OpenEvolve: Towards Open
Evolutionary Agents

Asankhaya Sharma APP“ED AI

SOMMIT

eeeeeeeeeee U John Snow LABS

Co-Founder & CTO
Patched.Codes

Google DeepMind 2025-5-16

AlphaEvolve: A coding agent for scientific and
algorithmic discovery

Alexander Novikov', Ngin Vii", Marvin Eisenberger”, Emilien Dupont”, Po-Sen Huang”, Adam Zsolt Wagner",
Sergey Shirobokov", Borislav Kozlovskii*, Francisco J. R. Ruiz, Abbas Mehrabian, M. Pawan Kumar, Abigail

See, Swarat Chaudhuri, George Holland, Alex Davies, Sebastian Nowozin, Pushmeet Kohli and Matej Balog*
Google DeepMind!

In this white paper, we present AlphaEvolve, an evolutionary coding agent that substantially enhances
capabilities of state-of-the-art LLMs on highly challenging tasks such as tackling open scientific problems
or optimizing critical pieces of computational infrastructure. AlphaEvolve orchestrates an autonomous
pipeline of LLMs, whose task is to improve an algorithm by making direct changes to the code. Using
an evolutionary approach, continuously receiving feedback from one or more evaluators, AlphaEvolve
iteratively improves the algorithm, potentially leading to new scientific and practical discoveries. We
demonstrate the broad applicability of this approach by applying it to a number of important com-
putational problems. When applied to optimizing critical components of large-scale computational
stacks at Google, AlphaEvolve developed a more efficient scheduling algorithm for data centers, found
a functionally equivalent simplification in the circuit design of hardware accelerators, and acceler-
ated the training of the LLM underpinning AlphaEvolve itself. Furthermore, AlphaEvolve discovered
novel, provably correct algorithms that surpass state-of-the-art solutions on a spectrum of problems
in mathematics and computer science, significantly expanding the scope of prior automated discovery
methods (Romera-Paredes et al., 2023). Notably, AlphaEvolve developed a search algorithm that found a
procedure to multiply two 4 X 4 complex-valued matrices using 48 scalar multiplications; offering the
first improvement, after 56 years, over Strassen’s algorithm in this setting. We believe AlphaEvolve and
coding agents like it can have a significant impact in improving solutions of problems across many areas
of science and computation.

OpenEvolve

Google DeepMind published a
paper on 18th May 2025 about
the AlphaEvolve system which
described several results using
an evolutionary coding agent
that enhanced the capabilities of
frontier models.

We decided to replicate the
work and build a similar system
and release it as OSS. This was
the genesis of OpenEvolve.

- APPLIED
sOUMMIT A

OpenEvolve Architecture

Program Database e LLM Ensemble

Stores programs and Generates code

metrics fUpdates g A modifications
© Program Requests
Past .' ,
programs | ;
| Prompt— £— '
" p i, i Programs /
. : . Request Metrics ;
Prompt Sampler q ~_ [Evaluator Pool
Creates context-rich |--. __.-"| Tests programs and
prompts I ' \ assigns scores)
Evolutionary Loop P APPLIED AI

Asynchronous pipeline optimized for maximum throughput

Example Problem: Maximum Subarray Sum

Find the contiguous subarray with the largest sum

Input Array:

0 1 2 3 4 5 6

=2 = 4 =1 2 i =

Maximum subarray

Maximum Sum =6

Subarray [4, -1, 2, 1] has the largest sum
4+(-1)+2+1=6

How can we solve this efficiently?

- APPLIED
sOUMMIT A

Starting Point: Naive Solution

def max subarray sum(arr):
n = len(arr)

max sum = float('-inf')

Try every possible subarray
for i in range (n):
for j in range (i, n):
current sum = 0
for k in range(d, o + 1):

current sum += arr[k]

max_ sum = max (max_sum, current sum)

return max sum

Cl'ime: O(n3) - Very SIowD

Three nested loops checking every subarray

For 1000 elements: ~1 billion operations!

sU

APPLIED
MMIT

Al

OpenEvolve: Just 3 Inputs

Initial Code

def max_ subarray() :
O(n®*) solution

Evaluator

Config

LLM: Gemini-2.5
Islands: 5
Iterations: 1000

(That's all! Evolution begins... >

- APPLIED
sOUMMIT A

Island 1
20 programs

Exploring: O(n?)

