
1

Evaluating Pre-trained Language Models for Repairing API
Misuses
TING ZHANG, Singapore Management University, Singapore
IVANA CLAIRINE IRSAN, Singapore Management University, Singapore
FERDIAN THUNG, Singapore Management University, Singapore
DAVID LO, Singapore Management University, Singapore
ASANKHAYA SHARMA, Singapore Management University, Singapore
LINGXIAO JIANG, Singapore Management University, Singapore

API misuses often lead to software bugs, crashes, and vulnerabilities. While several API misuse detectors
have been proposed, there are no automatic repair tools specifically designed for this purpose. In a recent
study, test-suite-based automatic program repair (APR) tools were found to be ineffective in repairing API
misuses. Still, since the study focused on non-learning-aided APR tools, it remains unknown whether learning-
aided APR tools are capable of fixing API misuses. In recent years, pre-trained language models (PLMs) have
succeeded greatly in many natural language processing tasks. There is a rising interest in applying PLMs
to APR. However, there has not been any study that investigates the effectiveness of PLMs in repairing API
misuse.

To fill this gap, we conduct a comprehensive empirical study on 11 learning-aided APR tools, which include 9
of the state-of-the-art general-purpose PLMs and two APR tools. We evaluate these models with an API-misuse
repair dataset, consisting of two variants. Our results show that PLMs perform better than the studied APR
tools in repairing API misuses. Among the 9 pre-trained models tested, CodeT5 is the best performer in the
exact match. We also offer insights and potential exploration directions for future research.

CCS Concepts: • Software and its engineering→ Software libraries and repositories.

Additional KeyWords and Phrases: empirical studies, API misuse, program repair, pre-trained language models

1 INTRODUCTION
Application Programming Interfaces (APIs) are widely used in many types of software systems,
such as web applications [4] and mobile applications [18]. An API misuse refers to the use of
an API that violates explicit or implicit usage constraints of the API [2, 3, 26]. API misuses are a
prevalent issue in software development, as it is not always easy to use APIs correctly. Misuse of
APIs can lead to software bugs, crashes, and security vulnerabilities [15, 76]. For instance, misuse
of APIs of Secure Sockets Layer implementations (such as JSSE, OpenSSL, and GnuTLS) can lead to
man-in-the-middle attacks [14]. According to a recent study [15], 17% of the bug-fixing commits
are related to API misuses. To alleviate this problem, in recent years, many API misuse detection
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approaches have been proposed [25, 37, 76]. Despite these recent efforts, API misuses remain
prevalent [31, 80].
While several approaches have been proposed to detect API misuse automatically [25, 37, 76],

substantial extra effort is needed to fix API misuses manually. It is desirable to have an automatic
approach that can help developers repair API misuses. Unfortunately, despite its importance, there
is a lack of research in developing specialized techniques for repairing API misuse. Kechagia et
al. [26] made the most recent and relevant endeavor: they conducted an empirical study on 14 Java
test-suite-based APR techniques regarding their ability to repair API misuses. Test-suite-based APR
techniques take an input of the buggy program and a test suite where at least one failing test case is
related to the bug and then generate a patch that passes the test suite [70]. They found that, while
most of the patches generated by APR techniques are plausible, only a few of them are semantically
correct when compared to the patches written by developers. However, their evaluation excluded
learning-aided APR techniques, which require extra data for learning fixing patterns. Thus, how
learning-aided APR techniques perform in repairing API misuses remains unknown.
Learning-aided APR usually considers the bug-fixing task as a neural machine translation

(NMT) problem and attempts to tackle it by Sequence-to-Sequence (Seq2Seq) learning [79]. These
techniques attempt to learn from historical fixes to repair bugs. As the state-of-the-art Seq2Seq
architecture, the Transformer model [64] has received much attention in software engineering lately,
particularly general-purpose pre-trained language models of code (PLMs) such as CodeBERT [11],
CodeGPT [42], and CodeT5 [66]. These models have been extensively applied to solve various code
understanding and generation tasks, including defect detection, code summarization, and code
translation [65, 77]. They have also effectively repaired general program errors [69, 75]. In addition,
with increased access to historical fixes, specialized learning-aided APR techniques [28, 41] are
becoming more popular. The last couple of years have witnessed the boost of learning-aided-based
APR techniques, such as SequenceR [6], CoCoNut [43], and CURE [22]. However, no attempt has
been made to apply either general-purpose PLMs or specialized learning-aided APR techniques
to repair API misuse bugs. Note that we consider both general-purpose PLMs and specialized
learning-aided APR techniques as learning-aided APR techniques in this paper.

Moreover, the absence of benchmarks that are specifically designed for repairing API misuse bugs
hinders research progress. The newly proposed APR techniques are usually evaluated on general
program error benchmarks, such as Defects4J [23], QuixBugs [38] and BEARS [44]. Although
there are some API misuse bugs in these benchmarks [26], they are not the main focus of these
benchmarks. Thus, it lacks emphasis on the evaluation and discussion of repairing API misuse bugs.
Recently, Kechagia et al. [26] shared a test-suite-based API misuse repair dataset (APIRepBench),
which contains 101 API misuses. However, learning-aided APR techniques typically require a
substantial amount of historical fixes for training. Thus, the limited number of API misuses in
APIRepBench is insufficient to train and evaluate the performance of learning-aided APR techniques.
Recently, Li et al. [34] analyzed API misuses in the wild by extracting API misuses based on 528,546
historical bug-fixing commits from GitHub (from 2011 to 2018). These commits make it possible to
evaluate the performance of learning-aided APR techniques to their full potential.

In this work, we derive an API misuse repair dataset from the dataset introduced by Li et al. [34],
by removing noises in the original dataset and extracting the buggy and fixed method pairs. The
dataset contains 118,490 such method pairs. We also prepare a subset of the dataset that contains
only one-line bugs and call it single-line data. We call the full dataset as complete data. We then
evaluate the performance of learning-aided APR techniques on this dataset. To examine whether
state-of-the-art PLMs are capable of fixing API misuses in methods, we compare the performance
of 9 PLMs on the complete data (RQ1). We also investigate how PLMs and specific APR techniques

J. ACM, Vol. 37, No. 4, Article 1. Publication date: August 2023.



Evaluating Pre-trained Language Models for Repairing API Misuses 1:3

perform in fixing API misuses in methods with single-line changes, i.e., on the single-line data
(RQ2).

To the best of our knowledge, we are the first to examine the performance of learning-aided APR
techniques on API misuse repair. Our results show that PLMs are more capable of repairing API
misuse than the studied APR techniques. Among the 9 PLMs tested, CodeT5 was the best performer.
On the complete data, CodeT5 achieves an exact match ratio of 3.01. On the single-line data, CodeT5
achieves an exact match ratio of 8.86.

