
United States
US 20160098563A1

(19)

(12) Patent Application Publication (10) Pub. No.: US 2016/0098563 A1
Sharma (43) Pub. Date: Apr. 7, 2016

(54) SIGNATURES FOR SOFTWARE (52) U.S. Cl.
COMPONENTS CPC G06F 21/577 (2013.01); G06F 17/30097

(2013.01); G06F 17/30.106 (2013.01); G06F
(71) Applicant: sourcicles, INC., Seattle, WA 8/70 (2013.01); G06F 222 1/033 (2013.01)

(72) Inventor: Asankhaya Sharma, Singapore (SG)
(57) ABSTRACT

(21) Appl. No.: 14/506,490
(22) Filed: Oct. 3, 2014

Publication Classification -
A facility for analyzing a pair of code files is described. From

(51) Int. Cl. each of the code files, the facility extracts a hierarchy of
G06F 2/57 (2006.01) textual names. The facility then determines the score reflect
G06F 9/44 (2006.01) ing a level of similarity between the extracted hierarchies of
G06F 7/30 (2006.01) textual names for attribution to the pair of code files.

100
Y User Application Data

Interface(s) Server Storage
Tier Tier Tier

106

- Service Service

| U Datastore
R 117 Server 125

122

Tenant A Tenant A
U Datastore

- e Network(s) 117 126

107

Server

-: 122

C. 1O Tenant Z Tenant Z
Client U Datastore

s x- 117 126

116 120 124

112 Multi-tenant Distributed Computing
108 Platform

US 2016/0098563 A1 Apr. 7, 2016 Sheet 1 of 8 Patent Application Publication

(s)}{UOMIÐN

0 || ||

Patent Application Publication Apr. 7, 2016 Sheet 2 of 8 US 2016/0098563 A1

204 203 UI Layer 202

||
U Elements M User Interfaces |

Sub-modules Modules
212 211 App Layer

210

Data Storage
Layer
220

DataObjects
222

Patent Application Publication Apr. 7, 2016 Sheet 3 of 8 US 2016/0098563 A1

IO Controller Display Adapter Monitor

314 312

Memory Serial Port

Processor(s) Keyboard

320 3 O 6

Printer CHS KHS Fixed Disk

304 308

External Interface

318

FIG. 3

Patent Application Publication Apr. 7, 2016 Sheet 4 of 8 US 2016/0098563 A1

401

for each vulnerable
Component, generate

vulnerable component CBF
402

for each application
Component, generate

application component CBF
403

for each application
component

404

for each Vulnerable
component

calculate CBSM between
application component CBF

405

and vulnerable component
CBF

407 406
CBSM

exceeds Confidence
threshold

identify application component Yes
as Vulnerable

NO 408

next vulnerable component

next application Component

409

FIG. 4

US 2016/0098563 A1 Apr. 7, 2016 Sheet 5 of 8 Patent Application Publication

929

9. "OICH

909 | 09

Patent Application Publication Apr. 7, 2016 Sheet 6 of 8 US 2016/0098563 A1

601

extract from jar file to CBF a hierarchy
of class names, method names,

instructions, and fields
602

in CBF, replace each string with
its hash

603

subject CBF to zip compression to
obtain zip archive

FIG. 6

Patent Application Publication Apr. 7, 2016 Sheet 7 of 8 US 2016/0098563 A1

720

File CBF

File:jar
Instruction 1 N. 723
Instruction2 N- 724

Method2 N.
Method3 N. 2.

FIG. 7

File CBF File CBF Hashed

Instruction 1 21312 'N 723 N- 823 861
Instruction2\, 765756 N. 824

Method2 N. 1231231 N.
Method3 N. 2. 435453 N. .

31234567
65765 27

5675678N 83
2342342 N,

FIG. 8

US 2016/0098563 A1 Apr. 7, 2016 Sheet 8 of 8 Patent Application Publication

ZZ6

096

US 2016/0098563 A1

SIGNATURES FOR SOFTWARE
COMPONENTS

TECHNICAL FIELD

0001. The described technology is directed to the field of
Software development, deployment, and evaluation.

BACKGROUND

0002. Over the history of software development, software
development techniques and technology have advanced sig
nificantly, specifically with the use of iterative development
(Agile), reusable code (libraries, frameworks and open
source), and remote infrastructure (cloud and API services)
technologies and methodologies. In addition, the corporate
and development culture has also changed, and modern Soft
ware is now often built by distributed teams that comprise
employees (often in different locations), contractors, ven
dors, and offshore engineers working together.
0003. Thus, both the techniques and approaches used and
the development environments being used have changed,
with the result that it is not uncommon for the development of
a complex Software application to be conducted by multiple
teams distributed in different locations worldwide, and using
software elements (such as libraries, APIs, functional mod
ules, open Source code, algorithms, etc.) that are obtained
from other sources and not developed in-house by those
teamS.

