
Ontology Matching and Schema Integration
 using Node Ranking

Asankhaya Sharma
Department of Computer Science and Engineering

National Institute of Technology Warangal
Warangal, AP, India

Dr. D.V.L.N. Somayajulu
Department of Computer Science and Engineering

National Institute of Technology Warangal
Warangal, AP, India

Abstract - In this paper, we present a new way towards
ontology matching. Using the graph representation for
ontologies and schemas we proceed to rank the nodes of
the graph using the lexical similarity of the ancestors. With
the guiding intuition that, if the parent nodes match then
their children are likely to match as well. This simple
observation helps on to build a fast and efficient algorithm
for matching different graphs (which represent ontology or
schema). Since the algorithm is very fast it can be used as
a quickly and dirty method to do initial matching of a
large dataset and then drill down to the exact match with
other algorithms. The algorithm is not dependent on the
method used for calculating the lexical similarity so the
best lexical analysis can be used to derive the node ranks.
Once the node ranks are in place we can calculate the
matching in just a single traversal of the graphs. No other
algorithm that we know of can give such fast response
time.

Keywords: Ontology Matching, Schema Integration,
Semantic Web

1 Introduction

An ontology is a specification of a conceptualization .
It provides a vocabulary that describes a domain of interest
and a specification of the meaning of terms used in the
vocabulary. With the advent of the semantic web,
ontologies have been used to describe what is expressed in
computer format. They are viewed as the silver bullet for
many applications, such as information integration, peer-
to-peer systems, electronic commerce, semantic web
services, social networks, and so on [1]. One of the major
problem with ontologies can be that anyone can make any
number of them, although efforts are being made to
standardize them. Even with standards there can be
ontologies for similar format derived from different
sources. Ontology matching is one of the hot areas of
concern to computer scientists all around the world.
Several methods are already in place to enable the
integration and match making for different ontologies [2].
Ontologies are usually represented as graph like structures
(concept hierarchies, classifications, schemas). In this
paper we present an algorithm based on ranking the nodes

in the graph representation of the ontologies. This method
as we shall see is a fast and efficient way to match
ontologies.

The problem of ontology matching also pops up in a
related field of schema integration from different
heterogeneous databases. These schemas if represented in a
graph form can also be matched using this algorithm.
Several of well known algorithms in the semantic
integration research have already been found beneficial for
the database community [3]. We shall see here that node
ranking can also be useful for schema integration. The
schema can be conveniently represented as a graph with
nodes as the attributes and relations as edges. Here is an
example for a table 'Students'.

CREATE TABLE Students (sid CHAR (20),

name CHAR(20),

login CHAR(20),

age INTEGER,

gap REAL,

UNIQUE (name, age),

CONSTRAINT
StudentsKey PRIMARY KEY(sid))

This schema can be represented as a graph shown below.

Figure 1: Graph representation of the
schema

The attribute nodes can have further children if they
refer to a foreign table and so on. This kind of graph can be
used to match schemas using the given algorithm.

2 Node Ranking Algorithm

This algorithm makes use of the simple fact that if
node A and A’ match in an ontology represented as a graph
then its likely that the nodes B and B’ (the children) will
also match.

First of all we match the nodes with some lexical
measure. Here we take the variation of the longest
common subsequence algorithm to match the nodes
according to their lexical similarity; this value is called the
lex_sim of a node. The lex_sim of a node can have a value
from 0 to 1 depending on the match. The following
illustrates the algorithm followed to find out the lexical
similarity. The strings X and Y are obtained from the
nodes of the graph.

 2.1 Algorithm Node Ranking:

Input: Strings X and Y with n and m elements,
respectively

Output: For i=0,…,n-1,j=0,…,m-1,the length L[i,j] of a
longest common subsequence of X[0..i] and Y[0..j]

for (i=-1 to n-1) do

L [I,-1] = 0

for (j=0 to m-1) do

L [-1, j] = 0

for (i=0 to n-1) do

for(j=0 to m-1) do

if (X[i]==Y[j]) then

L[i, j] = L[i-1, j-1] + 1

else

L[i, j] = max{L[i-1, j],L[i, j-1]}

return array L

L[i,j] gives the length of the longest common subsequence,
and from L[i, j] we can find out the lex_sim by dividing
the length of X and Y by L[i, j]. So we have,

lex_sim(node A) = m / L[i, j]

lex_sim(node A’) = n / L[i, j]

where m and n are the lengths of the strings A and A’
respectively.