Our contributions can be summarized as follows:
• We provide a benchmark, which contains 118,490 method pairs on complete data and 54,510
method pairs on single-line data. For each method pair, the first method contains API misuse(s),
and the second contains the corrected API misuse(s).

• We evaluated a total of 11 learning-aided program repair techniques on the benchmark.
• We provide implications and insights on the learning-aided APR techniques’ ability to repair API
misuse.
The rest of the paper is organized as follows. We outline the background in Section 2. We

elaborate on the details of the experimental setting in Section 3 and results in Section 4. We discuss
the implications of our work and threats to validity in Section 5. In Section 6, we list the related
works. We finally conclude our work and list the potential future work in Section 7.

2 BACKGROUND
2.1 Automatic Program Repair
Automatic Program Repair (APR) aims to fix buggy programs with less manual effort. It mainly
consists of two steps: (1) conducting fault localization to detect the bug and (2) generating the bug
fixes. They are several ways to group the current APR techniques. We follow the prior works [13, 26]
to categorize APR techniques into three groups: (1) heuristic-based repair techniques, (2) constraint-
based repair techniques, and (3) learning-aided repair techniques.
Heuristic-based repair technique is also known as generate-and-validate repair technique [67].

In this category, APR is treated as a search problem. The approaches apply heuristic strategies to
explore the search space and validate the candidate patches exhaustively. For example, GenProg [29]
randomly selects a set of candidate patches as the initial population and then applies genetic
programming to generate patches. In the patch validation stage, each patch will be validated against
a test suite to compute the fitness. RSRepair [55] replaces the genetic programming in GenProg
with a random search. This category also includes template-based repair techniques since both
types work similarly [40]. For example, TBar [39] combines various fix patterns collected from
previous studies. After a fix pattern is selected to repair a bug, a patch is generated and validated by
a test suite. Heuristic-based repair techniques are usually restricted by the pre-defined heuristics,
which may either be insufficient to cover all the possible patches or too exhaustive to be efficiently
explored [13].
Constraint-based repair techniques consider APR as a constraint-solving problem. Specifically,

they formulate the requirement to pass all the test cases as a set of constraints and then solve them
to generate the patches [46, 51, 72]. For example, SemFix [51] infers constraints by performing
symbolic executions on the supplied test cases. It then looks for concrete expressions that enable
the program to pass the test cases by Satisfiability Modulo Theories (SMT) solvers. Nopol [72]
uses angelic debugging to identify conditions in buggy Java programs that, if changed, could
allow the program to pass the test suite. It then employs an SMT solver to synthesize repairs for
these conditions [41]. Constraint-based repair techniques suffer from the scalability problem since
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they usually need to conduct a heavy symbolic execution to collect constraints, and solving these
constraints can be time-consuming [13].

In this work, we focus on the last category, i.e., learning-aided repair techniques, which leverages
the previously generated bug fixes. Usually, a machine-learning or deep-learning model would be
utilized to learn the bug-fixing patterns from large corpora of code [63]. Existing learning-aided
repair techniques generally treat APR as an NMT problem, which translates the buggy code into
the bug fixes [6, 22, 43, 63]. However, the granularity of the bug fixes is different among approaches.
Some approaches work on the method level. For instance, Tufano et al. [63] evaluate an Encoder-
Decoder model using the buggy method as the input and the fixed method as the output. In addition,
most PLMs that have been evaluated on program repair also use the same dataset [1, 66]. Other
approaches work on the line-level [22, 35, 43, 75, 81]. CoCoNut [43] takes an input of buggy lines
and the buggy method as the context, and it outputs the fixed lines. We will describe more about
the techniques that we evaluate in our study in Section 3.3.

2.2 API Misuses
An API usage can be categorized into two types, i.e., directly calling API methods or instantiating
objects from API classes [50]. APImisuses are as violations of (implicit) usage constraints of APIs [3].
Recent years have witnessed a number of API-misuse detectors [24, 25, 37, 76]. Generally speaking,
there are three types of API misuse detection approaches, i.e., static detectors, which detect API
misuses by statically analyzing the source code or binary code [48]; dynamic detectors, which
instead detect API misuses by dynamic analysis [53]; and the third one combines mining with the
static detector [54].

Regardless of the program analysis technique, existing techniques either (1) require API specifi-
cation: They consider the violation of a specification as an API misuse. The drawback is that the
specification is usually incomplete and hard to obtain [37]; or (2) do not require API specification:
Given a large-scale code corpus, they consider the majority usage pattern valid. The use of an API
is considered to be a misuse if it does not follow the majority usage pattern. The drawback is that
this assumption does not always hold. For instance, some APIs are rarely used, and the majority
usage pattern does not represent valid usage [24].

2.3 API Misuse Benchmark
Recently, several API-misuse benchmarks have been proposed. Amann et al. [3] proposed the first
benchmark named MuBench for API misuse detection. MuBench encompasses 89 API misuses.
Among them, 77 API misuses are from real-world projects, and the remaining 12 misuses are from
the survey they conducted. The 77 API misuses are collected from (1) existing bug datasets, i.e.,
BugClassify [19], Defects4J [23], and QACrashFix [12]; (2) bug-fixing changes from projects on
SourceForge and GitHub for misuses of Java Cryptography Extension (JCE) APIs. MuBench is the
first benchmark that has been used to evaluate API-misuse detectors.

APIRepBench [26] is the first benchmark that can be used for API misuse repair. It contains 101
API misuses from 29 Java projects. This benchmark is derived from three existing bug benchmarks,
i.e., MuBench [2], BEARS [44], and Bugs.jar [59]. It only contains API misuses that belong to
the missing category, such as missing method calls, missing null checks, and missing exception
handling. Due to the limited size of this benchmark, it is insufficient to train and evaluate the
learning-aided APR techniques.

More recently, Li et al. [34] created a large-scale API misuse repair benchmark, which contains
528,546 bug-fixing commits of Java projects from 2011 to 2018. They extracted fine-grained edit
operations on the Abstract Syntax Tree (AST) of the source code. They also classify the API misuses
into different categories, including missing, redundant and replaced. Based on the categories, they
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1 {

2 "Line":"=> 29",

3 "parseTypeFail":"success",

4 "Pattern":"UNKNOWN=>LocalVariable",

5 "RetCheckAPI":[],

6 "Type":"Insert",

7 "BugDetectionTag":"[]",

8 "Content":"=> int counter = 0",

9 "FileName":"/home/PATH/BugDetectionProject/3Clone/NewDown2011-2017/All/V9/8530/buggy-

version/jTowerDefense.src.model.Path.java",

10 "BodyUseAPI":[],

11 "Fixed commit":"96257b05bd27ed7a3d3ba55c80cf40de6aebb015",

12 "Url":"https://api.github.com/repos/bernhardfritz/jTowerDefense",

13 "Date":"2014-04-02T19:51:51Z"

14 }

Fig. 1. An example of a data point in Li et al.’s data.

extracted frequent API misuse patterns. Since this dataset is the largest and most recent, we derive
a dataset that contains method pairs from it. We describe the detail in Section 3.2.