Parallel Evolution with Islands

5 populations evolve independently, preventing getting stuck

Island 2

20 programs

Island 3

20 programs

Exploring: O(n log n) Exploring: O(n?)

v Each island has its own evolutionary loop
v Best solutions spread through migration

v Diversity prevents premature convergence

Island 4

20 programs

Exploring: O(n)

Island 5

20 programs

Exploring: O(n®)

- APPLIED
sOUMMIT A

Inside Island 4: Evolution in Action

Each island runs its own evolutionary loop

—
e
/.—' 1. Select Best Program jemmss, <
S
LpPE (Program 3 - Score: 85)) 5
-
Island 4 | Y
’r” () "-
2 H
el 2. LLM Mutates i
r H
b f
’,, g Analyzes & Improves Code y, Repeat
Program 1 Program 2 o | continuously

\/ H

O(n?) Score: 65

O(n?) Score: 60

Program 3
O(n) Score: 85

Program 4
O(n®) Score: 40

3. Create Improved
New Program (Score: 92)

Program 5
O(n?) Score: 70

J

'
1
1
'
.
'
'
'
'
'
J]
.
.
.
.
.
7
.

0
”

4. Replace Worst
Remove Program 4 (Score: 40)

A K2
B

S
ke

. Each island independently evolves using LLM-guided improvements

sU

APPLIED

MMIT

Al

One lteration: LLM Improvement

How Island 4's best program gets improved

System Prompt to LLM:

"Improve this O(n) solution. Fix any bugs. Optimize if possible."

Selected from Island 4 Improved Version

LLM
Gemini-2.5

Score: 85/100 Score: 100/100 v/

def max_subarray(arr) : def max_subarray(arr):
max_sum = arr([0] e o o0 o0 max_sum = arr[0]
current = arr[0] e 0o 0 current = arr[0]

for num in arr[l:]: for num in arr([l:]:

current = current + num current = max(num, current+num)

A Bug: Never resets negative sums v Fixed: Kadane's algorithm!

LLM Analysis:
"The current sum never resets when it becomes negative."
"Using max(num, current+num) implements Kadane's algorithm correctly."
"This handles negative numbers and maintains O(n) complexity."

This improved program replaces the worst program in Island 4

. APPLIED

SUMMIT

After 1000 Iterations: Optimal Solution!

e E ™
Final Evolved Solution - Kadane's Algorithm
def max subarray sum(arr):
Kadane's Algorithm - O(n) time, O(l) space
max sum = arr([0]
current sum = arr[0]
for num in arr[l:]:
current sum = max (num, current sum + num)
max sum = maxX (max sum, current sum)
return max sum
_ J
£ 2.
Started: O(n?) Evolved: O(n)
~1 billion ops for n=1000 9 1000 ops for n=1000
=

\ . APPLIED
Al

SGMMIT

Circle Packing Problem (n=26)

The circle packing problem involves placing n non-overlapping circles inside a
container (in this case, a unit square) to optimize a specific metric.

For this example:

e \We pack exactly 26 circles

e Each circle must lie entirely within the unit square
e No circles may overlap

e \We aim to maximize the sum of all circle radii

According to the AlphaEvolve paper, a solution with a sum of radii of
approximately 2.635 is achievable for n=26.

Our goal was to match or exceed this result.

- APPLIED
sOUMMIT A

Initial Program

Initial attempt
Place a large circle in the center
centers[@] = [0.5, 0.5]

Place 8 circles around it in a ring
for i in range(8):

angle = 2 * np.pi * 1 / 8

centers[i + 1] = [0.5 + 0.3 *
np.cos(angle), 0.5 + 0.3 * np.sin(angle)]

Place 16 more circles in an outer ring
for i in range(16):

angle = 2 * np.pi * 1 / 16

centers[i + 9] = [0.5 + 0.7 *
np.cos(angle), 0.5 + 0.7 * np.sin(angle)]

1.0

0.8 4

0.6

0.4 4

0.2 4

0.0

Circle Packing (n=

26, sum=0.959764)
13

13

L7

8

]

j T3

20
T

21

Z

22
T

1q

24

0.0

0.2

T
0.4

sU

T
0.6 0.8

APPLIED

MMIT

1.0

Al

Evolved Program

Circle Packing (n=26, sum=1.794655)

