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Abstract

Large language models have transformed natural language processing, yet super-
vised fine-tuning (SFT) remains computationally intensive. This paper formally
proves that capabilities acquired through SFT can be approximated by a base
transformer model using inference-time techniques, specifically in-context learn-
ing (ICL), without altering model parameters, under idealized assumptions includ-
ing unbounded computational resources and access to the fine-tuning dataset. We
extend these results to practical scenarios with finite context lengths and partial
dataset access. For text generation tasks with fixed output length l, datasets of size
O
(
mV
ε2 log m

δ

)
or, with bounded context, O

(
l log V

ε2 log 1
δ

)
suffice to approximate

fine-tuned behavior across m contexts within error ε, where V is the vocabulary
size and δ is the failure probability. For linear classification, datasets of size O

(
d
ε

)
or, with fixed context, O

(
1
ε2 log

1
δ

)
are sufficient, where d is the input dimension.

Grounded in the Turing completeness of transformers, these results provide a the-
oretical foundation for resource-efficient deployment of large language models,
with practical techniques like retrieval-augmented generation bridging theory to
real-world applications.

1 Introduction

Transformer models, introduced by Vaswani et al. [1], are the backbone of natural language process-
ing (NLP), powering large language models (LLMs) like DeepSeek-R1 [3] and Claude 4 [4]. These
models use self-attention to capture long-range dependencies, achieving breakthroughs in tasks such
as language modeling, translation, and text generation. However, supervised fine-tuning (SFT) to
adapt pre-trained transformers to specific tasks is computationally expensive, often requiring thou-
sands of GPU hours [3]. This prompts a key question: Can the capabilities gained through SFT be
elicited from a base transformer using inference-time techniques, such as in-context learning (ICL),
without parameter updates?

ICL and prompting allow models to adapt to tasks by conditioning on input-output examples [27; 9].
If fine-tuned capabilities are latent in the base model, SFT may primarily refine access to pre-existing
knowledge [18; 11]. This paper provides a formal proof that, under idealized conditions (unbounded
computational resources and access to the fine-tuning dataset), a base transformer can approximate
SFT capabilities via ICL within a quantifiable error margin. We extend these results to practical set-
tings with finite context lengths and partial dataset access, demonstrating that minimal datasets can
approximate fine-tuned behavior. Specifically, for text generation, a dataset of size O

(
mV
ε2 log m

δ

)
or, with fixed context and output length l, O

(
l log V

ε2 log 1
δ

)
approximates fine-tuned distributions

across m contexts, where V is the vocabulary size, ε is the error tolerance, and δ is the failure prob-
ability. For linear classification, datasets of size O

(
d
ε

)
or, with fixed context, O

(
1
ε2 log

1
δ

)
suffice,

Preprint.



where d is the input dimension. Rooted in the Turing completeness of transformers [2], these results
establish a framework for resource-efficient LLM deployment, with practical approximations like
retrieval-augmented generation (RAG) enhancing real-world applicability.

Figure 1 illustrates our approach, showing how a base model, prompted with a dataset D, approxi-
mates the fine-tuned model’s output distribution.

Base Model
(θbase)

Prompt with D
+ Query x

SFT Model
(θfine)

Pbase(y|x,D)

Pfine(y|x)

Prompting

Fine-Tuning Approx.

Figure 1: Overview of eliciting fine-tuned capabilities. A base model, prompted with dataset D
and query x, produces an output distribution Pbase(y|x,D) approximating the fine-tuned model’s
distribution Pfine(y|x).

Our contributions are:

1. A proof that base transformers can approximate SFT capabilities via ICL under unbounded
resources, within error ε (Section 5).

2. Demonstrations that text generation can be approximated with datasets of size
O
(
mV
ε2 log m

δ

)
or, with fixed context, O

(
l log V

ε2 log 1
δ

)
(Sections 5.5.1, 5.6.2).