3 EXPERIMENTAL SETUP
3.1 ResearchQuestions
In this study, our primary objective is to investigate the effectiveness of learning-aided repair
methods in repairing API misuses, particularly when employing general-purpose PLMs.

With this goal in mind, we aim to answer the following two Research Questions (RQs).
• RQ1: How effective are PLMs for fixing API misuses in methods? With the first RQ, we aim to
examine the effectiveness of PLMs regarding their capability to repair API misuses in the method
granularity. We are interested in investigating this RQ to ascertain the possibility of integrating
PLM-based learning-aided APR techniques directly into real development.

• RQ2: How do PLMs and specific APR techniques perform in fixing API misuses in methods with
single-line changes? With the second RQ, we investigate the effectiveness of learning-aided
APR techniques in repairing API misuses. We run two state-of-the-art APR techniques, i.e.,
SequenceR [6], Recoder [81]. Since SequenceR and Recoder are designed to repair single-line
and single-hunk bugs, respectively, we further derive a smaller dataset (named single-line data)
containing only single-line bugs, which can be fixed by modifying one line. Thus, we train/fine-
tune and evaluate all the models on single-line data.

3.2 Dataset
In this section, we describe how we build the benchmark dataset. We leverage the dataset published
by Li et al. [34] (Li et al.’s data). Figure 1 shows one data point in Li et al.’s data. We exclude the
data points where (1) buggy line or fixed line is missing in Line, (2) parseTypeFail is not equal to
success, or (3) the Pattern contains UNKNOWN. In this example, the buggy line is empty, and the
Pattern contains UNKNOWN; thus, we exclude this data point from our dataset. Although the dataset
contains the commits that fixed API misuses (Fixed commit), it lacks the commits that contain the
bugs. We refer to these two types of commits as fixed commits, and buggy commits, respectively.
We extracted buggy commits by referring to the parent commits of the fixed commits. Next, we
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Table 1. Final dataset: the number of method pairs in each set and the average number of tokens in the src
(buggy method) and tgt (fixed method).

Variant Train. Valid. Test
Avg. # Tokens
SRC TGT

complete data 94,792 11,849 11,849 112 115
single-line data 43,608 5,451 5,451 90 90

Table 2. Comparison of the selected general-purpose PLMs.

Model Arch. # of Parameters
CodeBERT [11] Enc. 125M
GraphCodeBERT [17] Enc. 125M
CodeGPT [42] Dec. 124M
PolyCoder-160M [71] Dec. 160M
PolyCoder-0.4B [71] Dec. 400M
CodeTrans [10] Enc. & Dec. 223M
PLBART [1] Enc. & Dec. 140M
CodeT5 [66] Enc. & Dec. 223M
UniXCoder [16] Enc. & Dec. 125M

downloaded the Java files of the two versions. We used JavaParser 1 to remove comments and parse
the Java files. We removed Java files that JavaParser cannot parse. Similar to the prior work [63],
we focus on the method granularity in this work. Based on the Line information provided in Li
et al.’s dataset, we extracted the buggy and fixed method pairs. We further removed the duplicate
method pairs, which may come from different forks while having the same base repository. Finally,
we shuffled the dataset and split the dataset into training, validation, and testing sets with a ratio of
8:1:1, as the complete data. To get the single-line data, we filter the bugs which only involve one-line
change. We also split them into training, validation, and testing with the same ratio. For PLMs, the
training and validation data are used for fine-tuning the models. Table 1 shows the statistics of our
dataset, i.e., complete data and single-line data.

3.3 Selected Approaches
Learning-aided APR approach takes a code snippet with API misuse(s) as the input sequence, and
generates a fixed version of this code snippet that does not contain API misuse(s) as the output
sequence. We consider two types of learning-aided APR approaches, i.e., general-purpose pre-trained
models of code, which can be used to solve several programming understanding and generation
tasks [42, 77], and the specialized techniques, which are proposed to repair program errors.
General-purpose Pre-trained Models of Code. PLMs mainly differ in architecture and pre-

training tasks. We include the PLMs that adopt three types of architecture, i.e., encoder, decoder,
and encoder-decoder. For each type of architecture, we choose state-of-the-art models that have
demonstrated effectiveness in a recent study on programming understanding and programming gen-
eration tasks [77]. We also consider the more recent PLMs, i.e., PolyCoder [71] and UniXCoder [16].
Table 2 shows the considered PLMs’ architecture and the number of parameters.

1https://github.com/javaparser/javaparser
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• CodeBERT [11] is a bi-modal pre-trained model for programming language (PL) and natural
language (NL). It has been pre-trained with a hybrid objective function, including standard
masked language modeling (MLM) [27] and replaced token dection [7]. Simply put, the MLM
objective is to predict the original tokens which are masked out. The replaced token detection
objective predicts whether a token is an original token or not. In the pre-training phase, the
input is the concatenation of NL text and code in a certain PL with a special token to separate
them. CodeBERT considers both NL and PL as a sequence of words. Specifically, the pre-training
corpus of CodeBERT is a recent dataset CodeSearchNet [21], which contains 2.1M bimodal data
points and 6.4M unimodal data points.

• GraphCodeBERT [17] considers the inherent structure of code. In the pre-training stage, it
uses data flow, a semantic-level structure of code that encodes the relationship between variables.
Other than MLM, GraphCodeBERT also adopts two structure-aware pre-training tasks: one is
data flow edge prediction, which aims to learn representation from code structure; the other is to
align representations between source code and code structure. GraphCodeBERT was pre-trained
on the CodeSearchNet dataset [21], which contains 2.4M functions of six programming languages
paired with natural language documents.

• CodeGPT [42] has the same model architecture and pre-training objective as GPT-2 [56].
Specifically, CodeGPT has 12 layers of Transformer decoders. GPT-2 is trained with a simple
objective: predicting the next token one by one, which is conditioned on its previous tokens and
itself. This is also called auto-regressive language modeling. The one we evaluated in our work is
the CodeGPT-adapted variant, which uses GPT-2 as the starting point and is further pre-trained in
the 1.6M Java methods from CodeSearchNet dataset [21]. It has the same vocabulary and natural
language understanding ability as the original GPT-2.

