
HIPimm: Verifying Granular Immutability Guarantees

Andreea Costea Asankhaya Sharma
Department of Computer Science
National University of Singapore

{andreeac, asankhs}@comp.nus.edu.sg

Cristina David
Department of Computer Science

University of Oxford
cristina.david@cs.ox.ac.uk

Abstract
HIPimm, an extension of the HIP/SLEEK automatic verification
system, offers immutability guarantees on top of ensuring func-
tional correctness for heap-manipulating programs. The extra ca-
pability of HIPimm, as compared to its precursor, is the ability to
reason about immutability guarantees in a granular manner. For this
purpose, we enhance the specification language with immutability
annotations which provide the means to assert whether the anno-
tated heap can be mutated or whether is inaccessible. As part of user
defined predicates, these annotations are integrated at the data field
level offering granular immutability guarantees. An immediate re-
sult of this new functionality is a finer level of precision in the ver-
ification process of programs involving heap data structures. That
is, we enable the verification of program properties such as preser-
vation of data structures shapes and/or values, flexible aliases, and
information leakage prevention.

Categories and Subject Descriptors F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

Keywords specification, granular immutability, heap

1. Introduction
Heap-manipulating programs are notoriously hard to verify, and
thus it is crucial to have automatic tools capable of assisting the
programmer in their verification. For this purpose, we introduce
HIPimm, a separation logic [14, 15] based automated verification
system for a simple imperative language, aimed to modularly verify
the functional correctness of heap manipulating programs. What
differentiates HIPimm from its precursor, the HIP/SLEEK verifica-
tion system [13], is the emphasis on immutability guarantees. Such
guarantees over heap allocated data structures (or data nodes) en-
sure that certain attributes (or fields) of the corresponding memory
locations do not change.

Special attention is given in HIPimm to allowing a fine-grained
granularity of the immutability annotations. Thus, HIPimm allows
associating different annotations to each field of a data node (please
see Fig 2 for an example of a data declaration and its usage). We
refer to this capability as the field-level immutability guarantee,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PEPM ’14, January 20–21, 2014, San Diego, CA, USA.
Copyright c© 2014 ACM 978-1-4503-2619-3/14/01. . . $15.00.
http://dx.doi.org/10.1145/2543728.2543743

and stress that it is more precise than node-level guarantee, which
associates the same immutability annotation with the entire data
node, i.e., all the fields of a data node have identical annotations
(this was the case in HIP/SLEEK).

For illustration, consider the data declaration in Fig 2. When
using the corresponding data node in a specification, we adopt the
notation x::node〈v, p〉 denoting the fact that x is a pointer to the data
node, and v and p are variables corresponding to the two fields, val
and next, respectively. Each of these two fields may be specified as
mutable, immutable or absent through the following annotations:

• @M means the associated field may be mutated, e.g., if val is
mutable, it can be updated via the field dereference x.val;
• @L denotes an immutable field, meaning that it can only be

read, but not updated;
• @A implies that the field cannot be accessed at all neither for

reading, nor for writing (this annotation may be used to prevent
information leakage as shown in Sec3.4).

With field-level immutability, we can describe scenarios such as
x::node〈v@M, p@L〉, i.e., only the value field is allowed to change,
whereas the reference one is immutable, or x::node〈v@A, p@L〉, i.e.,
the value field cannot be accessed at all, while the reference field
can only be read.

In this paper, we report on two encouraging consequences of the
fine-grained immutability granularity:

• improved flexibility of the specifications, allowing for more
detailed properties to be specified.
• better precision of the verification process itself, which enabled

the successful verification of properties such as preservation of
data structures shapes and/or values and information leakage
prevention (detailed in Sec 3).

All the examples can be tried through the web based interface
of our tool available at the following url: http://loris-7.
ddns.comp.nus.edu.sg/˜project/HIPimm/

2. Overview
2.1 HIPimm architecture
HIPimm is a separation logic based automatic verifier which en-
sures the safety of heap-manipulating programs. Adopting a Hoare-
style program verification, each method/loop is accessorized with
a set of pre- and postconditions. The expressivity of its specifica-
tion mechanism is shaped around features such as support for user-
definable predicates, means to handle bag operations [3], structured
specifications [8] and fine-grained immutability guarantees.