BRIEF DESCRIPTION OF THE DRAWINGS

0004 FIG. 1 is a diagram illustrating elements or compo
nents of an example operating environment in which an
embodiment of the facility may be implemented.
0005 FIG. 2 is a diagram illustrating additional details of
the elements or components of the multi-tenant distributed
computing service platform of FIG. 1, in which an embodi
ment of the facility may be implemented.
0006 FIG. 3 is a diagram illustrating elements or compo
nents that may be present in a computer device or system 300
configured to implement a method, process, function, or
operation in accordance with an embodiment of the facility.
0007 FIG. 4 is a flow diagram showing steps typically
performed by the facility in order to identify components of
an application that are Vulnerable based upon computer byte
code fingerprints.
0008 FIG. 5 is a data flow diagram illustrating the gen
eration of vulnerable component CBFs for a number of com
ponents known to be vulnerable.
0009 FIG. 6 is a flow diagram showing steps typically
performed by the facility in order generate a CBF for a single
bytecode file.
0010 FIG. 7 is a data flow diagram showing an example of
the hierarchy extraction performed by the facility.
0011 FIG. 8 is a data flow diagram showing an example of
applying the facility's hashing process.
0012 FIG.9 is a data flow diagram illustrating the process
of comparing application component CBFs to Vulnerable
component CBFs.

DETAILED DESCRIPTION

0013 The use of software elements from disparate sources
in developing an application can create a risk in that these
Software elements may contain a virus, an intentionally
placed piece of malware, or another form of potentially dam

Apr. 7, 2016

aging code that is, as a result, incorporated into the applica
tion. Even in the absence of a specifically-known risk, a
Software element may possess a known Vulnerability, so that
its use creates a source of risk to a software application or to
the development environment. And while much has changed
in the area of software development methods, relatively little
has changed in the area of Software security with regards to
the way that security is taken into account when developing
applications that incorporate Software elements developed by
other parties. In this regard, developers typically focus on
conducting a testing cycle after Software is complete. This is
expensive and ineffective, and as recognized by the inventors,
may cause the development environment to be exposed to
harmful or improperly tested software elements prior to test
ing of the constructed software. This both creates an inherent
risk and is inefficient since the same potentially damaging
Software element may be incorporated into multiple places in
the final software product.
0014. The number of software development languages,
frameworks, libraries and APIs available to be used by
today's developers has become quite large, and the number of
available software elements that may be incorporated into a
Software application continues to grow. As a result, in order to
be aware of potential risks, software developers need to be
able to understand and/or track a vast amount of security data
related to the code, libraries, and other software elements that
they may use in developing an application. Yet application
development security teams are rarely able to keep up with the
ever increasing volume of software elements, security data,
and related information.

0015. One aspect of preventing the introduction of poten
tially harmful software elements into a development environ
ment is being able to identify whether an element that is being
considered for use (or is being developed) has a known Vul
nerability or is instead expected to be safe. In the case of
Software components that are in bytecode form, this assess
ment must be done with respect to the bytecode contents of
the software component. As an example, consider Java com
ponents that are typically deployed using a jar file. Where a
component File:jar is used in an application, the problem is to
detect if this component matches any of the components in the
catalog of known Vulnerable components.
0016. A hardware and/or software facility is described
(“the facility”) that generates a fingerprint or other form of
identifier for a software element, such as a bytecode software
element, that may be used by a developer to construct an
application. In some cases, the fingerprint is referred to as a
“computer bytecode fingerprint” or “CBF. CBF makes use
of a uniform format based on bytecode of different platforms
like Java, Android, and .NET. CBF contains information
about the classes, methods, and fields used in the component;
this information is extracted from the bytecode of the com
ponent. The fingerprint may then be used to assist in deter
mining if a software element that a developer wishes to intro
duce into a development environment is known to possess a
Vulnerability, potentially damaging code, or other form of
undesirable aspect. The facility permits the characterization
of Software elements in a form that permits comparison
between such elements to determine whether they are the
same or Substantially similar, Such as to identify Suspect
elements and preventing their use in a development environ
ment. As a result, the facility can be used to assist a group of
developers to reduce the risk to the development process from
externally created software elements such as APIs, code,