• PolyCoder [71] is also based on GPT-2 structure [56] andwas pre-trained on the dataset collected
by its authors. After deduplication and filtering, its pre-training dataset contains 24.1M files and
254GB of data across 12 PLs. In the original work, the authors trained three models in different
sizes, with 2.7 billion, 400 million, and 160 million parameters. Considering our budget, in our
work, we choose the last two models, which have 160M and 400M parameters, respectively. We
leave the evaluation of a larger variant, i.e., the 2.7B-parameter model, for future work.

• CodeTrans [10] is based on the T5 architecture [57]. In the pre-training stage, CodeTrans
involved six different corpora for unlabeled datasets, which cover 9 PLs and English text. In total,
it has around 40 million samples. It applies the span corruption task with a corruption rate of
15% as the pre-training task. It corrupts the input sequence by masking a span of tokens, and
then the model is trained to predict the masked spans.

• PLBART [1] is a bidirectional and autoregressive Trans- former pre-trained on unlabeled data
across PL and NL. PLBART uses the same architecture as BART𝑏𝑎𝑠𝑒 [32]: it has 6 layers of an
encoder and 6 layers of a decoder. Similar to CodeTrans, PLBART also uses denoising Seq2Seq
pre-training: the model learns to reconstruct an input text that is corrupted by a noise function.
Specifically, PLBART adopts three noising strategies: token masking, deletion, and infilling.
PLBART has been pre-trained on a large collection of Java and Python functions and their NL
descriptions from GitHub and Stack Overflow.

• CodeT5 [66] also builds upon the T5 architecture [57], while it considers the token type infor-
mation in code. Similarly, CodeT5 employs a denoising sequence-to-sequence pre-training task.
Moreover, CodeT5 leverages the code semantics conveyed by the developer-assigned identifiers.
The model is also pre-trained with two identifier-related tasks. The first task is identifier tagging,
and aims to distinguish whether the code token is an identifier or not. The other task is masked

J. ACM, Vol. 37, No. 4, Article 1. Publication date: August 2023.



1:8 Zhang et al.

identifier prediction, which corrupts the input sequence by masking all the identifiers in the PL
segment and employs a sentinel token for all occurrences of one specific identifier.

• UniXCoder [16] is a unified cross-modal pre-trained model for PL. Its pre-training tasks are
MLM, unidirectional language modeling, and the denoising objective. After these three pre-
training tasks, to learn the semantic embedding, UniXCoder proposes two pre-training tasks,
i.e., multi-modal contrastive learning and cross-modal generation. For multi-modal contrastive
learning, positive examples are the same input with different hidden dropout masks, and negative
examples are other representations in the same batch. For the cross-modal generation, the model
needs to generate a comment describing the function of the code. UniXCoder supports three
modes: encoder, decoder, and encoder-decoder. We use the encoder-decoder mode of UniXCoder.
Specialized Techniques. To select specialized APR techniques, we mainly rely on the latest live

review about automatic program repair [47], which was submitted on 9 Aug 2022. We mainly focus
on the general data-driven APR approaches proposed in the last three years (2020 - 2022). Thus,
we do not consider the domain-special APR techniques, such as APR for null pointer error [30]
and APR for concurrency errors [33]. The criteria to be selected for inclusion in our study are
(1) a new APR approach has been proposed, (2) the source code is publicly available, and (3) the
authors provide an easy-to-follow guide to reproduce their work so that we can adapt the proposed
approach to a new dataset. Note that it is not a trivial task to replicate these APR techniques, as
they are often implemented in different deep-learning libraries and require different dependencies.
Existing APR techniques usually compare with each other in Defects4J [23]; thus, they often directly
cite the results of prior reported results instead of re-running the experiments [22, 39, 43, 69, 81].
Furthermore, given the large size of our dataset, it is infeasible to run test suites for each potential
fix constantly. Thus, we exclude APR techniques that rely on test suites (either in the training or
inference stage), e.g., RewardRepair [74] and SelfAPR [73] involve test cases in the training stage,
and DEAR [35] requires test cases in the inference stage. Given we already have a group of PLMs,
we excluded the APR techniques which rely on PLMs, such as CURE [22]. In the end, we choose
one Seq2Seq model, i.e., SequenceR [6], and one tree-based model, i.e., Recoder [81].
• SequenceR [6] is based on Seq2Seq learning and it adopts copy mechanism [60] to overcome
the unlimited vocabulary issue in source code. It is specifically designed to solve one-line patch
generation task, i.e., the bug can be fixed by replacing a single line.

• Recoder [81] is built based on encoder-decoder architecture. It uses a syntax-guided edit decoder
with placeholder generation, aiming to generate a sequence of edits rather than a new statement.
The usage of this decoder tackles the problem of inefficient representation of small edits. Moreover,
it also enables Recoder to generate project-specific identifiers by leveraging a neural network
for placeholder generation. Recoder leverages AST in the framework. It first transforms the raw
method into an AST, which is then modified and used to extract the rules. The generated rule
will be used in the training and inference phase.

3.4 Implementation
PLM. We implement PLMs with Hugging Face Transformers library [68]. We run each model
for 30 epochs under each setting. However, if the loss in the validation set does not decrease
for 5 epochs, the early-stopping strategy would be triggered. We used the model which has the
smallest loss on the validation set as the final model. The used hyper-parameters are available in
our replication package 2. We run the experiments on a machine with 4 NVIDIA RTX A5000 GPUs
and the AMD EPYC 7643 48-Core Processor.

2https://anonymous.4open.science/r/TOSEM-API-Misuse
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APR techniques.We set a beam size of five for both approaches. For SequenceR, we keep the
Top 1 prediction result as the PLMs. We used the model which achieves the highest accuracy on
the validation set as the final model. For Recoder, we set the batch size to 16, and the epoch to
30 for the training phase. In the inferring phase, we keep the Top 1 prediction result as the fix
for the buggy code. As for other hyper-parameters, we used the default values as provided in the
replication package.

To fairly compare the performance of PLMs and the studied APR techniques, we give the same
information to all the models, i.e., the input is the buggy method. Even so, the specific input format
may vary across different models. Based on the original design, for SequenceR [6], we provide
<START_BUG> and <END_BUG> labels to explicitly separate the buggy lines and the context in the
buggy method. As for Recoder [81], we preprocess the raw buggy method with a script provided in
Recoder’s replication package to prepare the input data. In general, it takes the raw buggy method
as input in the training phase. For the inference phase, we need to provide the location of the buggy
line along with the buggy method. On the other hand, the rest models were given the raw buggy
method as the input.

