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In this white paper, we present AlphaEvolve, an evolutionary coding agent that substantially enhances
capabilities of state-of-the-art LLMs on highly challenging tasks such as tackling open scientific problems
or optimizing critical pieces of computational infrastructure. AlphaEvolve orchestrates an autonomous
pipeline of LLMs, whose task is to improve an algorithm by making direct changes to the code. Using
an evolutionary approach, continuously receiving feedback from one or more evaluators, AlphaEvolve
iteratively improves the algorithm, potentially leading to new scientific and practical discoveries. We
demonstrate the broad applicability of this approach by applying it to a number of important com-
putational problems. When applied to optimizing critical components of large-scale computational
stacks at Google, AlphaEvolve developed a more efficient scheduling algorithm for data centers, found
a functionally equivalent simplification in the circuit design of hardware accelerators, and acceler-
ated the training of the LLM underpinning AlphaEvolve itself. Furthermore, AlphaEvolve discovered
novel, provably correct algorithms that surpass state-of-the-art solutions on a spectrum of problems
in mathematics and computer science, significantly expanding the scope of prior automated discovery
methods (Romera-Paredes et al., 2023). Notably, AlphaEvolve developed a search algorithm that found a
procedure to multiply two 4 X 4 complex-valued matrices using 48 scalar multiplications; offering the
first improvement, after 56 years, over Strassen’s algorithm in this setting. We believe AlphaEvolve and
coding agents like it can have a significant impact in improving solutions of problems across many areas
of science and computation.

OpenEvolve

Google DeepMind published a
paper on 18th May 2025 about
the AlphaEvolve system which
described several results using
an evolutionary coding agent
that enhanced the capabilities of
frontier models.

We decided to replicate the
work and build a similar system
and release it as OSS. This was
the genesis of OpenEvolve.
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OpenEvolve Architecture
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Example Problem: Maximum Subarray Sum

Find the contiguous subarray with the largest sum

Input Array:

0 1 2 3 4 5 6

=2 = 4 =1 2 i =

Maximum subarray

Maximum Sum =6

Subarray [4, -1, 2, 1] has the largest sum
4+(-1)+2+1=6

How can we solve this efficiently?
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Starting Point: Naive Solution

def max subarray sum(arr):
n = len(arr)

max sum = float('-inf')

# Try every possible subarray
for i in range (n):
for j in range (i, n):
current sum = 0
for k in range(d, o + 1):

current sum += arr[k]

max_ sum = max (max_sum, current sum)

return max sum

Cl'ime: O(n3) - Very SIowD

Three nested loops checking every subarray

For 1000 elements: ~1 billion operations!
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OpenEvolve: Just 3 Inputs

Initial Code

def max_ subarray() :
# O(n®*) solution

Evaluator

Config

LLM: Gemini-2.5
Islands: 5
Iterations: 1000

( That's all! Evolution begins... >
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Island 1
20 programs

Exploring: O(n?)

Parallel Evolution with Islands

5 populations evolve independently, preventing getting stuck

Island 2

20 programs

Island 3

20 programs

Exploring: O(n log n) Exploring: O(n?)

v Each island has its own evolutionary loop
v Best solutions spread through migration

v Diversity prevents premature convergence

Island 4

20 programs

Exploring: O(n)

Island 5

20 programs

Exploring: O(n®)
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Inside Island 4: Evolution in Action

Each island runs its own evolutionary loop
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. Each island independently evolves using LLM-guided improvements
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One lteration: LLM Improvement

How Island 4's best program gets improved

System Prompt to LLM:

"Improve this O(n) solution. Fix any bugs. Optimize if possible."

Selected from Island 4 Improved Version

LLM
Gemini-2.5

Score: 85/100 Score: 100/100 v/

def max_subarray(arr) : def max_subarray(arr):
max_sum = arr([0] e o o0 o0 max_sum = arr[0]
current = arr[0] e 0o 0 current = arr[0]

for num in arr[l:]: for num in arr([l:]:

current = current + num current = max(num, current+num)

A Bug: Never resets negative sums v Fixed: Kadane's algorithm!