As shown in Fig 1, HIPimm includes two sub-systems, both of
which have been enhanced to deal with immutability guarantees
at the field-level: (i) an automated verification system for a simple

http://loris-7.ddns.comp.nus.edu.sg/~project/HIPimm/
http://loris-7.ddns.comp.nus.edu.sg/~project/HIPimm/

Figure 1. Architecture of HIPimm

/ ∗ DATA DECLARATION : ∗/
data node{int val; node next; }

/ ∗ PREDICATE DECLARATIONS : ∗/
/ ∗ allowed in both HIP/SLEEK and HIPimm ∗ /
pred ll〈n〉 ≡ (self=null ∧ n=0) ∨

(self::node〈 , p〉 ∗ p::ll〈n−1〉)
inv n≥0.

/ ∗ only supported by HIPimm ∗ /
pred llA〈n, a1, a2〉 ≡ (self=null ∧ n=0) ∨

(self::node〈 @a1, p@a2〉 ∗ p::llA〈n−1, a1, a2〉)
inv n≥0.

Figure 2. Snippet with data and predicate declarations for captur-
ing linked lists

imperative language (HIPimm) and (ii) a fully automatic separation
logic prover with frame inferring capabilities (SLEEKimm).

Based on the given set of pre- and postconditions, HIPimm
constructs a set of separation logic proof obligations in the form of
separation logic entailments, which are then sent to SLEEKimm.
SLEEKimm and the entailment proving part will be later discussed
in Sec 4. Our tool supports user defined predicates to express
various data structures and user specified lemmas to enable proof
search during entailment.

2.2 A First Glimpse of HIPimm
To understand how the pre-post specifications are used in the veri-
fication context, let us explore some very basic examples first. For
that, we consider the declarations in Fig.2 which are used by most
of the examples provided in this subsection and subsequent ones.

As already mentioned in Sec 1, the data declaration in Fig.2
represents a data node comprising of a data field val and a pointer
field next for pointing to the next node in a singly linked list. A
linked-list of length n ending with null, is recursively defined by
the shape predicate ll, which, besides the size parameter n, also
uses an implicit parameter self to capture the initial pointer into
the specified heap structure. In the base case, self points to an
empty list, while in the inductive case, it points to the head of a list
consisting of at least one element. To ensure that all the nodes in the
list reside in disjoint heaps, the inductive case uses the separating
conjunction ∗ from separation logic to link the lists’ head with
its tail. llA describes a similar heap structure, with the essential
difference that now the data fields are associated to the a1 and a2

immutability annotations, which are set as explicit parameters.
Underscore is used instead of certain data fields, to denote an

anonymous value. Free variables in the body of the shape definition
are treated as being existentially quantified, e.g., p.

The trivial examples in Fig.3 are meant to illustrate the key dif-
ference between a verification process guided by a specification
without immutability annotations (Fig.3 (a)), and one which en-

void set(node x, int v)
requires x::node〈 , p〉
ensures x::node〈v, p〉;
{x.val=v; }

int get(node x)
requires x::node〈v, p〉
ensures x::node〈v, p〉 ∧

res = v;
{return x.val; }

(a)

void set(node x, int v)
requires x::node〈 , p@A〉
ensures x::node〈v, p@A〉;
{x.val=v; }

int get(node x)
requires x::node〈v@L, p@A〉
ensures res = v;

{return x.val; }
(b)

Figure 3. set and get methods specified (a) without the use of
annotations and (b) using immutability annotations

hances precision through field-level immutability guarantees (Fig.3
(b)).

For the set method, the verification can be guided to check
that for a given node x, out of its two fields, only the val field is
being updated (Fig.3 (a)), while its next field remains the same. A
stronger specification is obtained by annotating the next field with
@A, i.e, the annotated next field cannot be accessed at all inside the
method’s body (Fig.3 (b)).

A more concise and precise specification (Fig.3 (b)) is obtained
with the usage of immutability annotations to specify get, a method
which is not supposed to mutate, but only to read and return the
field val of parameter x. If its precondition is satisfied, that is, the
val field is read-only and next is not accessed within this method,
then there is no need for the postcondition to specify anything about
the state of the heap pointed by x as it did not change.