3.5 Evaluation Metrics
Following prior work [30, 66], we use the Exact Match (EM), BLEU [52], and CodeBLEU [58] to
measure the quality of the generated fixed code. We consider EM as the critical metric, as it is the
strictest one. We also consider BLEU, since it is the widely-used metric for NMT. On the other
hand, CodeBLEU considers the unique syntax and semantics of source code. Moreover, compared
with BLEU and EM, it shows a better correlation with the programmer-assigned scores [58]. We
describe each metric as follows.
EM (Exact Match) is defined as the percentage of the generated fixed code that exactly matches

the reference fixed code. It is a strict metric that can exclude some successful repairs. EM can be
considered as the lower bound since the different programs can be semantically the same but are
written differently from the developer-written code.

BLEU-4, calculates the percentage of 4-gram overlap between the reference fix code and the
candidate code. For simplicity, we refer it as BLEU in our work. Candidate fixed code represents
the code generated by models, while reference fixed code represents the ground-truth code written
by developers. BLEU is defined as Equation 1:

BLEU =

∑
𝑃∈𝐶

∑
4−𝑔𝑟𝑎𝑚∈𝑃 Countmatched (4-gram)∑

𝑃∈𝐶
∑

4−𝑔𝑟𝑎𝑚∈𝑃 Count(4-gram) (1)

, where 𝑃 refers to each candidate, fix code generated by the model,𝐶 refers to the whole candidate
code. Since it was proposed for evaluating NL, it neglects the syntax and semantics included in the
source code.
To remedy the drawback of applying BLEU in source code tokens, we include the newly in-

troduced metric CodeBLEU. CodeBLEU considers both syntactic match and semantic match by
injecting code syntax via AST and code semantics via data flow. CodeBLEU is defined in Equation 2:

CodeBLEU = 𝛼 × BLEU + 𝛽 × BLEUweight

+ 𝛾 ×Matchast +𝛿 ×Match𝑑𝑓
(2)

where 𝐵𝐿𝐸𝑈𝑤𝑒𝑖𝑔ℎ𝑡 is the weighted 𝑛-gram match,𝑀𝑎𝑡𝑐ℎ𝑎𝑠𝑡 is the syntactic AST match,𝑀𝑎𝑡𝑐ℎ𝑑𝑓 is
the semantic data-flow match. Both 𝐵𝐿𝐸𝑈 and 𝐵𝐿𝐸𝑈𝑤𝑒𝑖𝑔ℎ𝑡 work in sequence-level matching, while
the latter one considers the keywords in each PL.𝑀𝑎𝑡𝑐ℎ𝑎𝑠𝑡 calculates the accuracy by comparing
the sub-trees from both candidate and reference code. 𝑀𝑎𝑡𝑐ℎ𝑑𝑓 computes the semantic data-flow
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Table 3. Results of PLMs in repairing API misuse on complete data. The best performer in each group is in
bold.

Model BLEU CodeBLEU EM
Encoder-based
CodeBERT [11] 51.7 58.22 1
GraphCodeBERT [17] 49.21 56.25 1.55
Decoder-based
CodeGPT [42] 50.85 57.57 2.02
PolyCoder-160M [71] 54.58 60.36 2.77
PolyCoder-0.4B [71] 54.88 60.62 2.96
Encoder-decoder-based
CodeTrans [10] 53.12 59.24 2.68
PLBART [1] 54.9 60.15 1.34
CodeT5 [66] 54.08 60 3.01
UniXCoder [16] 54.76 60.36 2.17

match score between the candidate and reference code. In our work, we use the default values of 𝛼 ,
𝛽 , 𝛾 , and 𝛿 as 0.25.

4 RESULTS
4.1 RQ1: How effective are PLMs for fixing API misuses in methods?
Quantitative Analysis. Table 3 shows the performance of the three groups of fine-tuned PLMs.
We can find that decoder-based and encoder-decoder-based PLMs generally perform better than
encoder-based PLMs, except that PLBART achieves a lower EM ratio than GraphCodeBERT. Based
on the task characteristics, the decoder-based and the encoder-decoder-based PLMs are more
suitable for APR. Specifically, the pre-training tasks adopted by the encoder-decoder group resemble
our API misuse repair task the most. It suggests that the Seq2Seq pre-training can benefit the
downstream Seq2Seq task, where in our case, the downstream task is repairing API misuse.
The best-performing encoder-decoder-based model, CodeT5, performs similarly to the best-

performing decoder-based model, i.e., PolyCoder-0.4B. Still, CodeT5 outperforms PolyCoder-0.4B
by 1.7% in terms of EM. Besides, PolyCoder-0.4B and CodeT5 achieve similar BLEU and CodeBLEU
scores. Moreover, all the four encoder-decoder-based models achieve similar BLEU and CodeBLEU
scores. This suggests that the repairs generated by encoder-decoder-based PLMs are likely to be
syntactically correct or semantically similar to the developer-written repair. The gap between
CodeT5 and the best-performing encoder-based model, i.e., GraphCodeBERT, is more pronounced.
According to our main metric, i.e, EM, CodeT5 outperforms GraphCodeBERT by 94.2%. For the
other two metrics, CodeT5 also achieves higher values.
We also compare the performance of PLMs within the same group. The result shows that

PolyCoder can achieve a higher EM than CodeGPT. It suggests that the larger the pre-training
corpora, the model tends to perform better. PolyCoder and CodeGPT are based on the GPT-2
architecture, while PolyCoder has been pre-trained in a larger corpus than CodeGPT. Similarly, the
better performance of PolyCoder-0.4B over PolyCoder-160M indicates that, with the same model
architecture and the same pre-training task, the one having more parameters tends to achieve
better performance.
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Fig. 2. The number of successful repairs produced by different groups of PLMs in the complete data.

