
Patched RTC: evaluating LLMs for
diverse software development tasks

Asankhaya Sharma, Patched Codes, Inc
asankhaya@patchedcodes.com

Abstract

This paper introduces Patched Round-Trip Correctness (Patched RTC), a novel evaluation
technique for Large Language Models (LLMs) applied to diverse software development tasks,
particularly focusing on "outer loop" activities such as bug fixing, code review, and
documentation updates. Patched RTC extends the original Round-Trip Correctness method to
work with any LLM and downstream task, offering a self-evaluating framework that measures
consistency and robustness of model responses without human intervention. The study
demonstrates a correlation between Patched RTC scores and task-specific accuracy metrics,
presenting it as an alternative to the LLM-as-Judge paradigm for open-domain task evaluation.
We implement Patched RTC in an open-source framework called patchwork, allowing for
transparent evaluation during inference across various patchflows. Experiments comparing
GPT-3.5 and GPT-4 models across different software development tasks reveal that Patched
RTC effectively distinguishes model performance and task difficulty. The paper also explores the
impact of consistency prompts on improving model accuracy, suggesting that Patched RTC can
guide prompt refinement and model selection for complex software development workflows.

Introduction
In the past couple of years, LLMs have shown great progress in helping developers with various
software development tasks. Typical evaluation of LLMs on coding related tasks focuses mostly
on “first-party” (or inner development loop) problems like code generation, summarization and
unit testing. Most of such tasks happen within the IDE of the developer, often assisted by a
GitHub Copilot-like plugin. Relatively little attention has been paid to the “second-party” (or outer
development loop) tasks like bug fixing, code review, refactoring, pull requests, code integration,
documentation updates and security patching. We argue that a large majority of software
development time is spent in these second-party outer loop activities v/s actual coding.
Accelerating software development requires us to automate these tasks and LLMs can be used
to do that effectively.

https://notes.paulswail.com/public/The+inner+and+outer+loops+of+software+development+workflow
https://www.linkedin.com/pulse/dev-inner-outer-loop-overlap-opportunity-ben-de-st-paer-gotch/
https://www.linkedin.com/pulse/dev-inner-outer-loop-overlap-opportunity-ben-de-st-paer-gotch/


Inner Loop v/s Outer Loop Visualization

In order to ascertain the effectiveness of LLMs when it comes to automating developer
outer-loop tasks we need a mechanism for good evaluation. The most popular benchmark to
evaluate LLMs on coding related tasks are HumanEval (and MBPP) and its subsequent
extensions like HumanEvalPack and EvalPlus. The benefit of these benchmarks is that they can
be run completely unsupervised and the evaluation of results does not require any human
intervention or review. However, these benchmarks do not adequately capture real-world
scenarios. Though there have been attempts by other complex benchmarks like the
bigcodebench or task-specific ones like static-analysis-eval, the current gold standard in LLM
evaluation is the LMSYS Chatbot Arena, where humans rate model responses via pairwise
comparison for an elo rating system.

As of the date of publishing this post, the coding category on the Arena is led by the frontier
models from Anthropic, OpenAI and Google:

https://claude.site/artifacts/06b80581-2f07-4b9d-bef7-5c7e27501d0f
https://huggingface.co/datasets/bigcode/humanevalpack
https://github.com/evalplus/evalplus
https://github.com/bigcode-project/bigcodebench
https://huggingface.co/datasets/patched-codes/static-analysis-eval
https://arena.lmsys.org/


Evaluating models on the Arena is expensive and time-consuming as it requires crowd sourced
inputs from humans. To combine the best of both worlds and based on the experience of
Chatbot Arena, newer unsupervised evaluation benchmarks have been proposed (e.g.
Arena-Hard-Auto) that show a high correlation with the original human-rated results reported in
the arena. These benchmarks use the LLM-as-Judge (or Jury) paradigm and generate the
scores automatically without human review. Any concerns around contamination of benchmark
data can be addressed via private or continuously updating datasets like the livecodebench and
livebench.

In this work, we propose a technique for model evaluation (Patched RTC) that is based on the
notion of Round-trip Correctness (or RTC). This approach was first introduced by Google
Deepmind and applied to code LLMs. We extend and expand the original technique to work for
any LLM and any downstream task. In particular, the key contributions of Patched RTC are:

- It is an evaluation technique that is generic and works with all LLMs.
- It can be applied transparently during inference to self-evaluate the responses by the

model without requiring any code changes.
- It can be applied to a wide domain of tasks and applications where the evaluation of

correctness is difficult due to a lack of human annotations.
- It works extremely well for outer-loop software development tasks (like bug fixing, pull

request reviews, and documentation updates) where we are working with patches (or
commits) instead of code.