Next, we consider a method which computes the length of a
linked list. The implementation of the length method, whether
using a recursive call, or a loop, is standard, so we omit to give its
full code here. It is worth mentioning that length should perform
no mutation on the given list. In Fig.4 (a), the specification of
length says that “assuming x points to a linked list of size n at the
beginning of this method, it will point to a list of the same size at
the end of the method and the output is the length of the list”. If it is
important to verify that the list also preserves the same set of values
and addresses, then there is a need for a stronger specification. With
the usage of a new predicate in (b), which also captures the bag
of address and values inside a list, the aforementioned problem
is solved. An even stronger information is captured in (c). With
the help of immutability annotations attached to the nodes of the
linked list pointed by x, it is now possible to specify that the list
also preserves the same sequence of addresses and that the val field
is not needed for the computation of the length.

3. Applicability
3.1 Shape Immutability
Sec 2.2 presented a convenient way to annotate set, a method
updating the val field of the node received as argument without
accessing its next pointer. Possible scenarios where such a method
would be useful include the marking of each visited node of a
data structure during a traversal, or an in-situ sorting where the
value fields get swapped around, whereas the pointer fields are left
unchanged.

One common property of these algorithms is the fact that they
mutate the value fields of a certain data structure, while leaving the
pointer fields unchanged. We refer to this type of immutability as
shape immutability, i.e., the links of the data structure are invariant.
HIPimm makes it possible for its users to specify and verify such
shape immutability constraints.

int length(node x)
requires x::ll〈n〉
ensures x::ll〈n〉 ∧res = n;
{...}

(a)

int length(node x)
requires x::llA〈n,@A,@L〉
ensures res = n;
{...}

(c)

pred llB〈n, V, P〉 ≡ (self=null ∧ n=0 ∧ V={} ∧ P={}) ∨
(self::node〈v, p〉 ∗ p::llB〈n−1, Vr, Pr〉 ∧

V=union(v, Vr) ∧ P=union(p, Pr))
inv n≥0.

int length(node x)
requires x::llB〈n, V, P〉
ensures x::llB〈n, V, P〉 ∧ res = n;
{...}

(b)

Figure 4. Specifying the length method: (a) without annotations,
(b) without annotations, but using the llB predicate whose usage
guarantees that the same sets of values and addresses are preserved
and (c) using immutability annotations to additionally guarantee
the preservation of addresses sequence

3.2 Data Immutability
As opposed to the scenarios presented in the previous subsection,
there are operations on the heap structures that modify the shape
of the structure without affecting its data fields. This type of im-
mutability referred to as data immutability is complementary to
shape immutability. Operations exhibiting data immutability in-
clude list reversing, list partition, insertion of a node in a sorted
linked list, etc.

An application where it is important to offer data immutability
guarantees comes in the form of garbage collection mechanisms.
In particular, the well-known Deutsch-Schorr-Waite marking algo-
rithm for binary trees, marks all reachable nodes so that the un-
reachable ones can be collected and re-used. The algorithm uses
a complicated pointer manipulation scheme mixing two different
data structures, without awareness on the informational content of
the tree’s nodes. Thus, it is advisable to have a specification of
this algorithm which guarantees that the verified garbage collec-
tor supports pointer manipulation without having any access over
the data stored inside these nodes. The verification of this algorithm
is known to be a complex task, and existing formalisms mostly fo-
cus on functional correctness. To tackle this problem, we not only
prove functional correctness, but on top of that we also offer im-
mutability guarantees by specifying that the informational content
is absent during tree marking (we annotate data fields with @A)
while the pointers can freely change according to the Schorr-Waite
algorithm (pointers are marked as @M).

3.3 Flexible Aliasing
Next, we show how immutability annotations allow HIPimm to
reason about conjunctive heap formulas with arbitrary aliasing. In
Fig.5, the conjunctive operator over heap formulas, ∧, indicates that
the nodes pointed by x and y are may aliases. When first intro-
duced in our specification logic, this operator could only involve
immutable data structures [5]. However, field-level immutability
guarantees enable HIPimm to relax the immutability requirement
by allowing mutation inside may aliased nodes, under the strict
condition that their fields are updated in a mutually exclusive man-
ner.