We merge the successful repair produced by the PLMs inside the same group. We consider the
repair to be successful if the generated repair is exactly the same as the developer-written repair.
Figure 5 shows the overlap among the successful repairs produced by different groups of PLMs.
We can find that fine-tuned decoder-based and encoder-decoder-based models can produce more
successful repairs than encoder-based models. We further analyze the methods that each PLM
group has successfully repaired. All three groups of PLMs successfully repair the same 147 buggy
methods. We find that each group of PLM can successfully generate the correct repairs for some
buggy methods that the other two groups cannot. We also observe that any two groups of PLMs
have common methods that they both successfully repair, but the remaining group cannot. In total,
all the PLMs can repair 761 buggy methods, which accounts for 6.42% of all the method pairs.
Qualitative Analysis. To understand the reason behind the performance difference between

these groups of PLMs, we analyze the generated repairs. Specifically, we performed a qualitative
analysis to understand when the APR techniques can fix the API misuse, and when they cannot. To
understand why they can fix API misuses, we investigate the common successful repairs produced
by the three groups of PLMs. We manually check the successful repairs by all three groups of
PLMs (i.e., 147 repairs). Two authors independently categorized all 147 buggy-fixed method pairs
into three mutually exclusive categories. These categories were based on whether the fixes could
be generated by: (1) Understanding method semantics, (2) Changing standard Java APIs, or (3)
Others, which encompassed fixes requiring information beyond the buggy method. The authors
then discussed and resolved any disagreements. The resulting categories consisted of 77 pairs
(52.4%), 13 pairs (8.8%), and 57 pairs (38.8%), respectively. We show two examples in Figure 3, where
lines starting with ‘-’ are the buggy lines, and those starting with ‘+’ are the correct fixes written
by developers. We have the following findings.

(1) PLMs can understand the method semantics.We identify several fixes related to correcting the use
of API calls. When the API name conveys meaningful information or some existing statements
as the context, PLMs can identify statements that are inconsistent with the method context.
Consider Example 1 in Figure 3, inside the definition of method clonePeriodAfterMidnight,
there are four statements. Line 3 sets the start date. Naturally, Line 4 should set the end date.
The API call was correct, i.e., result.setEndDate(), but the argument, which is filled with
another API call was wrong: getStartDate() is called instead of getEndDate(). Based on
the method name and the context of the method, PLMs can learn to fix this type of bug.
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Example 1: Inferred based on the semantics of the identifier

1 private Period clonePeriodAfterMidnight(Period source) {

2 Period result = new Period();

3 result.setStartDate(source.getStartDate().plusDays(1));

4 - result.setEndDate(source.getStartDate().plusDays(1));

5 + result.setEndDate(source.getEndDate().plusDays(1));

6 return result;

7 }

Example 2: Standard Java API

1 public boolean containsKey(Object key) {

2 - return this.parametersHashTable.contains(key);

3 + return this.parametersHashTable.containsKey(key);

4 }

Fig. 3. Common successful fixes generated by PLMs

(2) PLMs can repair the misuse of standard Java APIs. We find that PLMs can repair the APIs in
the standard Java libraries. For Example 2 in Figure 3, both contains and containsKey are
correct APIs in HashTable. However, the arguments are different. contains checks whether
some key maps into the specified value in this HashTable; while containsKey checks whether
a specified object is a key in this HashTable. Based on the parameter name, the function aims to
check whether the key exists.

To understand why PLMs fail to generate the correct repair, we randomly sampled 100 methods
that all PLMs fail to repair. The aim is to determine the challenges of repairing API misuse with
PLMs. We found several cases where the current PLMs fail.

(1) When failing to consider the impact of its changes. In some cases, PLMs provide a partial fix.
Take Example 3 in Figure 4: in the buggy method, if the parameter value is not null, the value
would be set as an empty string. As a result, the argument of the API call in Line 7 would
always be the same. It is certainly not the intention of this method. The fix generated by CodeT5
makes more sense: if the value is null, return false; otherwise, make the API call in Line
7. However, it neglects the fact that the String casting only works if the Object is an instance
of String. Since value can be any Object, using (String) is erroneous. The fix provided by a
developer handles this issue.

(2) When the intention is unclear. In some cases, without knowing the developer’s intention, both
the buggy and fixed versions may look bug-free. As shown by Example 4 in Figure 4, the buggy
method and the fixed method differ in the internal class property being called, i.e., either a
button or a view. Without knowing the exact intention and what ptt refers to, it is nearly
impossible to fix this kind of bug. Given the buggy version can be considered correct, the
generated repair by CodeT5 and PolyCoder are the same as the buggy version. On the other
hand, CodeBERT replaces the parameter with true.

Answer to RQ1: PLMs are effective in fixing API misuses in methods. Specifically, decoder-
based and encoder-decoder-based PLMs perform better than encoder-based PLMs.
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Example 3: Partial fix (Developer-written Fix)

1 @Override

2 public boolean isValid(Object value) {

3 - if (value != null) {

4 - value = "";

5 - }

6 + value = value.toString();

7 return mPattern.matcher((String) value).matches();

8 }

Repair generated by CodeT5

1 @Override

2 public boolean isValid(Object value) {

3 - if (value != null) {

4 - value = "";

5 + if (value == null) {

6 + return false;

7 }

8 return mPattern.matcher((String) value).matches();

9 }

Example 4: Lack of context

1 private void updatePTTConfiguration() {

2 - mTalkButton.setVisibility(settings.isPushToTalk() && settings.isPushToTalkButtonShown() ?
View.VISIBLE : View.GONE);

3 + pttView.setVisibility(settings.isPushToTalk() && settings.isPushToTalkButtonShown() ?
View.VISIBLE : View.GONE);

4 }

Repair generated by CodeBERT

1 private void updatePTTConfiguration() {

2 - mTalkButton.setVisibility(settings.isPushToTalk() && settings.isPushToTalkButtonShown() ?
View.VISIBLE : View.GONE);

3 + mTalkButton.setVisibility(true);

4 }

Fig. 4. Wrong fixes generated by PLMs

4.2 RQ2: How do PLMs and specific APR techniques perform in fixing API misuses in
methods with single-line changes?

Quantitative Analysis. Table 4 shows the comparison of PLMs against the state-of-the-art APR
techniques on the single-line data.

Table 4 shows that fine-tuned PLMs perform better than studied APR techniques, which demon-
strates the effectiveness of pre-training: all of the PLMs are pre-trained in a large corpus to capture
the syntactic and semantic knowledge of source code. The best-performing model, CodeT5, outper-
forms Recoder by around 12 times in terms of EM. SequenceR and Recoder perform worse than
PLMs, with the worst-performing CodeBERT achieving more than double the EM ratio. Regarding
BLEU and CodeBLEU, it may be surprising to see that the studied APR approaches surpass the PLMs.
Simply copying the buggy method as the fixed method would result in a BLEU and CodeBLEU close
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Table 4. Results of PLMs and APR techniques on the single-line data.