Approach
The generic implementation of Patched RTC is simple and works as follows:

https://github.com/lm-sys/arena-hard-auto
https://livecodebench.github.io/
https://livebench.ai/
https://github.com/google-deepmind/icml2024-roundtrip-correctness
https://github.com/google-deepmind/icml2024-roundtrip-correctness


Say we have the model M that is used to generate a response R for the user query Q. Now, we
wish to evaluate if the response R for the Q is “correct”.

1) Q → [M] → R

We take Q, R and prompt the model to generate an alternate query Q1 such that Q1 is sufficient
to recreate the response R.

2) Q, R → [M] → Q1

Now, we take the new query Q1 and ask the model to generate another response R1.

3) Q1→ [M] → R1

Finally, we check if R and R1 are similar by computing a similarity score (0-1).

4) R, R1 → [M] → score

If score > threshold (say 0.8), we say that response R (for the query Q) is correct (w.r.t. RTC).

Step 4) can also be done without the use of LLMs, if we choose to rely on another similarity
metric like cosine similarity (or number of unit tests passed in case of code generation).

Patchflows
We define patchflows as workflows that automate outer-loop development tasks like bug fixes,
pull request reviews, documentation updates and library upgrades. Our open-source framework
patchwork makes it easy for developers to build and run patchflows. One of the challenges with
using LLM-assisted patchflows is that it is hard to evaluate the effectiveness of using them in
practice.

Patched RTC can be easily adopted to evaluate patchflows as follows:

A patch (or commit) has two parts before_code and after_code.

Patchflows either have 1) a patch as input (e.g. for pull request review) or 2) generate a patch
as an output (e.g. bug fixes). For the user prompt Q and response R we can handle these two
cases as:

1) Q, before_code, after_code → [M] → R

Applying Patched RTC, we first generate alternate query Q1

https://github.com/patched-codes/patchwork


Q, before_code, after_code, R → [M] → Q1

Q1, before_code, after_code → [M] → R1

R, R1 → [M] → score

If score > threshold, R is correct (w.r.t RTC).

2) Q, before_code → after_code

Similar to above, we first generate alternate query Q1

Q, before_code, after_code → [M] → Q1

Q1, before_code → after_code1

Since both after_code and after_code1 are code, we can actually use a stronger
measure of similarity. We use exact match as the notion of similarity thus,

If exact_match(after_code, after_code1), R is correct (w.r.t. RTC).

Almost all patchflows and the corresponding tasks can be classified in either one or the other
category. We list some of these tasks in the table below:

1) Tasks taking a patch as input 2) Tasks producing a patch as output

Code Review Bug fixing

Code style and convention checking Code refactoring

Performance impact analysis Code optimization

Dependency update impact analysis Documentation generation and updates

Test coverage analysis Test case generation

Documentation consistency check Code comment generation or improvement

Changelog generation Automated code formatting

Release notes compilation Internationalization and localization updates

Commit message quality assessment Configuration file updates

Code complexity analysis Automated code migrations



Refactoring suggestions Dependency version updates

Merge conflict detection and resolution API documentation updates

License compliance checking Database schema migrations

Without using an unsupervised technique like Patched RTC, it would be really hard to evaluate
the correctness of LLMs when applied for such tasks as it would require the presence of human
annotations or checks for each of these tasks. We have implemented several such tasks as
patchflows in our open-source framework patchwork:

1. AutoFix: Generate and apply fixes to code vulnerabilities in a repository.
2. PRReview: On PR creation, extract code diff, summarize changes, and comment on PR.
3. GenerateDocstring: Generate docstrings for methods in your code.
4. GenerateREADME: Create a README markdown file for a given folder, to add

documentation to your repository.
5. ResolveIssue: Identify the files in your repository that need to be updated to resolve an

issue (or bug) and create a PR to fix it.

One of the common challenges in adoption of these patchflows by developers is the assurance
around accuracy and consistency of the outputs. In the next section, we will see how we can
use Patched RTC to address this issue.

Evaluation
We first demonstrate the usefulness of Patched RTC across a generic set of diverse tasks by
comparing it with the Arena-Hard-Auto benchmark. The below table shows the performance of
different models when evaluated with RTC v/s the LLM-as-Judge paradigm as is standard in
Arena-Hard-Auto. We run our tests at a high similarity threshold (0.95).