US 2016/0098563 A1

functional modules, open source code, etc. that the develop
ers may wish to incorporate into their software application.
0017. As noted, one purpose of fingerprinting is to allow
the comparison or matching of libraries against a larger
dataset of known vulnerable libraries (i.e., those known to
have a Vulnerability or to contain potentially damaging code).
When a match occurs, a system/platform that is responsible
for managing the access to and integration of software ele
ments into a development environment can alert developers,
management, or other appropriate people of a potential risk in
using the identified library so that corrective action can be
taken (such as by prohibiting use of that library and removing
it from consideration for future use).
0018 For the purpose of this description, a “code library’
may be one or more of a singular computer file, or other body
of code.
0019. In some embodiments, the facility may be used as
part of managing the access to and use of software elements in
a software development environment used to develop a soft
ware application. The facility is used by the system or plat
form to identify software elements with a known vulnerabil
ity and, in response, prevent the incorporation of those
elements into an application module being developed within
a Software development environment. The management func
tion(s) may be implemented as a system or platform which
includes processes for generating or deriving a "fingerprint”
or “fingerprints' for one or more software elements that a
developer desires to use, and compares that fingerprint or
fingerprints to a record of the fingerprints of suspect elements
(such as a “blacklist of the fingerprints of elements having a
known or Suspected Vulnerability). Thus, when searching for
a “match' the system may perform a many-to-many compari
son, with only a single match being required for positive
identification of a Software element. The fingerprinting pro
cess may be provided in any suitable format, independently or
as part of a Software management platform, and may be
implemented by any suitable computing or data processing
device (e.g., web-service, cloud-computing service, Soft
ware-as-a-Service business model, or as a dedicated server or
computing device located in one or more locations, etc.). In
one example embodiment, the facility is implemented as part
of a multi-tenant cloud-based data processing platform.
0020. As noted, in some embodiments, the facility is
implemented in the context of a multi-tenant, “cloud based
environment (Such as a multi-tenant data processing plat
form), typically used to develop and provide web services for
end users. This exemplary implementation environment will
be described with reference to FIGS. 1 and 2. Note that the
facility may also be implemented in the context of other
computing or operational environments or systems, such as
for an individual business data processing system, a private
network used with a plurality of client terminals, a remote or
on-site data processing system, another form of client-server
architecture, etc. Note that although FIGS. 1 and 2 are
described with reference to use of one or more user interfaces
to permit user/tenant interaction with the services provided
by the facility, other methods of permitting such interaction
may be used instead of or in combination with a user inter
face. For example, the system/platform may expose one or
more APIs (application programming interfaces) to permit a
user to interact with the system/platform.
0021 FIG. 1 is a diagram illustrating elements or compo
nents of an example operating environment in which an
embodiment of the facility may be implemented. In the

Apr. 7, 2016

example operating environment 100, a variety of clients 102
incorporating and/or incorporated into a variety of computing
devices may communicate with a distributed computing Ser
vice/platform 108 through one or more networks 114. In
Some embodiments, the networks send data via their network
ing hardware, Such as Switches, routers, repeaters, electrical
cables and optical fibers, light emitters and receivers, radio
transmitters and receivers, and the like. For example, a client
may incorporate and/or be incorporated into a client applica
tion (e.g., Software) implemented at least in part by one or
more of the computing devices. Examples of Suitable com
puting devices include personal computers, server computers
104, desktop computers 106, laptop computers 107, notebook
computers, tablet computers or personal digital assistants
(PDAs) 110, Smart phones 112, cell phones, and consumer
electronic devices incorporating one or more computing
device components, such as one or more electronic proces
sors, microprocessors, central processing units (CPUs), or
controllers. Examples of suitable networks 114 include net
works utilizing wired and/or wireless communication tech
nologies and networks operating in accordance with any Suit
able networking and/or communication protocol (e.g., the
Internet).
0022. The distributed computing service/platform (which
may also be referred to as a multi-tenant data processing
platform) 108 may include multiple processing tiers, includ
ing a user interface tier 116, an application servertier 120, and
a data storage tier 124. The user interface tier 116 may main
tain multiple user interfaces 117, including graphical user
interfaces and/or web-based interfaces. The user interfaces
may include a default user interface for the service to provide
access to applications and data for a user or “tenant of the
service (depicted as “Service UI” in the figure), as well as one
or more user interfaces that have been specialized/customized
in accordance with user-specific requirements (e.g., repre
sented by “Tenant A UI”. ..., “Tenant ZUI” in the figure, and
which may be accessed via one or more APIs). The default
user interface may include components enabling a tenant to
administer the tenant's participation in the functions and
capabilities provided by the service platform, such as access
ing data, causing the execution of specific data processing
operations, specifying software elements that a developer
desires to have access to, creating and/or implementing a
Software control policy, initiating a process to fingerprint a
Software element and compare it to a list of suspect elements,
etc. Each processing tier shown in the figure may be imple
mented with a set of computers and/or computer components
including computer servers and processors, and may perform
various functions, methods, processes, or operations as deter
mined by the execution of a software application or set of
instructions. The data storage tier 124 may include one or
more data stores, which may include a service data store 125
and one or more tenant data stores 126.