LLM Analysis:
"The current sum never resets when it becomes negative."
"Using max(num, current+num) implements Kadane's algorithm correctly."
"This handles negative numbers and maintains O(n) complexity."

This improved program replaces the worst program in Island 4
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After 1000 Iterations: Optimal Solution!

e E ™
Final Evolved Solution - Kadane's Algorithm
def max subarray sum(arr):
# Kadane's Algorithm - O(n) time, O(l) space
max sum = arr([0]
current sum = arr[0]
for num in arr[l:]:
current sum = max (num, current sum + num)
max sum = maxX (max sum, current sum)
return max sum
\_ J
£ 2.
Started: O(n?) Evolved: O(n)
~1 billion ops for n=1000 9 1000 ops for n=1000
=
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Circle Packing Problem (n=26)

The circle packing problem involves placing n non-overlapping circles inside a
container (in this case, a unit square) to optimize a specific metric.

For this example:

e \We pack exactly 26 circles

e Each circle must lie entirely within the unit square
e No circles may overlap

e \We aim to maximize the sum of all circle radii

According to the AlphaEvolve paper, a solution with a sum of radii of
approximately 2.635 is achievable for n=26.

Our goal was to match or exceed this result.

- APPLIED
sOUMMIT A




Initial Program

# Initial attempt
# Place a large circle in the center
centers[@] = [0.5, 0.5]

# Place 8 circles around it in a ring
for i in range(8):

angle = 2 * np.pi * 1 / 8

centers[i + 1] = [0.5 + 0.3 *
np.cos(angle), 0.5 + 0.3 * np.sin(angle)]

# Place 16 more circles in an outer ring
for i in range(16):

angle = 2 * np.pi * 1 / 16

centers[i + 9] = [0.5 + 0.7 *
np.cos(angle), 0.5 + 0.7 * np.sin(angle)]
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Evolved Program

Circle Packing (n=26, sum=1.794655)

# Generation 10 10
# Parameters for the arrangement (fine-tuned) o °

24
r_center = 0.1675 # Central circle radius = =

11 8
0.8

# 1. Place central circle
centers[@] = [0.5, 0.5]
radii[@] = r_center

12 7
0.6 -

# 2. First ring: 6 circles in hexagonal
arrangement
r_ringl = 0.1035 04
ringl_distance = r_center + r_ringl + 0.0005 #
Small gap for stability
for i in range(6):
angle = 2 * np.pi *i/ 6 1 1 1
centers[i+l] = [ e s .
0.5 + ringl_distance * np.cos(angle), 15 16
0.5 + ringl_distance * np.sin(angle) 00

25 4 0 1

13 18

0.0 0.2 0.4 0.6 0.8 1.0

radii[i+1] = r_ringl
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After 200 iterations

# Generation 100
# Row 1: 5 circles

centers[0] = [0.166, 0.166]
centers[1] = [0.333, 0.166]
centers[2] = [0.500, 0.166]
centers[3] = [0.667, 0.166]
centers[4] = [0.834, 0.166]

# Row 2: 6 circles (staggered)

centers[5] = [0.100, 0.333]
centers[6] = [0.266, 0.333]
# ... additional circles
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# Final solution with scipy.optimize
def construct_packing():
# ... initialization code ...

# Objective function: Negative sum of radii (to
maximize)
def objective(x):
centers = x[:2*n].reshape(n, 2)
radii = x[2*n:]
return -np.sum(radii)

# Constraint: No overlaps and circles stay within
unit square
def constraint(x):
centers = x[:2*n].reshape(n, 2)
radii = x[2*n:]

# Overlap constraint
overlap_constraints = []
for i in range(n):
for j in range(i + 1, n):
dist = np.sqrt(np.sum((centers[i] -
centers[j])**2))
overlap constraints.append(dist -
(radii[i] + radii[j]))
# ... boundary constraints ...