Model BLEU CodeBLEU EM
Encoder-based
CodeBERT [11] 63.11 66.58 2.18
GraphCodeBERT [17] 60.5 64.17 2.49
Decoder-based
CodeGPT [42] 62.21 65.9 4.22
PolyCoder-160M [71] 65.7 68.66 5.93
PolyCoder-0.4B [71] 65.73 68.65 6.31
Encoder-decoder-based
CodeTrans [10] 64.43 67.47 5.65
PLBART [1] 66.13 68.8 5.1
CodeT5 [66] 65.18 68.27 8.86
UniXCoder [16] 66.01 68.73 4.97

SequenceR [6] 93.58 89.75 0.48
Recoder [81] 94.05 93.4 0.72

3329822

PLMs APR

Fig. 5. The number of successful repairs produced by PLMs and APR techniques in the single-line data.

to 100. It is worth reminding that both selected APR approaches generate the fixed line instead of
the whole method. Thus, the large portion of the fixed method would be the same as the buggy
method. Therefore, it is intuitive that the APR approaches can achieve higher BLEU and CodeBLEU.

Qualitative Analysis. In this section, we performed two sets of manual checks:
1. Evaluation of the common successful fixes generated by PLMs and APR techniques. We

thoroughly examined all 29 identified cases, which collectively represent the total number of fixes
commonly identified across the various approaches.
2. Analysis of the characteristics of successful fixes produced solely by APR techniques. We

carefully studied 33 cases where the APR tools successfully fixed the bugs, while the PLMs were
unable to do so.
(1) Common successful fixes. The fixes relate to the method argument. For example, the fix is to

change the boolean argument in a method call: the fix is either changing true to false or vice
versa. We found 11 out of 29 cases (37.9%) were resolved in this manner.

(2) Characteristic of unique successful fixes by APR techniques. Similar to the prior finding, we found
12 out of 33 cases (36.4%) were fixed by changing the boolean argument in the method call.
The difference is that most cases involve larger methods with more lines than cases in the
common successful fixes. This applies not only to the boolean argument fixes. We also find other
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Fig. 6. Distribution of buggy methods by the number of tokens in complete data.

successful fixes are generally longer, which makes it challenging to localize the API misuse and
therefore results in PLMs failing to produce the correct fix. Since PLMs lack explicit information
on fault localization, APR techniques may be more aware of the faulty location. This suggests
that an accurate bug localization may have benefited the APR techniques.

Answer to RQ2: PLMs are more effective than the studied APR techniques in fixing API misuses
in methods with single-line changes.

5 DISCUSSION
5.1 Impact of the Program Length on the Model Performance
In Section 4, when we investigate the reasons why APR techniques fail to successfully produce the
repairs, we noticed that the failure cases have relatively longer method lengths compared to the
successful cases. Therefore, we investigate whether the length of the buggy methods affects the
model performance.
From Figure 6, we notice that there is a peak before 100 tokens and a long tail that extends

over 300 tokens. The first quartile for this distribution is 30 tokens, and the third quartile is 119
tokens. We consider short methods as buggy methods that have less or equal to 30 tokens and long
methods as buggy methods that have more than 119 tokens. Since we want to focus on comparing
the performance when the length difference of the methods is more pronounced, we only report
the results with short and long methods.
Table 5 shows the results of different PLMs on both short and long method pairs. We can see

that the performance of all the approaches is worse on the long method pairs compared to that
on the short method pairs. This finding is consistent with the results of Tufano et al. [63]. Tufano
et al. [63] found that NMT-based APR can perform better on the shorter methods. Note that our
methods are longer than the dataset provided by Tufano et al.. The results from our experiments
and Tufano et al. both indicate that the longer the method, the more complex the program logic is.
Hence, more difficult it is to produce the correct repair.
Comparing the results of the approaches on the short method pairs with their results on the

whole test set, we can see that the BLEU, CodeBLEU, and accuracy achieved by all the approaches
have increased. Similarly, we find that the performance of all the approaches on the long method
pairs is worse than that of the whole test set. It suggests that localizing faults in longer methods is
more challenging, and it is possible longer methods have potentially more faulty locations, where
more transformations are needed to generate the correct repair.
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Table 5. Results on the short (less or equal to 30 tokens) and long (more than 119 tokens) method pairs in
complete data.

BLEU CodeBLEU EM
short long short long short long

CodeBERT 60.64 33.2 65.85 45.98 2.4 0.03
GraphCodeBERT 60.22 30.3 65.56 43.52 3.5 0.17
CodeGPT 60.03 32.21 65.37 45.28 4.35 0.1
PolyCoder-160M 58.29 38.42 63.89 49.68 5.87 0.27
PolyCoder-0.4B 59.51 38.52 65.06 49.75 6.28 0.34
CodeTrans 61.12 35.32 66.33 47.45 5.46 0.34
PLBART 60.91 38.08 65.95 49.01 2.71 0.21
CodeT5 61.17 36.74 66.39 48.47 6.15 0.38
UniXCoder 60.14 38.62 65.65 49.61 4.95 0.03

5.2 Lessons Learnt
We identify several insights that we hope can inspire the development of specialized techniques for
repairing API misuse. Specifically, we consider the unique challenges faced by learning-aided APR
techniques in repairing API misuse.

Repairing API misuses in long methods is challenging. Based on the result in Section 5.1,
we find that current PLMs lack the ability to repair long methods. PLMs, such as CodeBERT, can
only handle input less or equal to 512 tokens by default. However, some long methods have more
than 512 tokens. A simple truncation does not work well, as shown in Table 5. Moreover, filtering
out long methods is not solving the problem. It may also be unrealistic to completely disallow
developers from writing long methods. On the other hand, splitting long methods into chunks or
focusing on lower granularity may help in repairing API misuses.
Integrating project-specific information can potentially improve repair performance.

Like Example 4 shown in Figure 4, this type of bug is unrelated to the syntactic change, while is
more related to the project information. This is a unique challenge in learning-aided APR techniques.
Learning-aided techniques usually have a limitation on the input length. It is infeasible to treat the
whole project information as input. More ways to integrate project information should be a future
direction to explore.

Prioritize frequent and non-trivial API misuses. As shown in Section 4, it is challenging to
repair API misuses. Considering various types of API misuses, it may not be possible to completely
repair all of them. Some types of API misuse can be considered trivial for developers yet not easy for
machines to repair. We believe it is not worth resorting to an automatic approach to repair all API
misuses. Instead, automation efforts should be focused on frequently occurring API misuses. Some
frequently occurring API misuses are common program errors. It would save a lot of manual work
if an automatic approach could be integrated when developers are coding. Other than frequently
occurring API misuses, more emphasis should be put on non-trivial API misuses, such as those that
have a high impact on security or require more expertise to repair. As the next step, researchers
can focus on a certain type of critical API misuse and develop a specialized tool for it.
Except for the three points mentioned above, adopting learning-aided APR techniques for

API misuse also shares common challenges with test-suite-based APR techniques as presented
by Kechagia et al. [26]. Here, we name a few: (1) incorrect fault localization: without correctly
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locating the API misuse bugs, it is impossible to repair the misuse; (2) multiple faulty locations:
multi-locations bugs are challenging to repair.