0023. Each tenant data store 126 may contain tenant-spe
cific data that is used as part of providing a range of tenant
specific services or functions, including but not limited to
Software module management, software development envi
ronment access control, characterization of Software ele
ments, storage of utilized software elements, generation and
storage of software module usage policies, etc. Data stores
may be implemented with any suitable data storage technol
ogy, including structured query language (SQL) based rela
tional database management systems (RDBMS).

US 2016/0098563 A1

0024. In accordance with one embodiment of the facility,
distributed computing service/platform 108 may be multi
tenant, and service platform 108 may be operated by an entity
in order to provide multiple tenants with a set of related
Software development applications, data storage, and func
tionality. These applications and functionality may include
ones that a software development business uses to manage
various aspects of its application development operations. For
example, the applications and functionality may include pro
viding web-based access to Software development informa
tion systems, thereby allowing a user with a browser and an
Internet or intranet connection to view, enter, process, or
modify certain types of information.
0025. The integrated system shown in FIG. 1 may be
hosted on a distributed computing system made up of at least
one, but typically multiple, “servers.” A server is a physical
computer dedicated to run one or more software services
intended to serve the needs of the users of other computers in
data communication with the server, for instance via a public
network such as the Internet or a private “intranet’ network.
The server, and the services it provides, may be referred to as
the “host, and the remote computers and the software appli
cations running on the remote computers may be referred to
as the "clients.” Depending on the computing service that a
server offers it could be referred to as a database server, file
server, mail server, print server, web server, etc. A web server
is most often a combination of hardware and the software that
helps deliver content (typically by hosting a website) to client
web browsers that access the web server via the Internet.

0026 FIG. 2 is a diagram illustrating additional details of
the elements or components of the multi-tenant distributed
computing service platform of FIG. 1, in which an embodi
ment of the facility may be implemented. The software archi
tecture depicted in FIG. 2 represents an example of a software
system to which an embodiment of the facility may be
applied. In general, an embodiment of the facility may be
implemented by using a set of software instructions that are
designed to be executed by a suitably programmed processing
element (Such as a CPU. microprocessor, processor, control
ler, computing device, etc.). In a complex system Such
instructions are typically arranged into “modules' with each
Such module performing a specific task, process, function, or
operation. The entire set of modules may be controlled or
coordinated in their operation by an operating system (OS) or
other form of organizational platform.
0027. As noted, FIG. 2 is a diagram illustrating additional
details of the elements or components 200 of the multi-tenant
distributed computing service platform of FIG. 1, in which an
embodiment of the facility may be implemented. The
example architecture includes a user interface layer or tier
202 having one or more user interfaces 203. Examples of such
user interfaces include graphical user interfaces and applica
tion programming interfaces (APIs). Each user interface may
include one or more interface elements 204. For example,
users may interact with interface elements in order to access
functionality and/or data provided by application and/or data
storage layers of the example architecture. Examples of
graphical user interface elements include buttons, menus,
checkboxes, drop-down lists, scrollbars, sliders, spinners,
text boxes, icons, labels, progress bars, status bars, toolbars,
windows, hyperlinks and dialog boxes. Application program
ming interfaces may be local or remote, and may include
interface elements such as parameterized procedure calls,
programmatic objects and messaging protocols.

Apr. 7, 2016

0028. The application layer 210 may include one or more
application modules 211, each having one or more Sub-mod
ules 212. Each application module 211 or sub-module 212
may correspond to a particular function, method, process, or
operation that is implemented by the module or sub-module.
Such function, method, process, or operation may include
those used to implement one or more aspects of the facility,
Such as for:

0029 Generating an identifier from information regard
ing a software library or other element using one or more
of the methods or processes described herein (where
Such an identifier may represent a canonical form for the
library or element);

0030 Comparing the generated identifier to one or
more lists or sources of identifiers for software elements
having a known Vulnerability or other Suspect aspect; or

0031. In response to determining that a software ele
ment that a developer desires to utilize has an identifier
that matches that of a software element having a known
Vulnerability or other Suspect aspect, generating a noti
fication to one or more of the developer, a manager of the
development environment, or other suitable entity.