For illustration, in the precondition of sum, the next field of x

can be mutated because its next field counterpart in y is guaranteed
to be absent. Note that, in the postcodition of sum, the value field of

int sum(node x, node y)
requires x::node〈a@L, @M〉 ∧ y::node〈b@L, @A〉
ensures res=a + b ∧ x::node〈a@A, @M〉;
{return x.val+y.val; }

Figure 5. Summation of the values stored in may-aliases nodes

data user{char ∗ name; char ∗ pass; }

int login(ref user u, char ∗ psswd)
requires u::user〈n, p〉
ensures u′::user〈n, p@A〉;
{ if(check pass(u, psswd) ! = 0) return 1;
else return 0;
}

int check pass(ref user u, char ∗ psswd)
requires u::user〈n, p〉
ensures u′::user〈n, p@A〉;
{ return strcmp(psswd, u.pass); }

Figure 6. Adaptation of Unix password-authentication of Cyrus’
Internet Message Support Protocol daemon

the node pointed by x is marked with @A. This is due to the fact that
a caller always retains ownership of the fields marked as immutable
in the callee’s precondition. Thus, as ownership does not need to
be returned to the caller, those fields are marked as absent in the
callee’s postcondition.

Although currently HIPimm only allows this flexible aliasing
scheme between data nodes, we work on lifting it to heap pred-
icates, e.g., expressing may aliasing between two lists. Our con-
jecture is that this enhancement will allow reasoning in scenarios
involving overlaid data structures. These data structures are fre-
quently identified in low-level code which requires accessing the
same set of nodes with respect to different criteria. For example, a
certain part of the heap may be accessible either by traversing a list,
or a tree, depending on certain optimization principles.

3.4 Information Leakage
We claim that field-level immutability annotations can be success-
fully used for preventing information leakage for a series of secu-
rity related applications. They are particularly useful in scenarios
where certain data structure containing both confidential as well as
public information are involved in computations outside a secured
code. Annotating the confidential fields with @A triggers verifi-
cation failures for those methods attempting to do read or write
operations on the annotated heap.

The code in Fig 6 is an adaptation of the Unix password-
authentication of Cyrus’ Internet Message Support Protocol dae-
mon, known to represent a security risk due to the possible leak-
age of user’s confidential information [10]. It illustrates a scenario
where @A proved to be a simple and elegant solution towards the
prevention of such risks. The sensitive information which needs to
be protected in this case is the users’ password. Once it was checked
to match against the input string psswd using check pass method,
the verifier triggers a failure for any attempt to access the users’
password field by dereferencing u or subsequently created aliases.
However, the verifier offers no guarantees for aliases created prior
to calling check pass.

4. Technical Background
Program verification is typically formalised using Hoare triples
of form {pre}code{post}, where pre and post are the initial and
final states of the program code in some logic (separation logic in

our case). We use P to denote the program being checked. With
pre/post conditions declared for each method in P , we can now
apply modular verification to its body using Hoare-style triples
` {∆1} e {∆2}, where e stands for the verified expression. These
are forward verification rules as we expect ∆1 to be given before
computing ∆2.

There are several places during forward verification when proof
obligations are generated:

• at each method call site, the program state must entail the
precondition of the method being called.
• at the end of each method verification, the program state must

entail the method’s postcondition.
• at the point of each field access/update, a heap entailment is

generated in order to check that the memory location being
accessed is not null.

In order to discharge these proof obligations given as separa-
tion logic entailments, SLEEKimm in Fig 1 is being called. Due to
space constraints we just give the overview of the entailment pro-
cedure. Full details of both the entailment and verification rules are
provided in [4]. Given formulas Φ1 and Φ2, our entailment prover
checks if Φ1 entails Φ2, that is if in any heap satisfying Φ1, we can
find a sub-heap satisfying Φ2. Formally, the entailment relation is
written as follows: Φ1`κV Φ2 ∗ΦR, where κ is the history of nodes
from the antecedent which have been used to match nodes from
the consequent and, V is the list of existentially quantified vari-
ables from the consequent. Note that κ and V are derived. The en-
tailment checking procedure is initially invoked with κ = emp and
V = ∅. Besides determining if the entailment relation holds, our en-
tailment prover also infers the residual heap of the entailment, that
is a formula ΦR such that Φ1=Φ2∗ΦR.

