
OpenEvolve: Towards Open
Evolutionary Agents

Presented by

Asankhaya Sharma

Co-Founder & CTO
Patched.Codes

OpenEvolve
Google DeepMind published a
paper on 18th May 2025 about
the AlphaEvolve system which
described several results using
an evolutionary coding agent
that enhanced the capabilities of
frontier models.

We decided to replicate the
work and build a similar system
and release it as OSS. This was
the genesis of OpenEvolve.

Circle Packing Problem (n=26)

The circle packing problem involves placing n non-overlapping circles inside a
container (in this case, a unit square) to optimize a specific metric.

For this example:

● We pack exactly 26 circles
● Each circle must lie entirely within the unit square
● No circles may overlap
● We aim to maximize the sum of all circle radii

According to the AlphaEvolve paper, a solution with a sum of radii of
approximately 2.635 is achievable for n=26.

Our goal was to match or exceed this result.

Initial Program

Initial attempt
Place a large circle in the center
centers[0] = [0.5, 0.5]

Place 8 circles around it in a ring
for i in range(8):
 angle = 2 * np.pi * i / 8
 centers[i + 1] = [0.5 + 0.3 *
np.cos(angle), 0.5 + 0.3 * np.sin(angle)]

Place 16 more circles in an outer ring
for i in range(16):
 angle = 2 * np.pi * i / 16
 centers[i + 9] = [0.5 + 0.7 *
np.cos(angle), 0.5 + 0.7 * np.sin(angle)]

Evolved Program

Generation 10
Parameters for the arrangement (fine-tuned)
r_center = 0.1675 # Central circle radius

1. Place central circle
centers[0] = [0.5, 0.5]
radii[0] = r_center

2. First ring: 6 circles in hexagonal
arrangement
r_ring1 = 0.1035
ring1_distance = r_center + r_ring1 + 0.0005 #
Small gap for stability
for i in range(6):
 angle = 2 * np.pi * i / 6
 centers[i+1] = [
 0.5 + ring1_distance * np.cos(angle),
 0.5 + ring1_distance * np.sin(angle)
]
 radii[i+1] = r_ring1

After 200 iterations

Generation 100
Row 1: 5 circles
centers[0] = [0.166, 0.166]
centers[1] = [0.333, 0.166]
centers[2] = [0.500, 0.166]
centers[3] = [0.667, 0.166]
centers[4] = [0.834, 0.166]

Row 2: 6 circles (staggered)
centers[5] = [0.100, 0.333]
centers[6] = [0.266, 0.333]
... additional circles

Final solution with scipy.optimize
def construct_packing():
 # ... initialization code ...

 # Objective function: Negative sum of radii (to
maximize)
 def objective(x):
 centers = x[:2*n].reshape(n, 2)
 radii = x[2*n:]
 return -np.sum(radii)

 # Constraint: No overlaps and circles stay within the
unit square
 def constraint(x):
 centers = x[:2*n].reshape(n, 2)
 radii = x[2*n:]

 # Overlap constraint
 overlap_constraints = []
 for i in range(n):
 for j in range(i + 1, n):
 dist = np.sqrt(np.sum((centers[i] -
centers[j])**2))
 overlap_constraints.append(dist -
(radii[i] + radii[j]))
 # ... boundary constraints ...

 # Optimization using SLSQP
 result = minimize(objective, x0, method='SLSQP',
bounds=bounds, constraints=constraints)

OpenEvolve AlphaEvolve

MLX Metal Kernel for Transformer Attention

The Challenge

● Target: Qwen3-0.6B with Grouped Query Attention (40:8 head ratio)
● Hardware: Apple Silicon M-series GPUs with unified memory
● Baseline: MLX's highly optimized scaled_dot_product_attention
● Goal: Outperform expert-engineered kernel through automated discovery

Why This is Hard

● MLX is already highly optimized by Apple's engineers
● Attention kernels are performance-critical
● Apple Silicon has unique architectural features

OpenEvolve

AlgoTuner

Things to watch out for!

● Choosing the right abstraction at which to do the evolutionary
search

● Preventing and allowing the use of existing libraries and APIs
● Guiding a population of candidate programs via prompting v/s a

single program
● Robust cascading evaluations
● Requires human ingenuity in formulating the problem

New paradigm

● For inference time scaling of LLMs
● Distinct from existing sequential or parallel test time computing

approaches
● Combines genetic algorithms driven search with LLMs for

evolutionary coding agents
● Distill evolutionary agents to next version of base LLMs

Thank You!

● Questions?
● Links

○ OpenEvolve - https://github.com/codelion/openevolve
○ EvoVisual -

https://evovisual-advanced-evolutionary-concepts-577160257370.us-west1.run.a
pp/

○ OpenEvolve: An Open Source Implementation of Google DeepMind's
AlphaEvolve - https://huggingface.co/blog/codelion/openevolve

○ Automated Discovery of High-Performance GPU Kernels with OpenEvolve -
https://huggingface.co/blog/codelion/openevolve-gpu-kernel-discovery

○ Towards Open Evolutionary Agents -
https://huggingface.co/blog/driaforall/towards-open-evolutionary-agents

https://github.com/codelion/openevolve
https://evovisual-advanced-evolutionary-concepts-577160257370.us-west1.run.app/
https://evovisual-advanced-evolutionary-concepts-577160257370.us-west1.run.app/
https://huggingface.co/blog/codelion/openevolve
https://huggingface.co/blog/codelion/openevolve-gpu-kernel-discovery
https://huggingface.co/blog/driaforall/towards-open-evolutionary-agents