0032. The application modules and/or sub-modules may
include any suitable computer-executable code or set of
instructions (e.g., as would be executed by a Suitably pro
grammed processor, microprocessor, or CPU). Such as com
puter-executable code corresponding to a programming lan
guage. For example, programming language Source code may
be compiled into computer-executable code. Alternatively, or
in addition, the programming language may be an interpreted
programming language such as a scripting language or byte
code. Each application server (e.g., as represented by element
122 of FIG. 1) may include each application module. Alter
natively, different application servers may include different
sets of application modules. Such sets may be disjoint or
Overlapping.
0033. The data storage layer 220 may include one or more
data objects 222 each having one or more data object com
ponents 221, such as attributes and/or behaviors. For
example, the data objects may correspond to tables of a rela
tional database, and the data object components may corre
spond to columns or fields of such tables. Alternatively, or in
addition, the data objects may correspond to data records
having fields and associated services. Alternatively, or in
addition, the data objects may correspond to persistent
instances of programmatic data objects, such as structures
and classes. Each data store in the data storage layer may
include each data object. Alternatively, different data stores
may include different sets of data objects. Such sets may be
disjoint or overlapping.
0034. Note that the example computing environments
depicted in FIGS. 1-2 are not intended to be limiting
examples. Alternatively, or in addition, computing environ
ments in which an embodiment of the facility may be imple
mented include any suitable system that permits users to
provide data to, and access, process, and utilize data stored in
a data storage element (e.g., a database) that can be accessed
remotely over a network. Further example environments in
which an embodiment of the facility may be implemented
include devices, Software applications, systems, apparatuses,
or other configurable components that may be used by mul
tiple users for data entry, data processing, application execu
tion, Software development, data review, etc. and which have
user interfaces, expose APIs, or present user interface com

US 2016/0098563 A1

ponents that can be configured to present an interface to a
user. Although further examples below may reference the
example computing environment depicted in FIGS. 1-2, it
will be apparent to one of skill in the art that the examples may
be adapted for alternate computing devices, systems, appara
tuses, processes, and environments.
0035. In accordance with one embodiment of the facility,
the system, apparatus, methods, processes, functions, and/or
operations for generating an identifier for a Software element
may be wholly or partially implemented in the form of a set of
instructions executed by one or more programmed computer
processors such as a central processing unit (CPU) or micro
processor. Such processors may be incorporated in an appa
ratus, server, client or other computing device operated by, or
in communication with, other components of the system. As
an example, FIG. 3 is a diagram illustrating elements or
components that may be present in a computer device or
system 300 configured to implement a method, process, func
tion, or operation in accordance with an embodiment of the
facility. The subsystems shown in FIG. 3 are interconnected
via a system bus 302. Additional subsystems include a printer
304, a keyboard 306, a fixed disk 308, and a monitor 310,
which is coupled to a display adapter 312. Peripherals and
input/output (I/O) devices, which couple to an I/O controller
314, can be connected to the computer system by any number
of means known in the art, such as a serial port 316. For
example, the serial port 316 or an external interface 318 can
be utilized to connect the computer device 300 to further
devices and/or systems not shown in FIG. 3 including a wide
area network Such as the Internet, a mouse input device,
and/or a scanner. The interconnection via the system bus 302
allows one or more processors 320 to communicate with each
Subsystem and to control the execution of instructions that
may be stored in a system memory 322 and/or the fixed disk
308, as well as the exchange of information between sub
systems. The system memory 322 and/or the fixed disk 308
may embody a tangible computer-readable medium.
0036. It should be understood that the facility as described
above can be implemented in the form of control logic using
computer Software in a modular or integrated manner. Based
on the disclosure and teachings provided herein, a person of
ordinary skill in the art will know and appreciate other ways
and/or methods to implement the facility using hardware and
a combination of hardware and Software.

0037. Any of the software components, processes or func
tions described in this application may be implemented as
Software code to be executed by a processor using any Suit
able computer language such as, for example, Java, Javas
cript, C++ or Perl using, for example, procedural, object
oriented and functional programming techniques. The Soft
ware code may be stored as a series of instructions, or com
mands on a computer readable medium, Such as a random
access memory (RAM), a read only memory (ROM), a mag
netic medium such as a harddrive or a floppy disk, or an
optical medium such as a CD-ROM. Any such computer
readable medium may reside on or within a single computa
tional apparatus, and may be present on or within different
computational apparatuses within a system or network.
0038 All references, including publications, patent appli
cations, and patents, cited herein are hereby incorporated by
reference to the same extent as if each reference were indi
vidually and specifically indicated to be incorporated by ref
erence and/or were set forth in its entirety herein.