The entailment rules are extended to handle separation logic
formulas with annotated heap structures. For brevity reasons, we
only explain the intuition behind discharging constraints related to
immutability annotations:

• having defined a subtyping relation between the immutability
annotations, i.e., @M <: @L <: @A, this must always hold
between the left hand side and its corresponding right hand side
annotation in an entailment;
• for a pair of matching nodes, there is always an annotation

residue left on the left hand side of the entailment, after con-
suming the right hand side heap:

residue(@a1, @a2) =

{
@a1 if @a2=@A or @a2=@L;
@A if @a2=@M.

5. Discussions
Fine grained immutability guarantees can provide useful informa-
tion for various compiler optimizations [16], safe parallelism [9]
and ease formal reasoning about programs [18]. Similar to [5] we
have focused on adding immutability annotations to the specifica-
tion logic. When compared to [5] we support more granular im-
mutability as the annotations can be used on field level, while in
[5] they can only be used at object level. Our solution supports
modular specification and verification of data immutability, shape
immutability, flexible aliasing and information leakage. Granular
immutability annotations make the verification more precise and
concise with finer control over access to resources. The following
table shows the results of some preliminary experiments we con-

ducted using HIPimm for verification.

Program LOC Time [secs] @L[%] @A[%]
Big Int 204 7.71 65.6 0
Get Set 62 0.12 25 50

Info Leakage 29 0.16 0 66.7
List Insert 30 0.26 100 0
List Length 17 0.14 50 50

Schorr Waite List 37 13.49 0 100
Sorted List 118 1.03 83.3 16.7

The first column in the table shows the list of the programs. The
list includes all the programs presented in paper. The second col-
umn shows the total number of lines of code in the program. We
have currently applied the technique for verification of programs
up to 200 lines of code. The third column shows the time taken
in seconds for HIPimm to verify the corresponding program. In our
benchmark, all the examples are verified within seconds; moreover,
there is no significant increase in time taken when compared to the
same example without immutability annotations. In order to eval-
uate the usefulness of the granular immutability annotations, we
show in column 4 and 5 the percentage of specifications using the
@L and @A annotation respectively. We argue that the values in
the latter two columns, indicate the percentage of the verified pro-
gram specifications which are more precise (offer more information
about the heap structure) than in the cases where, for the same set of
specifications, the annotations are being ignored. In order to reach
the same level of precision, thus being able to verify the same set
of properties without using the immutability annotations, the spec-
ification language should provide support for additional structures
(e.g. such as bags or sequences to show shape preservation), which
further demands the usage of dedicated theorem provers in support-
ing these structures. Our approach, on the other hand, discharges
proofs which can be handled by most of the automatic theorem
provers (e.g. Omega[11], Redlog[7], Z3[6]).

Currently in HIPimm the immutability annotations are provided
by the user. In order to alleviate the burden of writing annotations
we would like to provide an inference mechanism in future. The
inference would be based on the program under consideration and
would infer the most general immutability annotations under which
the program can be verified using HIPimm. In addition we are also
looking at ways to enable transfer of mutability and immutability
in heap, specially in the presence of aliasing. This will enable
verification of a wider range of programs that use sharing in data
structures.

Comparison with fractional permissions. Ever since Boyland in-
troduced them in order to check computation interference, frac-
tional permissions [2] have been proved useful for a broad range
of applications. These applications include, but are not limited to,
type systems for safe memory deallocation [17], implicit dynamic
frames based verification of multi-threaded programs [12], etc.