As seen from the table below, we notice that is a correlation (with pearson coefficient of 0.81)
when compared to the numbers in Arena-Hard-Auto, thus showing that Patched RTC can be
used as an evaluation mechanism instead of LLM-as-Judge for generic and diverse tasks.
However, there are some differences when compared to Arena-Hard-Auto as well. We have
gpt-4-0125-preview as the performing best model on Patched RTC and llama-3-70b-instruct
also performs better than gpt-4o. These differences arise because Patched RTC measures
robustness and consistency by checking the model’s ability to invert itself and that may not
necessarily be the same as alignment with desired responses (as rated by humans).

Model Patched RTC Arena-Hard-Auto

gpt-4-0125-preview 76.6 78.0



llama-3-70b-instruct 47.4 46.6

gpt-4o 44.2 79.2

llama-3-8b-instruct 28.4 20.6

gpt-3.5-turbo-0125 22.6 23.3

Next, we apply Patched RTC to compare the performance of different patchflows. The following
table shows the numbers for each of the patchflows supported by our open-source framework
patchwork. We selected a sample of the most active GitHub repositories in 3 different
languages (Python, Java and JavaScript). Then we ran the patchflows on these repositories
including their issues and pull requests on the main branch. We ran each patchflow only once;
however a patchflow may make several calls to the LLM during the run depending on how it is
implemented.

We ran these experiments at a similarity threshold of 0.8 as we found that higher thresholds
tend to reject many responses that are equivalent due to small changes in either the comment
or structure of the generated code. We chose to compare between gpt-3.5-turbo and gpt-4o
models for these experiments as they are the most used models with our framework based on
usage data. These two models also provide excellent trade-offs in price v/s performance. We
expect the results to generalize to other models. The next chart shows the performance when
comparing these models with Patched RTC.

https://github.com/patched-codes/patchwork


Unsurprisingly, we can see that gpt-4o performs better than gpt-3.5-turbo across all the tasks
but for some of the more complex patchflows like AutoFix and PRReview the difference
between the two models is more pronounced. This suggests that a model with better reasoning
capabilities like gpt-4o is needed for a patchflow like AutoFix and using a less capable model
will not be sufficient.

Another thing we can notice from above is that certain tasks are just harder than others, we see
that ResolveIssue is the most different patchflow as both models have the lowest RTC pass
scores on that. On the other hand, we see that GenerateREADME is one of the easier tasks as
both models' scores are highest on that task. Patched RTC is useful to compare model
performance across diverse tasks.

Now, in order to check if better performance on Patched RTC does indeed correlate with actual
accuracy on the task we need to evaluate the responses further. Usually, this is the hardest part
of designing an eval for a new task. In absence of expensive human annotation and reviews we
can define oracles to make the final judgment of accuracy. Oracles are task specific and need
to be carefully designed to ensure they capture the intended definition of accuracy.

For instance, in the AutoFix patchflow we can use a static analyzer (Semgrep) as an oracle. We
scan the fixed code with Semgrep to ascertain if the vulnerability has indeed been fixed.
(Similarly for the ResolveIssue patchflow unit tests results can serve as an oracle.) The below
table shows the results when using a static analyzer as an oracle:

Tests Vulns Original Fix % RTC Pass % Fix % RTC Fail % Fix %

103 106 52.8 83.5 55.2 16.5 42.1

In total there are 103 tests in the AutoFix dataset which correspond to 106 vulnerabilities (there
may be more than 1 instance of a vulnerability in a test). We define the Fix % as the percentage
of vulnerabilities that are fixed by the AutoFix patchflow. It is calculated as follows:

Fix % = (No of vulns before running AutoFix - No of vulns after running AutoFix)
No of vuln before running AutoFix

Based on the results, we see that the actual fix rate (or accuracy) on the AutoFix task is 52.8 v/s
the RTC Pass score which was 83.5. But we see that the fix rate for responses that pass
Patched RTC is higher (55.2) v/s those that fail (42.1). This suggests that RTC is able to
distinguish more accurate responses by measuring robustness (or consistency). To test this
hypothesis we add a very simple one-line consistency prompt (this is very similar to the “think
step-by-step” prompt that seems to help models do better reasoning) to all the tests and check if
this improves the fix rate.

Consistency prompt:
"Respond with clarity, consistency, and precision, maintaining a structured format throughout.”



