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In this white paper, we present AlphaEvolve, an evolutionary coding agent that substantially enhances
capabilities of state-of-the-art LLMs on highly challenging tasks such as tackling open scientific problems
or optimizing critical pieces of computational infrastructure. AlphaEvolve orchestrates an autonomous
pipeline of LLMs, whose task is to improve an algorithm by making direct changes to the code. Using
an evolutionary approach, continuously receiving feedback from one or more evaluators, AlphaEvolve
iteratively improves the algorithm, potentially leading to new scientific and practical discoveries. We
demonstrate the broad applicability of this approach by applying it to a number of important com-
putational problems. When applied to optimizing critical components of large-scale computational
stacks at Google, AlphaEvolve developed a more efficient scheduling algorithm for data centers, found
a functionally equivalent simplification in the circuit design of hardware accelerators, and acceler-
ated the training of the LLM underpinning AlphaEvolve itself. Furthermore, AlphaEvolve discovered
novel, provably correct algorithms that surpass state-of-the-art solutions on a spectrum of problems
in mathematics and computer science, significantly expanding the scope of prior automated discovery
methods (Romera-Paredes et al., 2023). Notably, AlphaEvolve developed a search algorithm that found a
procedure to multiply two 4 x 4 complex-valued matrices using 48 scalar multiplications; offering the
first improvement, after 56 years, over Strassen’s algorithm in this setting. We believe AlphaEvolve and
coding agents like it can have a significant impact in improving solutions of problems across many areas
of science and computation.
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parent_program, inspirations = database.sample()

prompt = prompt_sampler.build(parent_program, inspirations)
diff = 1llm.generate(prompt)

child_program = apply diff(parent_program, diff)

results = .execute(child_program)
database.add(child_program, results)
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penEvolve

def evolve (code) :
while not optimal:
code = mutate (code)

evaluate (code)

Evolutionary Coding Agent



OpenEvolve Architecture
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@® Introduction

<[> Basic Genetic Algorithm

Explore the core mechanics of
evolution: selection, crossover, and
mutation. Watch a population of
simple strings evolve towards a
target, and see operators in action
step-by-step.

Explore Basic Genetic Algorithm

<[> Basic Genetic Algorithm

9 Island Model GA

88 MAP-Elites

Welcome to EvoVisual!

Dive into the fascinating world of evolutionary computation. This interactive tool helps you
visualize and understand key algorithms and concepts, from basic Genetic Algorithms to

cutting-edge ideas like LLM-powered evolution.

& Island Model GA

See how dividing a population into
sub-populations (islands) with
occasional migration can improve
search diversity and find solutions
faster for some problems.

Explore Island Model GA

29 MAP-Elites

Discover how MAP-Elites
(Multidimensional Archive of
Phenotypic Elites) maintains a
collection of diverse, high-
performing solutions across different
behavioural niches, avoiding
premature convergence.

Explore MAP-Elites

Advanced Evolutionary Concepts Explorer

() LLM-Powered Evolution

[;l LLM-Powered Evolution

Learn conceptually how Large
Language Models (LLMs) can
revolutionize evolutionary algorithms
by acting as intelligent crossover and
mutation operators, especially for
complex structures like code.

Explore LLM-Powered Evolution
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Circle Packing Problem (n=26)

The circle packing problem involves placing n non-overlapping circles inside a
container (in this case, a unit square) to optimize a specific metric.

For this example:

e \We pack exactly 26 circles
e Each circle must lie entirely within the unit square
e No circles may overlap

e \We aim to maximize the sum of all circle radii

According to the AlphaEvolve paper, a solution with a sum of radii of
approximately 2.635 is achievable for n=26.

Our goal was to match or exceed this result.



Initial Program

# Initial attempt
# Place a large circle in the center
centers[@] = [0.5, 0.5]

# Place 8 circles around it in a ring
for i in range(8):

angle = 2 * np.pi * i/ 8

centers[i + 1] = [0.5 + 0.3 * np.cos(angle), 0.5 + 0.3 *
np.sin(angle)]

# Place 16 more circles in an outer ring
for i in range(16):

angle = 2 * np.pi * i / 16

centers[i + 9] = [0.5 + 0.7 * np.cos(angle), 0.5 + 9.7 *
np.sin(angle)]
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# Generation 10
# Parameters for the arrangement (fine-tuned)
r_center = 0.1675 # Central circle radius

Circle Packing (n=26, sum=1.794655)

# 1. Place central circle oo 9

centers[0] = [0.5, 0.5] 2 2

11

radii[@] = r_center 0] °

# 2. First ring: 6 circles in hexagonal arrangement
r_ringl = 0.1035 1
ringl distance = r_center + r_ringl + 0.0005 # Small gap for 25 a 0 1
stability
for i in range(6): % =
angle = 2 * np.pi *1i / 6
centers[i+l] = [
0.5 + ringl_distance * np.cos(angle),
0.5 + ringl_distance * np.sin(angle) - = °
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radii[i+1] = r_ringl



After 200+ iterations

Circle Packing (n=26, sum=2.201525)
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# Generation 100
## Row 1: 5 circles
centers[@] = [0.166, 0.166]

centers[1l] = [0.333, 0.166]
centers[2] = [0.500, 0.166]
centers[3] = [0.667, 0.166]
centers[4] = [0.834, 0.166]

# Row 2: 6 circles (staggered) - ‘

centers[5] = [0.100, ©.333]
centers[6] = [0.266, ©.333]
# ... additional circles




# Final solution with scipy.optimize
def construct_packing():
# ... initialization code ...

# Objective function: Negative sum of radii (to maximize)
def objective(x):

centers = x[:2*n].reshape(n, 2)

radii = x[2*n:]

return -np.sum(radii)

# Constraint: No overlaps and circles stay within the unit square
def constraint(x):

centers = x[:2*n].reshape(n, 2)

radii = x[2*n:]

# Overlap constraint
overlap_constraints = []
for i in range(n):
for j in range(i + 1, n):
dist = np.sgrt(np.sum((centers[i] - centers[j])**2))
overlap_constraints.append(dist - (radii[i] + radii[j]))
# ... boundary constraints ...

# Optimization using SLSQP
result = minimize(objective, x0, method='SLSQP', bounds=bounds,
constraints=constraints)
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1.0 Gitcle Pecking [n=26, sunm=2,632328) A collectlon of 26 disjoint circles packed inside a unit square to maximize the sum of radii
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Things to watch out for!

e Choosing the right abstraction at which to do the evolutionary search

e Preventing and allowing the use of existing libraries and APls

e Guiding a population of candidate programs via prompting v/s a single
program

e Robust cascading evaluations

e Requires human ingenuity in formulating the problem



New paradigm

e Forinference time scaling of LLMs
e Distinct from existing sequential or parallel test time computing approaches
e Combines genetic algorithms driven search with LLMs for evolutionary coding

agents
e Distill evolutionary agents to next version of base LLMs



Thank You!

e Questions?

e Links
o OpenEvolve - https://github.com/codelion/openevolve
o EvoVisual -
https://evovisual-advanced-evolutionary-concepts-577160257370.us-west1.run.app/
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