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OpenEvolve
Google DeepMind published a 
paper on 18th May 2025 about 
the AlphaEvolve system which 
described several results using 
an evolutionary coding agent 
that enhanced the capabilities of 
frontier models. 

We decided to replicate the 
work and build a similar system 
and release it as OSS. This was 
the genesis of OpenEvolve.



















Circle Packing Problem (n=26)

The circle packing problem involves placing n non-overlapping circles inside a 
container (in this case, a unit square) to optimize a specific metric. 

For this example:  

● We pack exactly 26 circles 
● Each circle must lie entirely within the unit square 
● No circles may overlap 
● We aim to maximize the sum of all circle radii 

According to the AlphaEvolve paper, a solution with a sum of radii of 
approximately 2.635 is achievable for n=26. 

Our goal was to match or exceed this result.



Initial Program

# Initial attempt
# Place a large circle in the center
centers[0] = [0.5, 0.5]

# Place 8 circles around it in a ring
for i in range(8):
    angle = 2 * np.pi * i / 8
    centers[i + 1] = [0.5 + 0.3 * 
np.cos(angle), 0.5 + 0.3 * np.sin(angle)]

# Place 16 more circles in an outer ring
for i in range(16):
    angle = 2 * np.pi * i / 16
    centers[i + 9] = [0.5 + 0.7 * 
np.cos(angle), 0.5 + 0.7 * np.sin(angle)]



Evolved Program

# Generation 10
# Parameters for the arrangement (fine-tuned)
r_center = 0.1675  # Central circle radius

# 1. Place central circle
centers[0] = [0.5, 0.5]
radii[0] = r_center

# 2. First ring: 6 circles in hexagonal 
arrangement
r_ring1 = 0.1035
ring1_distance = r_center + r_ring1 + 0.0005  # 
Small gap for stability
for i in range(6):
    angle = 2 * np.pi * i / 6
    centers[i+1] = [
        0.5 + ring1_distance * np.cos(angle),
        0.5 + ring1_distance * np.sin(angle)
    ]
    radii[i+1] = r_ring1



After 200 iterations

# Generation 100
# Row 1: 5 circles
centers[0] = [0.166, 0.166]
centers[1] = [0.333, 0.166]
centers[2] = [0.500, 0.166]
centers[3] = [0.667, 0.166]
centers[4] = [0.834, 0.166]

# Row 2: 6 circles (staggered)
centers[5] = [0.100, 0.333]
centers[6] = [0.266, 0.333]
# ... additional circles



# Final solution with scipy.optimize
def construct_packing():
    # ... initialization code ...
    
    # Objective function: Negative sum of radii (to 
maximize)
    def objective(x):
        centers = x[:2*n].reshape(n, 2)
        radii = x[2*n:]
        return -np.sum(radii)

    # Constraint: No overlaps and circles stay within the 
unit square
    def constraint(x):
        centers = x[:2*n].reshape(n, 2)
        radii = x[2*n:]
        
        # Overlap constraint
        overlap_constraints = []
        for i in range(n):
            for j in range(i + 1, n):
                dist = np.sqrt(np.sum((centers[i] - 
centers[j])**2))
                overlap_constraints.append(dist - 
(radii[i] + radii[j]))
        # ... boundary constraints ...
        
    # Optimization using SLSQP
    result = minimize(objective, x0, method='SLSQP', 
bounds=bounds, constraints=constraints)
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MLX Metal Kernel for Transformer Attention

The Challenge

● Target: Qwen3-0.6B with Grouped Query Attention (40:8 head ratio)
● Hardware: Apple Silicon M-series GPUs with unified memory
● Baseline: MLX's highly optimized scaled_dot_product_attention
● Goal: Outperform expert-engineered kernel through automated discovery

Why This is Hard

● MLX is already highly optimized by Apple's engineers
● Attention kernels are performance-critical
● Apple Silicon has unique architectural features
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Things to watch out for!

● Choosing the right abstraction at which to do the evolutionary 
search

● Preventing and allowing the use of existing libraries and APIs
● Guiding a population of candidate programs via prompting v/s a 

single program
● Robust cascading evaluations 
● Requires human ingenuity in formulating the problem



New paradigm

● For inference time scaling of LLMs
● Distinct from existing sequential or parallel test time computing 

approaches
● Combines genetic algorithms driven search with LLMs for 

evolutionary coding agents
● Distill evolutionary agents to next version of base LLMs 



Thank You!

● Questions?
● Links

○ OpenEvolve - https://github.com/codelion/openevolve
○ EvoVisual - 

https://evovisual-advanced-evolutionary-concepts-577160257370.us-west1.run.a
pp/ 

○ OpenEvolve: An Open Source Implementation of Google DeepMind's 
AlphaEvolve - https://huggingface.co/blog/codelion/openevolve

○ Automated Discovery of High-Performance GPU Kernels with OpenEvolve - 
https://huggingface.co/blog/codelion/openevolve-gpu-kernel-discovery

○ Towards Open Evolutionary Agents - 
https://huggingface.co/blog/driaforall/towards-open-evolutionary-agents  
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