The above prompt was prepended to the system prompt of the request for all the tests and we
computed the Fix % of the responses. We saw that this improves the Fix rate by 14.4%.

Tests Vulns Original Fix % Consistency Prompt Fix %

103 106 52.8 60.4

This shows that making responses more consistent can improve accuracy and Patched RTC
pass rate can be used as an indicator of how well the model will perform on the task. Next, we
use the consistency prompt and reevaluate the Patched RTC pass rate for all the tasks. We see
that adding this prompt in general improves the overall pass rate across the patchflows for both
the models - gpt-3.5-turbo and gpt-4o. The increase is more pronounced and consistent in a
more capable model like gpt-4o v/s gpt-3.5-turbo as can be seen in the radar charts below.

Discussion
The use of Patched RTC does incur an additional inference cost of ~3x depending on how the
similarity measure is computed. Thus, it is more likely to be useful during testing and evaluation
of patchflows and guiding the refinement of the prompts. When used as an active inference
technique the improvements in accuracy and robustness need to be balanced with the
increased inference cost. Also, the similarity threshold and similarity measure are likely to be
dependent on the task and experimenting with a few options before choosing one will likely lead
to better results.



That said, we have actually found it quite useful for evaluating open-domain tasks in software
development as it is hard to ascertain the accuracy of models or complex workflows on these
tasks without human annotations or reviews.

What does Patched RTC measure?

RTC isn't strictly measuring "correctness" in the traditional sense, as we don't have a ground
truth to compare against. Instead, it's measuring something more nuanced:

1. Consistency: RTC evaluates how consistently the model can reproduce similar content
given a description of its own output.

2. Robustness: It tests whether the model's output is stable enough that it can be
approximately reproduced from a summary of itself.

3. Coherence: It checks if the model's output contains enough clear, structured information
that another instance of the model can grasp and reproduce the key points.

4. Self-invertibility: It measures how well the model can "invert" its own output - turning a
response into a query and back into a similar response.

The key benefits of Patched RTC are:

- It is a different form of evaluation as it tests the ability of the LLM to act as an invertible
function.

- It does not require the use of Judge (or Jury) LLMs and can be done with a single model.
- It is an unsupervised evaluation as we do not rely on any human annotation or checks.
- It can be used along with any existing benchmark to see how Patched RTC correlates

with them.
- It can be used for a wider spectrum of domains that do not have good human

annotations.

Our work on RTC is just a beginning, there are a lot of directions we can explore further:

- Using a different model for round-trip response compared to the original model.
- Optimize the prompts automatically to generate more consistent responses.
- Impact of different oracles on task accuracy when used with Patched RTC.

Conclusions
In this article, we introduced Patched RTC, a self evaluating framework that works across
diverse tasks. Patched RTC measures consistency and robustness of LLM responses and is
correlated with oracle based accuracy metrics. It presents an alternative to the LLM-as-Judge
paradigm that is currently one of the most common ways to evaluate models for open-domain
tasks. We also showed that making prompt changes that increase consistent responses from
models do help in improving the overall accuracy of the model.



Our implementation is open-source and is available in patchwork, anyone building patchflows
can make use of RTC to evaluate and optimize it for their own downstream task.

Usage
To get access to Patched RTC:

Use the patched_api_key with our OpenAI compatible endpoint available at patched.codes
and just change the base url to https://patchwork.patched.codes/evaluate/v1.
When using this endpoint only those responses that pass Patched RTC will be generated,
otherwise the response will be empty. If you want to compare with how the response would have
been without Patched RTC, you can send the same request through our usual OpenAI
compatible endpoint at https://patchwork.patched.codes/v1.

References
- Unsupervised Evaluation of Code LLMs with Round-Trip Correctness

(https://arxiv.org/abs/2402.08699)
- Evaluating Large Language Models Trained on Code (https://arxiv.org/abs/2107.03374)
- Replacing Judges with Juries: Evaluating LLM Generations with a Panel of Diverse

Models (https://arxiv.org/abs/2404.18796)
- How good are LLMs at patching vulnerabilities?

(https://www.patched.codes/blog/how-good-are-llms)
- Self-Consistency Improves Chain of Thought Reasoning in Language Models

(https://arxiv.org/abs/2203.11171)

https://github.com/patched-codes/patchwork
https://docs.patched.codes/patched-api
https://arxiv.org/abs/2402.08699
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2404.18796
https://www.patched.codes/blog/how-good-are-llms
https://arxiv.org/abs/2203.11171

