/or block diagrams, and
combinations of blocks in the flowchart illustrations and/or
block diagrams, can be implemented by program code. The
program code may be provided to a processor of a general-
purpose computer, special purpose computer, or other pro-
grammable machine or apparatus.
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[0069] As will be appreciated, aspects of the disclosure
may be embodied as a system, method or program code/
instructions stored in one or more machine-readable media.
Accordingly, aspects may take the form of hardware, soft-
ware (including firmware, resident software, micro-code,
etc.), or a combination of software and hardware aspects that
may all generally be referred to herein as a “circuit,”
“module” or “system.” The functionality presented as indi-
vidual modules/units in the example illustrations can be
organized differently in accordance with any one of platform
(operating system and/or hardware), application ecosystem,
interfaces, programmer preferences, programming lan-
guage, administrator preferences, etc.

[0070] Any combination of one or more machine readable
medium(s) may be utilized. The machine readable medium
may be a machine readable signal medium or a machine
readable storage medium. A machine readable storage
medium may be, for example, but not limited to, a system,
apparatus, or device, that employs any one of or combina-
tion of electronic, magnetic, optical, electromagnetic, infra-
red, or semiconductor technology to store program code.
More specific examples (a non-exhaustive list) of the
machine readable storage medium would include the fol-
lowing: a portable computer diskette, a hard disk, a random
access memory (RAM), a read-only memory (ROM), an
erasable programmable read-only memory (EPROM or
Flash memory), a portable compact disc read-only memory
(CD-ROM), an optical storage device, a magnetic storage
device, or any suitable combination of the foregoing. In the
context of this document, a machine readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruc-
tion execution system, apparatus, or device. A machine
readable storage medium is not a machine readable signal
medium.

[0071] A machine readable signal medium may include a
propagated data signal with machine readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-
magnetic, optical, or any suitable combination thereof. A
machine readable signal medium may be any machine
readable medium that is not a machine readable storage
medium and that can communicate, propagate, or transport
a program for use by or in connection with an instruction
execution system, apparatus, or device.

[0072] Program code embodied on a machine readable
medium may be transmitted using any appropriate medium,
including but not limited to wireless, wireline, optical fiber
cable, RF, etc., or any suitable combination of the foregoing.
[0073] Computer program code for carrying out opera-
tions for aspects of the disclosure may be written in any
combination of one or more programming languages,
including an object oriented programming language such as
the Java® programming language, C++ or the like; a
dynamic programming language such as Python; a scripting
language such as Perl programming language or PowerShell
script language; and conventional procedural programming
languages, such as the “C” programming language or similar
programming languages. The program code may execute
entirely on a stand-alone machine, may execute in a distrib-
uted manner across multiple machines, and may execute on
one machine while providing results and or accepting input
on another machine.
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[0074] The program code/instructions may also be stored
in a machine readable medium that can direct a machine to
function in a particular manner, such that the instructions
stored in the machine readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

[0075] FIG. 7 depicts an example computer system with
an automatic vulnerability identification system. The com-
puter system includes a processor 701 (possibly including
multiple processors, multiple cores, multiple nodes, and/or
implementing multi-threading, etc.). The computer system
includes memory 707. The memory 707 may be system
memory (e.g., one or more of cache, SRAM, DRAM, zero
capacitor RAM, Twin Transistor RAM, eDRAM, EDO
RAM, DDR RAM, EEPROM, NRAM, RRAM, SONOS,
PRAM, etc.) or any one or more of the above already
described possible realizations of machine-readable media.
The computer system also includes a bus 703 (e.g., PCI,
ISA, PCI-Express, HyperTransport® bus, InfiniBand® bus,
NuBus, etc.) and a network interface 705 (e.g., a Fiber
Channel interface, an Ethernet interface, an internet small
computer system interface, SONET interface, wireless inter-
face, etc.). The system also includes automatic vulnerability
identification system 711. The automatic vulnerability iden-
tification system 711 identifies vulnerabilities in open source
components (e.g., libraries or projects) based on commit
messages and bug reports. Any one of the previously
described functionalities may be partially (or entirely)
implemented in hardware and/or on the processor 701. For
example, the functionality may be implemented with an
application specific integrated circuit, in logic implemented
in the processor 701, in a co-processor on a peripheral
device or card, etc. Further, realizations may include fewer
or additional components not illustrated in FIG. 7 (e.g.,
video cards, audio cards, additional network interfaces,
peripheral devices, etc.). The processor 701 and the network
interface 705 are coupled to the bus 703. Although illus-
trated as being coupled to the bus 703, the memory 707 may
be coupled to the processor 701.

[0076] While the aspects of the disclosure are described
with reference to various implementations and exploitations,
it will be understood that these aspects are illustrative and
that the scope of the claims is not limited to them. In general,
techniques for automatic vulnerability identification as
described herein may be implemented with facilities con-
sistent with any hardware system or hardware systems.
Many variations, modifications, additions, and improve-
ments are possible.

[0077] Plural instances may be provided for components,
operations or structures described herein as a single instance.
Finally, boundaries between various components, operations
and data stores are somewhat arbitrary, and particular opera-
tions are illustrated in the context of specific illustrative
configurations. Other allocations of functionality are envi-
sioned and may fall within the scope of the disclosure. In
general, structures and functionality presented as separate
components in the example configurations may be imple-
mented as a combined structure or component. Similarly,
structures and functionality presented as a single component
may be implemented as separate components. These and
other variations, modifications, additions, and improve-
ments may fall within the scope of the disclosure.
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[0078] Use of the phrase “at least one of” preceding a list
with the conjunction “and” should not be treated as an
exclusive list and should not be construed as a list of
categories with one item from each category, unless specifi-
cally stated otherwise. A clause that recites “at least one of
A, B, and C” can be infringed with only one of the listed
items, multiple of the listed items, and one or more of the
items in the list and another item not listed.