Apr. 7, 2016

0039 FIG. 4 is a flow diagram showing steps typically
performed by the facility in order to identify components of
an application that are Vulnerable based upon computer byte
code fingerprints. In step 401, for each component already
determined to be vulnerable, the facility generates a vulner
able component CBF.
0040 FIG. 5 is a data flow diagram illustrating the gen
eration of vulnerable component CBFs for a number of com
ponents known to be vulnerable. Each of a number of Vulner
able components, such as vulnerable components 501-504,
are subjected to a bytecode fingerprinting process 510, whose
details are discussed below in connection with FIG. 6. For
each of the components, the bytecode fingerprinting process
produces a CBF, here CBFs 521-524. The bytecode compo
nents can be in a number of differentforms, including jar files
containing Java bytecodes, DLL files containing .net byte
codes, and APK files containing Android bytecodes, to name
a few. In some embodiments, the facility uses the following
libraries to read bytecode files of these various types: the
OW2 ASM library available from asm.ow2.org for reading
Java bytecode (jar files), Mono.Cecil library www.mono
project.com/Cecil for reading .NET bytecode (All files) and
(W2 ASMDEX library asm.ow2.org/asmdex-indes.html for
reading Android bytecode (apk files). More readers can be
added to support other bytecode formats as well.
0041 FIG. 6 is a flow diagram showing steps typically
performed by the facility in order generate a CBF for a single
bytecode file. In step 601, the facility extracts from the byte
code file, such as a jar file, to a CBF a hierarchy of the
following: class names, method names, instructions--without
their operands or arguments, and fields.
0042 FIG. 7 is a data flow diagram showing an example of
the extraction performed in step 601. Here, a bytecode file
701 is the subject of extraction process. The extraction pro
cess results in a CBF file 720. In the CBF file, the first level of
the hierarchy are three class names: a Class 1 class name 721,
a Class2 class name 731, and a Class3 class name 741. In the
hierarchy under the Class 1 class name 721, the following
occur: a Method 1 method name 722, a Method2 method
name 725, a Method3 method name 726, a Field 1 field name
727, and a Field2 field name 728. Under the Method 1 method
name 722 are an Instruction1 instruction name 723, and an
Instruction2 instruction name 724.
0043. Returning to FIG. 6, in step 602, in the CBF, the
facility replaces each String with its hash. In various embodi
ments, various in various embodiments, the facility employs
a variety of hashing algorithms in performing this replace
ment.

0044 FIG. 8 is a data flow diagram showing an example of
applying the hashing process of step 602. In FIG. 8, the
hashing process 810 is applied to the CBF file 720 shown as
being generated in FIG. 7. It can be seen in the hashed CBF
file 820 resulting from the hashing process that each string has
been replaced with a hash value generated for the string by a
hashing function. For example, the “Class 1” string from the
Class 1 class name 721 has been transformed to the hash value
“1423 shown with reference number 821.
0045 Returning to FIG. 6, in step 603, the facility subjects
the CBF in which strings have been replaced with their hash
values to a Zip compression process to obtain a Zip archive.
After step 603, these steps conclude.
0046 Those skilled in the art will appreciate that the steps
shown in FIG. 6 and in each of the flow diagrams discussed
elsewhere herein may be altered in a variety of ways. For

US 2016/0098563 A1

example, the order of the steps may be rearranged; some steps
may be performed in parallel; shown steps may be omitted, or
other steps may be included; a shown step may be divided into
Substeps, or multiple shown steps may be combined into a
single step, etc.
0047 Returning to FIG. 8, it can be seen that the zip
compression process 850 is applied to the hashed CBF file
820, to produce a CBF zip archive file 861.
0048 Returning to FIG. 4, in steps 403-409, the facility
loops through each component making up the application. In
steps 404–408, the facility loops through each Vulnerable
component. In step 405, the facility compares the current
application, component to the current Vulnerable component
by calculating a Common Bytecode Similarity Metric
(“CBSM) that reflects their level of similarity. In particular,
given two CBF files, the CBSM characterizes the similarity
between the components as a number between 0 and 1 (1
being exactly the same). The CBSM is a weighted mean of the
similarity of classes, methods, and fields in the CBF files. It is
calculated as follows.
0049. Let C(file1) be the set of classes in file file1, and
C(file2) be the set of classes in file file2, respectively. Com
paring files file1.CBF and file2.CBF:

CBSM(file1, file2)=(XCBSM class(c1 c2))/|C(file1)
UC(file2) (1)

0050. Let M(c1) and M(c2) be the set of methods in class
c1 and c2 respectively,
0051 And let F(c1) and F(c2)be the set offields in class c1
and c2 respectively,
0052. Then, for each class c1 =c2 that is present in both

file file1 and file file2:

0053 Where, w1 and w2 are the weights assigned to give
importance to matching methods and fields respectively. This
is done to take into account the fact that a match based on the
entire method is more important than a match between fields.
(e.g. w 1 =0.8 and w2=0.2 says that method match contributes
80% of the total matching while fields contribute only 20%)
0054 Let I(ml) and I(m2) be the set of instructions in
method ml and method m2 respectively, ignoring any oper
ands or arguments,
0055. Then,

0056. In step 406, if the CBSM calculated in step 405
exceeds a confidence threshold, then the facility continues in
step 407, else the facility continues in step 408. In step 407,
the facility identifies the application component as Vulner
able. In some embodiments, the confidence threshold is user
configurable. In some embodiments, the confidence thresh
old is 80%. After step 407, the facility continues in step 409.
In step 408, if additional vulnerable components remain to be
processed, the facility continues in step 404 to process the
next Vulnerable component, else the facility continues in step
409. In step 409, if additional application components remain
to be processed, then the facility continues in step 403 to
process the next application component, else these steps con
clude.
0057 FIG.9 is a data flow diagram illustrating the process
of comparing application component CBFs to Vulnerable
component CBFs. FIG. 9 shows the facility’s fingerprinting

Apr. 7, 2016

910 of application bytecode file 901 to obtain application
CBF 921. It further shows a comparison 930 of the applica
tion CBF 921 to each of a number of vulnerable component
CBFs 922. As the result of the comparison 930, the facility
may find the application bytecode file to be vulnerable 941, or
not vulnerable 942.
0058 An example in which a CBSM is calculated for a
pair of components follows below:

Code Example
0059 Consider the following Person Component
(Comp1) below in Table 1:

TABLE 1

1 public class Person {
2 String firstName:
3 String lastName:
4 public Person(String first, String last) {
5 this.firstName = first:
6 this.lastName = last:
7
8 public String getName() {
9 return this.firstName + + this..lastName:
10

11 }

0060. Further considera second implementation of Person
Component (Comp2) below in Table 2:

TABLE 2

1 public class Person {
2 String firstName:
3 String lastName:
4 String ID:
5 public Person (String first, String last, String id) {
6 this.firstName = first:
7 this.lastName = last:
8 this.ID = id:
9
10 public String getName() {
11 return this.firstName + + this..lastName:
12
13 public String getID() {
14 return this. ID:
15

16

0061 Based on Equation (2), the facility calculates the
similarity metric between the two components as follows:

0062 Field Similarity=2/3=0.66 (since two field
names—firstName and lastName match between the
components)

0063 Method Similarity=(0.66+1+0)/3=0.55 (since
there are two matching methods—Person and getName
and only %" of the Person method matches up as there
is one extra instruction this. ID id in the second compo
nent.)

0.064 Class Similarity=(0.55+0.66)/2=0.61 (assigning
equal weightage to method and field similarity)

0065. Thus the overall CBSM (Component Bytecode
Similarity Metric)=0.61 (as each component has only 1 class
here)
0.066 While the foregoing has described fingerprints as
being generated for code resources received in bytecode
form, in various embodiments, the facility generates byte
codes for software resources received in a variety of forms. As

US 2016/0098563 A1

one example, in some embodiments, the facility generates
fingerprints for code resources received in the source code
form.
0067. In some such embodiments, the facility uses a code
translator to convert from the form in which a code resource
was received into bytecode form, then generates a fingerprint
from the bytecode form. Where a code resource is received in
source code form, the facility performs this conversion by
compiling the code resource in Source code form.
0068. In some such embodiments, the facility generates a
fingerprint from the code resource in its original form. In the
case of a code resource that is received in Source code form,
the facility generates a fingerprint by extracting a textual
hierarchy from the abstract syntax tree of the program. In
Some embodiments, the facility performs certain kinds of
translation between fingerprints generated from code
resources in one form for comparison to fingerprints gener
ated from code resources of another form.
0069. In some embodiments, the facility generates and
compares fingerprints from Software resources that are in a
uniform form other than bytecode, Such as source code.
0070. It will be appreciated by those skilled in the art that
the above-described facility may be straightforwardly
adapted or extended in various ways. While the foregoing
description makes reference to particular embodiments, the
scope of the invention is defined solely by the claims that
follow and the elements recited therein.
We claim:
1. A computer-readable medium having contents adapted