3. Proofs that linear classifiers can be approximated with datasets of size O
(
d
ε

)
or, with fixed

context, O
(

1
ε2 log

1
δ

)
(Sections 5.5.2, 5.6.1).

4. Practical techniques, such as RAG and few-shot prompting, to bridge theoretical results to
applications (Section 6).

2 Related Work

2.1 Computational Power of Transformers

Transformers with unbounded resources are Turing-complete [2], with self-attention simulating Tur-
ing machine tapes and feed-forward layers encoding transition rules [14]. While fixed-depth trans-
formers may not be Turing-complete [7], modified architectures achieve this [8]. As universal ap-
proximators [15], transformers support our claim that fine-tuned behaviors can be approximated
without parameter updates [34].

2.2 In-Context Learning

ICL enables task adaptation by conditioning on input-output examples [27]. For example, sentiment-
labeled reviews allow label prediction for new inputs. DeepSeek-R1 shows robust zero-shot ICL
[3], and structured prompts enhance reasoning [5]. ICL is modeled as Bayesian inference [9], with
pretrained transformers generalizing well [32]. Instruction tuning boosts zero-shot performance [6],
forming the basis for our framework.

2.3 Fine-Tuning and Latent Knowledge

SFT refines latent capabilities in LLMs. Early layers retain general knowledge [10], while the tuned
lens reveals latent predictions [11]. Low-rank adaptation (LoRA) shows minimal updates suffice
[13]. Recent work suggests SFT reformats outputs for task-specific styles [18], supporting our
hypothesis that base models can approximate fine-tuned behaviors via inference.
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2.4 Inference-Time Alternatives to Fine-Tuning

Inference-time techniques offer alternatives to SFT. Chain-of-thought prompting elicits reasoning
[12], and test-time compute scaling improves outcomes [17]. ICL-as-programming treats prompts
as programs [16]. Optimized inference for software development [21; 22] and pivotal token search
[28] show practical advancements. Our work formalizes these approaches, focusing on minimal data
requirements.

3 Preliminaries

Definition 1 (Transformer Model). A transformer model M with parameters θ maps an input se-
quence x ∈ X (token sequences) to an output distribution P(y|x; θ), where y ∈ Y . Transformers
use stacked layers with self-attention and feed-forward components [1]. The base model is Mbase
with parameters θbase, and the fine-tuned model is Mfine with parameters θfine.
Definition 2 (Supervised Fine-Tuning). SFT updates θbase → θfine = θbase + ∆θ by minimizing
cross-entropy loss on a dataset D = {(xi, yi)}Ni=1 ⊂ X × Y , yielding Pfine(y|x).
Definition 3 (Inference Technique). An inference technique T applied to Mbase at test time produces
Pbase(y|x, T ). Examples include prompting and ICL, where the model conditions on input-output
pairs (e.g., predicting ‘positive’ for a review given labeled examples).
Assumption 1 (Unbounded Computational Resources). Mbase has infinite context length and com-
putational resources, approximated by large context windows (e.g., 1M tokens in GPT-4.1 [19]) and
scalable compute [17].
Assumption 2 (Turing Completeness). Transformers with unbounded resources are Turing-
complete [2], capable of simulating any computable function via self-attention [14].
Assumption 3 (Access to Fine-Tuning Dataset). The fine-tuning dataset D = {(xi, yi)}Ni=1 is ac-
cessible, reflecting scenarios where fine-tuning data is available for inference-time use.

4 Main Theorem

Theorem 1. Under Assumptions 1, 2, and 3, for any fine-tuned model Mfine derived from Mbase via
SFT, and for any ε > 0, there exists an inference technique T and dataset size N such that, for
all x ∈ X , y ∈ Y , the total variation distance between the base and fine-tuned output distributions
satisfies:

TV(Pbase(y|x, T ),Pfine(y|x)) ≤ ε, (1)

with ε = O(1/
√
N) for typical tasks, decreasing as computational resources (e.g., context length)

and dataset size increase.