Generation 10 10
Parameters for the arrangement (fine-tuned) o °

24
r_center = 0.1675 # Central circle radius = =

11 8
0.8

1. Place central circle
centers[@] = [0.5, 0.5]
radii[@] = r_center

12 7
0.6 -

2. First ring: 6 circles in hexagonal
arrangement
r_ringl = 0.1035 04
ringl_distance = r_center + r_ringl + 0.0005 #
Small gap for stability
for i in range(6):
angle = 2 * np.pi *i/ 6 1 1 1
centers[i+l] = [e s .
0.5 + ringl_distance * np.cos(angle), 15 16
0.5 + ringl_distance * np.sin(angle) 00

25 4 0 1

13 18

0.0 0.2 0.4 0.6 0.8 1.0

radii[i+1] = r_ringl
- APPLIED
o
sOUMMIT G

After 200 iterations

Generation 100
Row 1: 5 circles

centers[0] = [0.166, 0.166]
centers[1] = [0.333, 0.166]
centers[2] = [0.500, 0.166]
centers[3] = [0.667, 0.166]
centers[4] = [0.834, 0.166]

Row 2: 6 circles (staggered)

centers[5] = [0.100, 0.333]
centers[6] = [0.266, 0.333]
... additional circles

1.0

0.8 1

0.6

0.4

0.2 4

0.0

Circle Packing (n=26, sum=2.201525)

21

10 4

16

i)

24

8

11

14

23

17

8
22

13

25

18

20

0.0

T
0.2

0.4

%5

U

T T
0.6 0.8

APPLIED

MMIT

1.0

Al

Final solution with scipy.optimize
def construct_packing():
... initialization code ...

Objective function: Negative sum of radii (to
maximize)
def objective(x):
centers = x[:2*n].reshape(n, 2)
radii = x[2*n:]
return -np.sum(radii)

Constraint: No overlaps and circles stay within
unit square
def constraint(x):
centers = x[:2*n].reshape(n, 2)
radii = x[2*n:]

Overlap constraint
overlap_constraints = []
for i in range(n):
for j in range(i + 1, n):
dist = np.sqrt(np.sum((centers[i] -
centers[j])**2))
overlap constraints.append(dist -
(radii[i] + radii[j]))
... boundary constraints ...

Optimization using SLSQP
result = minimize(objective, x@, method='SLSQP',
bounds=bounds, constraints=constraints)

1.0

0.8 1

0.6

0.4 4

0.2 4

0.0

Circle Packing (n=26, sum=2.634292)

25

14

12

11

10

19

13 18

17

16

15

24

23

22

21

20

0.0

0.2

sU

0.6 0.8

APPLIED

MMIT

1.0

Al

OpenEvolve AlphaEvolve

- Circle Packing (n=26, sum=2.635328) A collection of 26 disjoint circles packed inside a unit square to maximize the sum of radii
4
9 14 13 24 I] l ,
0.8 os] 8 N S \"\:, LT 7 O\
18 /) \ / \ / —
13 , ‘
3 8 o | \ P
0.6 1 17 f 064 ° T S 7 D | ~——
X /
2 7 12 22 I | :,-
A b N
0.4 25 0.4 \; e A | -
- = |
/ '\ ,/
: ; 21 |' / |
1 \ | \
16 \ / / b
0.2 1 | 0.2 A - / =N \ ”//‘- . =/
20
. 5 10 15 | [|
0.0 + = + = + _ + = + __ | 0.0 T T T —
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

. APPLIED
sOMMIT A

MLX Metal Kernel for Transformer Attention

The Challenge

Target: Qwen3-0.6B with Grouped Query Attention (40:8 head ratio)
Hardware: Apple Silicon M-series GPUs with unified memory

Baseline: MLX's highly optimized scaled _dot_product_attention

Goal: Outperform expert-engineered kernel through automated discovery

Why This is Hard

e MLX is already highly optimized by Apple's engineers
e Attention kernels are performance-critical
e Apple Silicon has unique architectural features

- APPLIED
sOUMMIT A

Fitness Score (% Improvement)

Evolution Progress:

25 Generations of Kernel Optimization

30 30
=—@-= Best Fithess
—=— Average Fitness
--&- Population Diversity
25— - 25
Soa.
.,.‘..
A ’,/
s ”‘
20 1 Y Two-Pass Softmax = L 20
Yous Algorithm e
P -
. -
/’r
-
’/
151 -
S
10 1
A, 10
“ea.,
.,*..
A
5 1 g
. |
“a.,
." d-Onianig ed
O -
T T T T T (6]
(0] 5 10 15 20 25

Generation

. APPLIED

SUMMIT

Al

Population Diversity

Performance Improvements by Benchmark Category

60 - —_ Peak: +106%
g
t
S 40 +
g
0,
2 E2S +22.9%
1
Q.
£ 20+
k-] +8.11% Average: +12.5%
Q e e T e o o o o o] e o o o e e G —————————————————
)]
[=3
(7]
8 0
]
%]
(4 —_
(a] A0
-4.6%
_20 -
-16.5%
General Long Stress Short Code
Tasks Context Tests Context Generation

Benchmark Category

- APPLIED
sOUMMIT A

AlgoTune

Can Language Models Speed Up General-Purpose Numerical Programs?

Ori Press Brandon Amos Haoyu Zhao Yikai Wu Samuel K. Ainsworth Dominik Krupke Patrick Kidger
UNIVERSITAT Touqir Sajed Bartolomeo Stellato Jisun Park Nathanael Bosch Eli Meril Albert Steppi C M PRINCETON
TUBINGEN Arman Zharmagambetov Fangzhao Zhang David Pérez-Pifieiro Alberto Mercurio NiZhan UNIVERSITY
Talor Abramovich Kilian Lieret Hanlin Zhang Shirley Huang Matthias Bethge Ofir Press
B Paper ¢ Code
Pick a Task Optimize the Code Time Generated Code
154 tasks including: Reference: Generated: Score:

e Language AlgoTune

g numpy.qr Model Testing Suite 105.5ms 75.6ms 1.4x

A\

4

A\)

?
'B - 99.4ms 99.4ms 1x

python.gzip r_/ S

networkx.pagerank 49.7ms 1.6ms 30x

APPLIED
sOUMMIT A

OpenEvolve

Gemini Flash 2.5 (200 iter)
Gemini Flash 2.5 (100 iter)
Gemma 3 278
Qwen3-Coder 4808 (diff)

Qwen3-32B

AlgoTuner

® o4-mini

& DeepSeek R1
® GPT-5

Z GLM-45

<+ Gemini 2.5 Pro

1.72x

1.70x

1.67x

1.52x

1.51x

1.306x

1.637x
1.630x

1.414x

« APPLIED
SOMMIT

2.039x

Al

Things to watch out for!

e Choosing the right abstraction at which to do the evolutionary
search

e Preventing and allowing the use of existing libraries and APIs

e Guiding a population of candidate programs via prompting v/s a
single program

e Robust cascading evaluations

e Requires human ingenuity in formulating the problem

- APPLIED
sOUMMIT A

New paradigm

e Forinference time scaling of LLMs

e Distinct from existing sequential or parallel test time computing
approaches

e Combines genetic algorithms driven search with LLMs for
evolutionary coding agents

e Distill evolutionary agents to next version of base LLMs

- APPLIED
sOUMMIT A

Thank You!

e (Questions?

e Links

o OpenEvolve - https://github.com/codelion/openevolve

o EvoVisual -
https://evovisual-advanced-evolutionary-concepts-577160257370.us-west1.run.a
pp/

o OpenEvolve: An Open Source Implementation of Google DeepMind's
AlphaEvolve - https://huggingface.co/blog/codelion/openevolve

o Automated Discovery of High-Performance GPU Kernels with OpenEvolve -
https://huggingface.co/blog/codelion/openevolve-gpu-kernel-discovery

o Towards Open Evolutionary Agents -
https://huggingface.co/blog/driaforall/towards-open-evolutionary-agents

APPLIED
sOUMMIT A

https://github.com/codelion/openevolve
https://evovisual-advanced-evolutionary-concepts-577160257370.us-west1.run.app/
https://evovisual-advanced-evolutionary-concepts-577160257370.us-west1.run.app/
https://huggingface.co/blog/codelion/openevolve
https://huggingface.co/blog/codelion/openevolve-gpu-kernel-discovery
https://huggingface.co/blog/driaforall/towards-open-evolutionary-agents