to cause a computing system to perform a method for deter
mining that a bytecode file contains a Vulnerability, the
method comprising:

identifying a plurality of first bytecode file each known to
contain a Vulnerability;

for each of the identified first bytecode files, applying a
process to the first bytecode files to extract a represen
tation of a hierarchy of textual names occurring in the
first bytecode file;

receiving a second bytecode file;
applying the process to the second bytecode file to extract

a representation of a hierarchy of textual names occur
ring in the first bytecode file;

for each of the identified first bytecode files, determining a
metric characterizing the similarity of the hierarchy of
textual names extracted from the first bytecode file to the
hierarchy of textual names extracted from the second
bytecode file;

determining that the determined metric exceeds a similar
ity threshold value; and

in response to determining that the determined metric
exceeds a similarity threshold value, generating an indi
cation that the second bytecode file contains a Vulner
ability.

2. The computer-readable medium of claim 1 further com
prising, before determining the metric, for each of the
extracted hierarchies, applying a hashing function to trans
form each textual name of the hierarchy to a numeric value,

and wherein the determination of the metric comprises
matching numeric values in the hierarchy extracted from
the first bytecode file to numeric values in the hierarchy
extracted from the second bytecode file.

3. The computer-readable medium of claim 1 further com
prising receiving user input specifying the similarity thresh
old value.

Apr. 7, 2016

4. A method in a computing system for analyzing a pair of
code files, comprising:

from each of the code files, extracting a hierarchy of textual
names; and

determining a score reflecting a level of similarity between
the extracted hierarchies of textual names.

5. The method of claim 4 wherein each of the pair of code
files is a bytecode file.

6. The method of claim 4 wherein each of the pair of code
files is a source code file.

7. The method of claim 4 wherein a first one of the pair of
code files is a source code file, and a second code file of the
pair of code files is a bytecode file.

8. The method of claim 7, further comprising transforming
the source code file into a bytecode file before performing the
extracting.

9. The method of claim 4, further comprising:
accessing an indication that a first one of the pair of code

files contains a security Vulnerability;
determining that the determined score exceeds a minimum

similarity threshold; and
based upon the accessing and the determination that the

determined score exceeds a minimum similarity thresh
old, generating an indication that the one of the pair of
code files that is not the first one of the pair of code files
contains a security Vulnerability.

10. The method of claim 4, wherein the comparing com
prises:

applying the same hashing function to each of the textual
names to obtain a hash value for each; and

comparing the obtained hash values.
11. The method of claim 4 wherein the score is determined

based upon a plurality of class Subscores each determined for
a different class that is defined in both of the code files.

12. The method of claim 11 wherein the class subscore for
each class defined in both of the code files is determined at
least in part based on the percentage of fields that are in the
class definition of both of the code files.

13. The method of claim 11 wherein the class subscore for
each class defined in both of the code files is determined at
least in part based on the percentage of methods that are in the
class definition of both of the code files.

14. The method of claim 11 wherein the class subscore for
each class defined in both of the code files is determined at
least in part based on the similarity of methods that are in the
class definition of both of the code files.

15. The method of claim 11 wherein the class subscore for
each class defined in both of the code files is determined at
least in part based on the percentage of instructions that are in
the class definition of both of the code files.

16. The method of claim 11 wherein the class subscore for
each class defined in both of the code files is determined at
least in part based on a method subscore for each method that
is in the class definition of both of the code files,

and wherein the method subscore for each method that is in
the class definition of both of the code files is determined
at least in part on the percentage of instructions that are
in the method of both of the code files.

17. One or more computer memories collectively storing a
computer bytecode fingerprint data structure for a first byte
code resource, the data structure comprising:

a hierarchy of nodes arranged in at least two levels, in
which each node (1) corresponds to a textual element of
the first bytecode resource, (2) has a position in the

US 2016/0098563 A1

hierarchy of nodes corresponding to a hierarchical posi
tion of the textual element in the first bytecode resource,
and (3) has content that reflects text of the textual ele
ment,

Such that the contents of the data structure can be compared to
the contents of a similar data structure for a second bytecode
resource in order to assess the similarity of the first and
second bytecode resources.

18. The of claim 17 wherein the content of each node that
reflects text of the textual element of the first bytecode
resource to which it corresponds is a copy of the reflected text.

19. The of claim 17 wherein the content of each node that
reflects text of the textual element of the first bytecode
resource to which it corresponds is value produced by hashing
the reflected text.

Apr. 7, 2016

