
Exploiting Undefined Behaviors for
Efficient Symbolic Execution

Asankhaya Sharma

Department of Computer Science, NUS
asankhs@comp.nus.edu.sg

Symbolic execution is a popular
technique used for test generation,
debugging and program analysis.
We have developed a technique to
reduce the runtime cost of symbolic
execution with binaries.

Program Program with UB Compiler Symbolic Execution

Change Value Analysis Compiler Optimization Generated Binary

Overview of the MethodMotivation

● During compilation we use a static
analysis to systematically introduce
undefined behaviors (UB) in programs

● This triggers existing aggressive
compiler optimizations based on
undefined behaviors that reduce the
size of generated binaries

Main Idea

An Example

int foo (int x, int y, int z)
{
 int a;
 a = z;
 if (x – y > 0)
 a = x;
 else
 a = y;
 if (z > a)
 printf(“z is max”);
 return a;
}

int foo (int x, int y, int z)
{
 int a;
 a = z;
 if (x – y > 0)
 a = x;
 else
 a = y;
 if (z > a)
 printf(“z is max”);
 return a;
}

int foo (int x, int y, int z)
{
 int a;
 if (x – y > 0)
 a = x;
 else
 a = y;
 return a;
}

int foo (int x, int y, int *)
{
 int a;
 a = *;
 if (x – y > 0)
 a = x;
 else
 a = y;
 if (* > a)
 printf(“z is max”);
 return a;
}

Statically determine program variables
that depend on change in the value of
the output using a three point lattice
on status of program variables
(Changed, Unchanged and Undefined)

1.Initially mark all variables as Undefined

2.Mark all output variables as Changed

3.Working backwards mark all those
variables that depend on Changed
variables as Changed

4.Continue till fixed point is reached

In the end replace all Undefined and
Unchanged variables with a
nondeterministic Undef value

Change Value Analysis
Program before CVA Program after CVA

Program with UBProgram after Compiler Optimizations

Source Code

Change Value Analysis (GPL 3) http://github.com/codelion/pa.llvm/tree/master/CVA
Pathgrind (GPL 3) http://github.com/codelion/pathgrind

Changed: {a,x,y}

Unchanged: {z}

Undefined: {}

Replace 'z' with
'*' which represents
a nondeterministic
value (e.g. Undef
in LLVM)

Undef value triggers
optimizations based
on undefined
behaviors which
eliminates 3 lines
from the program

Three Point Lattice

Changed

Unchanged

Undefined

Reachable code
that does not
affect output

Unreachable Code

Reachable code
that affects the
output

Experiments

Benchmarks from Software-artifact Infrastructure Repository (SIR)

14% reduction in size of binaries
30% reduction in number of constraints generated
48% reduction in time taken for symbolic execution

Implemented as a compiler pass in LLVM
Generated binaries are symbolically executed
using Pathgrind

T
ca

s

S
ch

e
d

u
le

2

R
e

p
la

ce

T
o

tin
fo

P
ri

n
t

T
o

ke
n

s2

S
p

a
ce

G
re

p

F
le

x

S
e

d
0

200

400

600

800

1000

1200

Constraints (Num) Constraints with CVA

T
ca

s

S
ch

e
d

u
le

2

R
e

p
la

ce

T
o

tin
fo

P
ri

n
t

T
o

ke
n

s2

S
p

a
ce

G
re

p

F
le

x

S
e

d

0
20
40
60
80

100
120
140
160
180
200

Time (Secs) Time with CVA

Still possible to generate the same test cases using dynamic symbolic
execution as the constraints on input that affect the output are preserved

● Reuse existing compiler optimizations
for eliminating code that is not relevant
for symbolic execution

● Based on a simple static analysis (CVA)
that is applied as a pass during the
compilation

● Does not require any change in the
underlying symbolic execution engine to
use the results from static analysis for
dynamic path exploration

● Allows reduction in size of compiled
binaries and prevents generation of
irrelevant constraints

Key Benefits

http://github.com/codelion/pa.llvm/tree/master/CVA
http://github.com/codelion/pathgrind

	Slide 1