Now each node has a lex_sim measure with it, we take
this lex_sim measure as the node’s approval that its
children and grand children will match as well. Thus in a
way the lexical similarity of node is propagated to the
children. Every node is associated with a node rank which
is calculated as follows.

node_rank(A) = * lex_sim(A) + * lex_sim(parent(A))α β
+ * lex_sim(grandparent(A))γ

The values of the parameters , , are such that theα β γ
node rank is a number between 0 and 1. The above
equation calculates the node rank for a two generation
propagation i.e. upto the grandparent level. Extending it to
an ‘n’ ancestor node rank we get the following.

node_rank(A) = nΣ i * lex_sim(ancestori (A))

The node_rank function is a normal distribution of the
lexical similarity of the ancestors of that node. After the
node ranks have been allotted the ontology graph looks
like the one below.

Figure 3: Ontologies after assigning node
ranks

Figure 2: Representing ontologies

Once we have the node ranks of each node the
matching problem can be tackled without any difficulty.
Just making a traversal of the two graphs we match nodes
with node ranks deferring in a small value say ‘d’. This
value may depend on the kind of ontology to be matched
or the schema to be integrated. This method is similar to
clustering the results by taking Manhattan distances. We
can take on different values of ‘d’ for experimental data
sets before deciding on the final value. Now we try to use
this node ranking algorithm on the following ontologies of
the departments.

Applying the lexical matching algorithm for the
various nodes we get the initial values by which w rank the
nodes. The result of the initial lexical analysis is shown
below.

Table 1: Lexical matching of the two ontologies

CS Dept 1 (0.86) CS Dept 2 (0.86)
UG Courses (0.69) Courses (1.0)
Grad Courses (0.63) Courses (1.0)
Academic Staff (0.30) Staff (1.0)
Technical Staff (0.38) Staff (1.0)
Assistant Professor (0.5) Professor (1.0)
Associate Professor (0.5) Professor (1.0)
Professor (1.0) Professor (1.0)

The lexical matching method can be improved on
further by noticing the fact that when one of the words
form a part of the other (has a lexical similarity of 1.0) ,
there is even more chance that they actually represent the
same thing. Hence the values of several nodes like
academic staff (with staff) can be increased by a certain
level. Since the idea here is not to show the efficiency of
the lexical analysis, we leave them as it is for the time
been. Applying node ranking algorithm for two ancestors

(i.e. parent and grand parent) the values at each node
change to the following.

Table 2: After applying Node Ranking
CS Dept 1 (0.86)
UG Courses (0.69) + 0.2*0.86 = (0.808)
Grad Courses (0.63) + 0.2*0.69 = (0.768)
People 0.2*0.86 = (0.172)
Faculty 0.1*0.86 = (0.086)
Staff 0.1*0.86 = (0.086)
Assistant Professor (0.5) + 0.2*0.38 = (0.576)
Associate Professor (0.5) + 0.2*0.5 = (0.6)
Professor (1.0)
CS Dept 2 (0.86)
Courses (1.0)
Staff (1.0)
Academic Staff (0.30) + 0.2*0.63 = (0.426)
Technical Staff (0.38) + 0.2*0.30 = (0.456)
Lecturer 0.2*0.3 + 0.1*1.0 = (0.16)
Senior Lecturer 0.2*0.3 + 0.1*1.0 = (0.16)
Professor (1.0)

Now moving down the table choosing a value of ‘d’ as
0.4 and traversing the graph in top to bottom left to right
we see that this algorithm matches perfectly the faculty and
academic staff and then matches Assistant Professor <--->
Lecturer , Associate Professor <---> Senior Lecturer,
Professor <---> Professor and so on. These matching
cannot be derived from the lexical analysis of the similarity
measure along. Thus the node ranking gives a way of
doing contextual analysis of the ontologies given the
lexical similarities. In an exactly similar way we can go
about matching the graphs representing schemas.