# Optimization using SLSQP
result = minimize(objective, x@, method='SLSQP',
bounds=bounds, constraints=constraints)
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OpenEvolve AlphaEvolve

- Circle Packing (n=26, sum=2.635328) A collection of 26 disjoint circles packed inside a unit square to maximize the sum of radii
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MLX Metal Kernel for Transformer Attention

The Challenge

Target: Qwen3-0.6B with Grouped Query Attention (40:8 head ratio)
Hardware: Apple Silicon M-series GPUs with unified memory

Baseline: MLX's highly optimized scaled _dot_product_attention

Goal: Outperform expert-engineered kernel through automated discovery

Why This is Hard

e MLX is already highly optimized by Apple's engineers
e Attention kernels are performance-critical
e Apple Silicon has unique architectural features
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Fitness Score (% Improvement)

Evolution Progress:

25 Generations of Kernel Optimization
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Performance Improvements by Benchmark Category
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AlgoTune

Can Language Models Speed Up General-Purpose Numerical Programs?

Ori Press Brandon Amos Haoyu Zhao Yikai Wu Samuel K. Ainsworth Dominik Krupke Patrick Kidger
UNIVERSITAT Touqir Sajed Bartolomeo Stellato Jisun Park Nathanael Bosch Eli Meril Albert Steppi C M PRINCETON
TUBINGEN Arman Zharmagambetov Fangzhao Zhang David Pérez-Pifieiro Alberto Mercurio NiZhan UNIVERSITY
Talor Abramovich Kilian Lieret Hanlin Zhang Shirley Huang Matthias Bethge Ofir Press
B Paper ¢ Code
Pick a Task Optimize the Code Time Generated Code
154 tasks including: Reference: Generated: Score:

e Language AlgoTune

g numpy.qr Model Testing Suite 105.5ms  75.6ms  1.4x

A\

4

A\ )

?
'B - 99.4ms  99.4ms 1x

python.gzip r_/ S

networkx.pagerank 49.7ms  1.6ms 30x
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OpenEvolve

Gemini Flash 2.5 (200 iter)
Gemini Flash 2.5 (100 iter)
Gemma 3 278
Qwen3-Coder 4808 (diff)

Qwen3-32B

AlgoTuner

® o4-mini

& DeepSeek R1
® GPT-5

Z GLM-45

<+ Gemini 2.5 Pro

1.72x

1.70x

1.67x

1.52x

1.51x

1.306x

1.637x
1.630x

1.414x
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Things to watch out for!

e Choosing the right abstraction at which to do the evolutionary
search

e Preventing and allowing the use of existing libraries and APIs

e Guiding a population of candidate programs via prompting v/s a
single program

e Robust cascading evaluations

e Requires human ingenuity in formulating the problem
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New paradigm

e Forinference time scaling of LLMs

e Distinct from existing sequential or parallel test time computing
approaches

e Combines genetic algorithms driven search with LLMs for
evolutionary coding agents

e Distill evolutionary agents to next version of base LLMs
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Thank You!

e (Questions?

e Links

o OpenEvolve - https://github.com/codelion/openevolve

o EvoVisual -
https://evovisual-advanced-evolutionary-concepts-577160257370.us-west1.run.a
pp/

o OpenEvolve: An Open Source Implementation of Google DeepMind's
AlphaEvolve - https://huggingface.co/blog/codelion/openevolve

o Automated Discovery of High-Performance GPU Kernels with OpenEvolve -
https://huggingface.co/blog/codelion/openevolve-gpu-kernel-discovery

o Towards Open Evolutionary Agents -
https://huggingface.co/blog/driaforall/towards-open-evolutionary-agents

APPLIED
sOUMMIT A



https://github.com/codelion/openevolve
https://evovisual-advanced-evolutionary-concepts-577160257370.us-west1.run.app/
https://evovisual-advanced-evolutionary-concepts-577160257370.us-west1.run.app/
https://huggingface.co/blog/codelion/openevolve
https://huggingface.co/blog/codelion/openevolve-gpu-kernel-discovery
https://huggingface.co/blog/driaforall/towards-open-evolutionary-agents