What is claimed is:

1. A method comprising:

training and testing a set of classifiers with k-fold cross

validation on a first dataset comprising vectors repre-

senting software components and labels,

wherein each label indicates whether a respective one
of the software components has a vulnerability or
flaw,

wherein a set of probability values generated for each
of'the vectors by the set of classifiers from the testing
is stored;

training a logistic regression model with the stored sets of

probability values and the labels; and

generating an ensemble to indicate whether a software

component has a flaw, the ensemble comprising the
trained set of classifiers and the trained logistic regres-
sion model.

2. The method of claim 1 further comprising, for each of
the software components, extracting tokens from a software
development artifact to generate the vector of the vectors
that represents the software component.

3. The method of claim 1, wherein extracting tokens
comprises extracting natural language tokens and program-
ming specific tokens.

4. The method of claim 1 further comprising associating
the labels with the vectors based on knowledge of whether
the represented software components have vulnerabilities or
flaws.

5. The method of claim 1 further comprising collecting
data about open source software components, wherein the
first dataset is based on the collected data.

6. The method of claim 5, wherein collecting the data
comprises collecting data from commit and bug report
repositories.

7. The method of claim 1, wherein generating the
ensemble comprises combining the trained set of classifiers
with the trained logistic regression model for the trained set
of classifiers to output probabilities for a vector representing
a software component and the trained logistic regression
model to output a vulnerability probability or vulnerability
indicator based on fitting a linear combination of the output
probabilities to the trained linear regression model.

8. The method of claim 1 further comprising:

based on a vector input to the ensemble, generating from

the trained set of classifiers a first set of probabilities
that the software component represented by the vector
has a vulnerability and fitting a linear combination of
the first set of probabilities to the trained logistic
regression model; and

generating a probability based on the fitting that the vector

has a vulnerability.

9. The method of claim 8 further comprising updating a
database with an artifact that is a basis for the vector in
association with the probability.
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10. A non-transitory, computer-readable medium having
instructions stored thereon that are executable by a comput-
ing device to perform operations comprising:

training and testing a set of classifiers with k-fold cross

validation to indicate whether a software component

has a vulnerability or flaw,

wherein the training is with a plurality of vectors each
comprising text based tokens extracted from soft-
ware development artifacts of software components,

wherein the testing is with a plurality of labels that each
indicate whether a respective one of the software
components has a vulnerability or flaw,

wherein the testing generates multiple sets of probabil-
ity values that comprise a probability value from
each classifier for each of the plurality of vectors;

training a logistic regression model with the multiple sets

of probability values and the labels; and

generating an ensemble comprising the trained set of

classifiers and the trained logistic regression model.

11. The non-transitory, computer-readable medium of
claim 10, wherein the operations further comprise, for each
of the software development artifacts, invoking a natural
language processor to extract text based tokens to generate
the corresponding one of the plurality of vectors.

12. The non-transitory, computer-readable medium of
claim 11, wherein a first of the text based tokens extracted
from a software artifact identifies a software component.

13. The non-transitory, computer-readable medium of
claim 10, wherein the text based tokens comprises natural
language tokens and programming specific tokens.

14. The non-transitory, computer-readable medium of
claim 10, wherein the operations further comprise collecting
the software development artifacts.

15. The non-transitory, computer-readable medium of
claim 10, wherein generating the ensemble comprises com-
bining the trained set of classifiers with the trained logistic
regression model for the trained set of classifiers to output
probabilities for a vector derived from a software develop-
ment artifact and the trained logistic regression model to
output a vulnerability probability or vulnerability indicator
based on fitting a linear combination of the output prob-
abilities to the trained linear regression model.

16. An apparatus comprising:

a processor; and

a machine-readable medium comprising program code

stored therein, the program code executable by the
processor to cause the apparatus to,

input a software development artifact derived vector to an

ensemble of a set of classifiers and a logistic regression

model,

wherein the set of classifiers generates a set of prob-
abilities that a software component identified by the
software development artifact from which the vector
is derived has a vulnerability or flaw,

wherein the ensemble generates a probability that the
software components has a vulnerability or flaw
based on fitting a linear combination of the set of
probabilities to the logistic regression model; and

update a database with the probability generated from the

ensemble in association with identity of the software

component.

17. The apparatus of claim 16, wherein the program code
to update the database with the probability in association
with the software component identity comprises the program
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code to update the database with the probability and at least
one of the software development artifact and the software
development artifact derived vector.

18. The apparatus of claim 16, wherein the machine-
readable medium further comprises program code to derive
the vector from the artifact.

19. The apparatus of claim 18, wherein the program code
to derive the vector comprises program code to extract
tokens from the software development artifact with a natural
language processor that has been trained to extract natural
language tokens related to vulnerabilities or flaws and
programming specific tokens related to vulnerabilities or
flaws.

20. The apparatus of claim 16, wherein the machine-
readable medium further comprises program code to invoke
k-fold cross validation to train and test the set of classifiers
and program code to train the logistic regression model with
probability vectors from the set of classifiers generated from
the k-fold cross validation, wherein the trained set of clas-
sifiers and the trained logistic regression model form the
ensemble.
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