2.2 Algorithm Complexity Analysis

The complexity of the algorithm can be analyzed with
respect to two things. One is the lexical matching
algorithm and other is the node ranking. Since the node
ranking algorithm is not dependent on the type of method
chosen to do the lexical matching we can safely assume we
have the lexical similarities with us. Then the next step is
to construct a table similar to the Table 2. This requires
that we traverse the given ontology graphs at least once.
Several of the current known algorithms traverse the
graphs many times to determine the proper matching [4],
[5], and [6]. Once we have the table we need to make one
more final traversal of the graph and cluster them as per
the chosen ‘d’ values. This cluster represents the matching
of the two graphs according to the ranks in their nodes.

Figure 4: CS department ontologies

3 Ontology Matching Results

This algorithm was tested on several ontologies taken
from the DAML ontology library and several other
ontologies created from dummy data sets. The accuracy of
the algorithm was measured using the Longest Common
Substring for the lexical matching and then using node
ranking. The accuracy is defined with respect to the ability
of the algorithm to successfully match more then 50% of
the nodes in the given ontologies correctly. Here are the
results.

Table 3: Matching results
Ontology Matching
Publications 63%
Person 71%
Departments 83%
Courses 81%

The values in the matching column mean that the
algorithm matched more then half of the nodes correctly,
that many number of times for the given ontology. Say for
courses the given ontologies matched 81% of times
correctly (match is defined by matching more then 50% of
nodes). The tests conducted involved choosing different
values for ‘d’ and changing the number of ancestors up to
which to apply the algorithm.

4 Future Work

The tests for various values of ‘d’ and choosing the
right ancestor to apply the node raking are under way. And
the results till now are promising. The tests for
heterogeneous schemas are also going on. The following
are the guidelines for future work.

• Testing the algorithm on a wider range of data sets.
• Testing the algorithm in conjunction with different

lexical matching methods to find the one best suited.
• To use this algorithm in existing applications to

complement and verify the results, those are already
obtained.

5 Conclusion

In this paper we analyzed the node raking algorithm
which gives a fast and time efficient way to match different
ontologies and schemas. As the results suggest, this
algorithm can be used as a quick and dirty method to
match two ontologies. Since the algorithm fast in
comparison to the ones used in current matching
applications ([7], [8] and [9]) we can use it to do an initial
survey of the datasets and identify the graphs that can later
be analyzed in depth with other methods.

6 Acknowledgments

We would like to thank DARPA’s Information
Exploitation Office which sponsors DAML, which is the
source (http://www.daml/org/ontologies) of all the datasets
and ontologies used for testing the algorithm.

7 References

[1] D. Fensel Ontologies: Silver Bullet for knowledge,
Management and Electronic Commerce, Springer-Verlag,
2001
[2] N. Noy: Semantic Integration: A Survey of
Ontology-based Approaches Sigmod Record, Special Issue
on Semantic Integration, 2004.
[3] A. Doan and A. Halevy: Semantic Integration
Research in the Database Community: A Brief Survey. AI
Magazine, Special Issue on Semantic Integration, 2005.
[4] R. Pan, Z. Ding, Y. Yu, Y. Peng: A Bayesian
Network Approach to Ontology Mapping. Proceedings of
ISWC, 2005.
[5] A. Gal: Managing Uncertainty in Schema Matching
with Top-K Schema Mappings. Journal on Data Semantics,
to appear, 2006.
[6] G. Stoilos, G. Stamou, S. Kollias: A String Metric
for Ontology Alignment. Proceedings of ISWC, 2005.
[7] COMA++/COMA, http://dbs.uni-
leipzig.de/Research/coma.html, University of Leipzig,
Germany.
[8] CROSI, http://www.aktors.org/crosi/, University of
Southampton/Hewlett Packard Laboratories, UK.
[9] MetaQuerier, http://metaquerier.cs.uiuc.edu/,
University of Illinois at Urbana-Champaign, USA