In separation logic, fractional models based on permissions [1]
have been proposed to provide shared read and exclusive write ac-
cess to the heap. Although useful for the verification of concurrent
programs, we argue that, in a sequential setting, the fractional mod-
els can be efficiently replaced by the granular immutability guar-
antees mechanism. We claim the following advantages of our pro-
posed solution over the fractional permission model: the constraints
generated due to the usage of the immutability guarantees can be
handled by most of existing theorem provers (there is no extra need
for fraction capabilities inside the verifier, or inside the prover); we
allow @A in our proposed system, which proved useful for the in-
formation leakage examples; simplified ownership tracking as in
the case of @L and @A the ownership does not need to return to
the caller.

Moreover, fraction based shared read permissions no longer pre-
serve disjointness for ∗, while the usage of immutability annota-
tions still guarantees that the separation logic conjunction expresses
disjoint heaps. Lastly, it was already shown that immutability anno-
tations help reduce the size of specifications and preserve cut-points
into the data structures [5].

Acknowledgments
We would like to thank the reviewers of PEPM’14 for their useful
feedback.

References
[1] Richard Bornat, Cristiano Calcagno, Peter O’Hearn, and Matthew

Parkinson. Permission accounting in separation logic. In POPL, pages
259–270, 2005.

[2] John Boyland. Checking interference with fractional permissions. In
Radhia Cousot, editor, Static Analysis, volume 2694 of Lecture Notes
in Computer Science, pages 55–72. Springer Berlin Heidelberg, 2003.

[3] Wei-Ngan Chin, Cristina David, Huu Hai Nguyen, and Shengchao
Qin. Automated verification of shape, size and bag properties via
user-defined predicates in separation logic. Sci. Comput. Program.,
77(9):1006–1036, 2012.

[4] C. David. Enhanced Specification Expressivity for Verification with
Separation Logic. PhD thesis, Department of Computer Science,
National University of Singapore, 2011.

[5] Cristina David and Wei-Ngan Chin. Immutable specifications for more
concise and precise verification. In OOPSLA, 2011.

[6] L. M. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In
TACAS, 2008.

[7] A. Dolzmann and Thomas Sturm. Redlog: computer algebra meets
computer logic. SIGSAM Bull., 31:2–9, June 1997.

[8] Cristian Gherghina, Cristina David, Shengchao Qin, and Wei-Ngan
Chin. Structured specifications for better verification of heap-
manipulating programs. In FM, 2011.

[9] Colin S Gordon, Matthew J Parkinson, Jared Parsons, Aleks Brom-
field, and Joe Duffy. Uniqueness and reference immutability for safe
parallelism. In OOPSLA, pages 21–40, 2012.

[10] Jonathan Heusser and Pasquale Malacaria. Quantifying information
leaks in software. In Proceedings of the 26th Annual Computer
Security Applications Conference, pages 261–269. ACM, 2010.

[11] P. Kelly, V. Maslov, W. Pugh, and et al. The Omega Library Version
1.1.0 Interface Guide, 1996.

[12] K. Rustan Leino and Peter Müller. A basis for verifying multi-
threaded programs. In ESOP, pages 378–393, Berlin, Heidelberg,
2009. Springer-Verlag.

[13] H.H. Nguyen, C. David, S.C. Qin, and W.N. Chin. Automated Ver-
ification of Shape And Size Properties via Separation Logic. pages
251–266, January 2007.

[14] P. W. O’Hearn and D. J. Pym. The logic of bunched implications.
Bulletin of Symbolic Logic, 5(2), 1999.

[15] J. Reynolds. Separation Logic: A Logic for Shared Mutable Data
Structures. 2002.

[16] Alexandru Doru Sălcianu. Pointer analysis for Java programs: Novel
techniques and applications. PhD thesis, Massachusetts Institute of
Technology, 2006.

[17] Kohei Suenaga and Naoki Kobayashi. Fractional ownerships for safe
memory deallocation. In APLAS, pages 128–143, Berlin, Heidelberg,
2009. Springer-Verlag.

[18] Yoav Zibin, Alex Potanin, Mahmood Ali, Shay Artzi, et al. Object
and reference immutability using java generics. In ESEC FSE, pages
75–84, 2007.

	Introduction
	Overview
	HIPimm architecture
	A First Glimpse of HIPimm

	Applicability
	Shape Immutability
	Data Immutability
	Flexible Aliasing
	Information Leakage

	Technical Background
	Discussions

