
OpenEvolve
Asankhaya Sharma
https://github.com/codelion/openevolve

https://github.com/codelion/openevolve

https://evovisual-advanced-evolutionary-concepts-577160257370.us-west1.run.app

https://evovisual-advanced-evolutionary-concepts-577160257370.us-west1.run.app

Circle Packing Problem (n=26)

The circle packing problem involves placing n non-overlapping circles inside a
container (in this case, a unit square) to optimize a specific metric.

For this example:

● We pack exactly 26 circles
● Each circle must lie entirely within the unit square
● No circles may overlap
● We aim to maximize the sum of all circle radii

According to the AlphaEvolve paper, a solution with a sum of radii of
approximately 2.635 is achievable for n=26.

Our goal was to match or exceed this result.

Initial Program

Initial attempt
Place a large circle in the center
centers[0] = [0.5, 0.5]

Place 8 circles around it in a ring
for i in range(8):
 angle = 2 * np.pi * i / 8
 centers[i + 1] = [0.5 + 0.3 * np.cos(angle), 0.5 + 0.3 *
np.sin(angle)]

Place 16 more circles in an outer ring
for i in range(16):
 angle = 2 * np.pi * i / 16
 centers[i + 9] = [0.5 + 0.7 * np.cos(angle), 0.5 + 0.7 *
np.sin(angle)]

Generation 10
Parameters for the arrangement (fine-tuned)
r_center = 0.1675 # Central circle radius

1. Place central circle
centers[0] = [0.5, 0.5]
radii[0] = r_center

2. First ring: 6 circles in hexagonal arrangement
r_ring1 = 0.1035
ring1_distance = r_center + r_ring1 + 0.0005 # Small gap for
stability
for i in range(6):
 angle = 2 * np.pi * i / 6
 centers[i+1] = [
 0.5 + ring1_distance * np.cos(angle),
 0.5 + ring1_distance * np.sin(angle)
]
 radii[i+1] = r_ring1

After 200+ iterations

Generation 100
Row 1: 5 circles
centers[0] = [0.166, 0.166]
centers[1] = [0.333, 0.166]
centers[2] = [0.500, 0.166]
centers[3] = [0.667, 0.166]
centers[4] = [0.834, 0.166]

Row 2: 6 circles (staggered)
centers[5] = [0.100, 0.333]
centers[6] = [0.266, 0.333]
... additional circles

Final solution with scipy.optimize
def construct_packing():
 # ... initialization code ...

 # Objective function: Negative sum of radii (to maximize)
 def objective(x):
 centers = x[:2*n].reshape(n, 2)
 radii = x[2*n:]
 return -np.sum(radii)

 # Constraint: No overlaps and circles stay within the unit square
 def constraint(x):
 centers = x[:2*n].reshape(n, 2)
 radii = x[2*n:]

 # Overlap constraint
 overlap_constraints = []
 for i in range(n):
 for j in range(i + 1, n):
 dist = np.sqrt(np.sum((centers[i] - centers[j])**2))
 overlap_constraints.append(dist - (radii[i] + radii[j]))
 # ... boundary constraints ...

 # Optimization using SLSQP
 result = minimize(objective, x0, method='SLSQP', bounds=bounds,
constraints=constraints)

OpenEvolve AlphaEvolve

Things to watch out for!

● Choosing the right abstraction at which to do the evolutionary search
● Preventing and allowing the use of existing libraries and APIs
● Guiding a population of candidate programs via prompting v/s a single

program
● Robust cascading evaluations
● Requires human ingenuity in formulating the problem

New paradigm

● For inference time scaling of LLMs
● Distinct from existing sequential or parallel test time computing approaches
● Combines genetic algorithms driven search with LLMs for evolutionary coding

agents
● Distill evolutionary agents to next version of base LLMs

Thank You!

● Questions?
● Links

○ OpenEvolve - https://github.com/codelion/openevolve
○ EvoVisual -

https://evovisual-advanced-evolutionary-concepts-577160257370.us-west1.run.app/

https://github.com/codelion/openevolve
https://evovisual-advanced-evolutionary-concepts-577160257370.us-west1.run.app/