5.3 Threats to Validity
Threats to internal validity relate to the correctness of our experiments. For SequenceR and Recoder,
we directly used the default settings as the original paper unless specified otherwise. For general-
purpose PLMs, we implement the models based on the replication package released by Zeng et
al. [77]. We believe the threats are minimal.
Threats to construct validity relate to experimental bias. Following the prior works [42, 77], we

not only use the exact match and BLEU but also include the newly introduced CodeBLEU score,
which is more suitable for code as the evaluation metrics. While we admit that a more rigorous
way of evaluating the generated methods is to actually compile them, it is not feasible in practice
to evaluate a large number of methods.

Threats to external validity relate to whether our findings can be generalized to other datasets or
PLMs. In this work, we experiment with bug fixes from Java projects. The results may differ when
we experiment with Python projects. However, since the pre-trained models are not specifically
designed for a certain PL, we believe the threat is minimal. In the future, we plan to conduct experi-
ments on dataset containing other PLs. Another threat to external validity is on the approaches’
selection. We select two state-of-the-art APR techniques: SequenceR and Recoder. They represent
two types of architecture, i.e., Seq2Seq-based and tree-based model. We experiment with 9 PLMs,
and larger PLMs have been released recently (e.g., CodeT5 has released a larger version 3). In the
future, we plan to experiment with large PLMs.

6 RELATEDWORK
6.1 Pre-trained Language Models for Program Repair
Given the success of PLMs in NLP tasks, researchers in software engineering are exploring their
potential for use in general APR. Several studies have proposed novel APR methods built upon
PLMs [22], while others investigate alternative ways to leverage them [69]. To improve APR,
existing approaches often utilize additional information beyond the buggy code. For example,
TFix [5] is based on the T5 model [57] and requires the error messages from error detectors such
as ESLint as input to generate bug fixes. Additionally, specialized PLMs designed to boost code
review progress have been proposed [36, 78], but these PLMs are meant to solve a different type of
APR that requires NL reviews. Instead of traditional fine-tuning, recent works aim to leverage the
pre-training objective (MLM) in PLMs and close the gap between pre-training and repair [69, 75].
Xia and Zhang [69] explore zero-shot learning for generating bug fixes by treating program repair as
a cloze-style task, where the buggy line is masked and the PLM is required to fill in the missing code.
They have explored various templates to mask lines. Similarly, CIRCLE [75] uses a prompt-based
template to convert APR into a "fill-in-the-blank" task. In our work, we conduct a comprehensive
evaluation on various PLMs with traditional fine-tuning. In the future, we aim to investigate
alternative ways of applying PLMs to repair API misuse.

6.2 Domain-specific Program Repair
Other than general APR techniques considered in our work, several more studies have focused on
repairing domain-specific program errors, such as concurrency errors [33], the web [45], security
vulnerabilities [20], Android applications [61] and regression bugs [62].

3https://huggingface.co/Salesforce/codet5-large
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Li et al. proposed a tool named DFix [33], which focuses on fixing timing bugs in distributed
systems. Fixing distributed timing bugs has unique challenges: (1) it cannot rely on traditional
synchronization primitives, such as locks and conditional variables; (2) it requires global code
changes. DFix can automatically process distributed timing bug reports, analyzes the buggy system
and generates patches through static program analysis. At a high level, DFix systematically generates
patches that handle observed buggy timing through rollbacks or fast-forwards. At a low level, DFix
uses static analysis to automatically decide where and how to observe buggy timing and where
and how to conduct rollback or fast-forward.
Domain-specific program repair techniques usually need to consider the uniqueness of the

domain. For instance, Mahajan et al. [45] proposed a new approach that can automatically generate
CSS patches that improves the mobile-friendliness of a web page. Existing approaches can detect
automatically detect mobile-friendly problems, but they are unable to repair the problem. It remains
a manual effort to repair the mobile-friendly problems in a web page. To address this issue, Mahajan
et al. propose an approach that first builds graph-based models of the layout of a web page. The
constraints encoded by these graphs are used to find patches that can improve mobile friendliness
while minimizing layout disruption. The approach leverages unique aspects of the problem domain
to quantify metrics related to layout distortion and parallelize the computation of the solution to
identify the best patch efficiently.

Different from the prior mentioned works, our work focuses on API-misuse repair, which belongs
to another branch of domain-specific program repair.

6.3 Empirical Studies on Program Repair
In recent years, several studies have empirically evaluated the effectiveness of APR techniques [8,
9, 49]. Durieux et al. [9] conducted a large-scale experiment that evaluates 11 Java test-suite-
based APR techniques on 2,141 bugs from 5 benchmarks. They found that these techniques can
generate patches for a diverse number of bugs, and they are complementary to each other. Moreover,
they found that the APR techniques perform significantly better on Defects4J than on the other
benchmarks. Furthermore, they identified six primary reasons that these APR techniques fail to
generate patches for bugs, including incorrect fault localization and multiple fault localization.
Motwani et al. [49] analyzed the effectiveness of APR techniques in real-world Java programs,

especially on the defects made by the developers during their regular development process. Some
of their findings are (1) APR techniques do sometimes produce patches, while those patches often
break untested or undertested functionality; (2) The produced patches often overfit to the provided
test suite. Their work outlines the shortcomings of existing APR techniques when applied in the
real world.
Different from the empirical studies mentioned above, our work evaluates APR techniques in

repairing a specific type of error, i.e., API misuse.

7 CONCLUSION AND FUTUREWORK
In this work, we present an empirical study that evaluates 11 learning-aided APR techniques on
their capability to repair API misuse. We build a large-scale API misuse benchmark, which consists
of two variants: the complete data with 118,490 pairs of the buggy and fixed methods, and the
single-line datawith 54,510 pairs of the single-line buggy and fixed methods. We conclude several
findings based on the empirical results of existing approaches. We find that decoder-based and
encode-decoder-based PLMs are more effective than encoder-based PLMs. Among all the 9 PLMs
we investigate, CodeT5 achieves the highest scores in terms of EM. PLMs are more effective than
the studied APR techniques.
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We recommend that future work addresses the limitation of the current APR techniques by
carefully considering handling long methods, improving bug localization, and prioritizing frequent
and non-trivial API misuses. In the future, we are also interested in investigating alternative ways
to adopt PLMs for repairing API misuse, such as prompt tuning [65]. By analyzing the results of
the current approaches, we plan to propose new approaches to repair API misuse. Our dataset and
the code are publically available at https://anonymous.4open.science/r/TOSEM-API-Misuse.
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