5 Proof of Theorem 1

We prove Theorem 1 by constructing an inference technique T that enables Mbase to approximate
the output distribution of Mfine within error ε. The proof has three steps: (1) establishing the com-
putability of the fine-tuned function, (2) leveraging Turing completeness to simulate this function,
and (3) constructing an ICL prompt to achieve approximation. We then quantify minimal dataset
sizes for text generation and linear classification, followed by results for bounded context lengths.
Figure 2 illustrates the Turing machine simulation, Table 1 summarizes the inference technique, and
Figure 3 depicts the prompt structure.

Input Sequence
(Prompt + Query)

Self-Attention
(Simulated Tape State)

Feed-Forward
(Transition Rules) Output Distribution

Simulates Turing Machine Tape

Figure 2: Self-attention manages the simulated tape state of a Turing machine, with feed-forward
layers encoding transition rules (Lemma 2).
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Table 1: Inference technique for approximating SFT capabilities.

Fine-Tuning Type Inference Technique T Key Mechanism
Supervised Fine-Tuning Prompting with dataset D In-context learning

5.1 Computability of Fine-Tuned Functions

Lemma 1. The fine-tuned function ffine : X → Y , defined as ffine(x) = argmaxy∈Y Pfine(y|x), is
computable.

Proof. For SFT, Mfine is trained on a finite dataset D = {(xi, yi)}Ni=1, minimizing:

L = − 1

N

N∑
i=1

logPfine(yi|xi). (2)

Gradient descent, a computable algorithm, updates θbase → θfine. Since D is finite and the trans-
former has fixed parameters, ffine is computable via finite operations [34].

5.2 Turing Completeness of the Base Model

Lemma 2. Under Assumption 2, Mbase with parameters θbase can simulate any Turing machine
TMf computing a function f .

Proof. Transformers with unbounded resources are Turing-complete [2]. Self-attention:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V, (3)

manages a tape by weighting tokens, simulating state transitions. Feed-forward layers:

FFN(x) = max(0, xW1 + b1)W2 + b2, (4)

encode transition rules, with residual connections propagating information. Given the transition
table of TMf and the input sequence, Mbase computes f [14].

5.3 Construction of Inference Technique

x1 y1 [SEP] x2 y2 [SEP] . . . xN yN [SEP] x

Prompt Sequence

Figure 3: Prompt structure for TSFT, where input-output pairs from dataset D are concatenated with
query x (Lemma 3).

Proposition 1. ICL enables Mbase to model a task distribution P(y|x,D) by processing a prompt
with dataset D = {(xi, yi)}Ni=1, approximating Pfine(y|x).

Proof. ICL acts as Bayesian inference over task distributions [9]. For a prompt p =
[x1, y1, . . . , xN , yN , x], Mbase computes:

Pbase(y|x, p) = Pbase(y|x1, y1, . . . , xN , yN , x). (5)

Since D defines the task, Mbase infers the mapping implied by Pfine by generalizing from examples
[32].

Lemma 3. For SFT, there exists an inference technique TSFT such that, for any ε > 0, there exists a
dataset size N satisfying:

TV(Pbase(y|x, TSFT),Pfine(y|x)) ≤ ε, ∀x ∈ X , y ∈ Y,

with ε = O(1/
√
N) for typical tasks, where ε decreases as computational resources (e.g., context

length) increase.
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Proof. Define TSFT as the prompt:

p = [x1, y1, x2, y2, . . . , xN , yN , x], (6)

where (xi, yi) ∈ D. Under Assumption 1, Mbase processes the entire prompt, requiring a context
length proportional to N . By Assumption 3, D provides examples for the task, but since D is finite,
Pfine(y|x) generalizes beyond D via SFT optimization, while ICL infers patterns from examples. By
Proposition 1, ICL approximates:

TV(Pbase(y|x, p),Pfine(y|x)) ≤ ε,

where ε depends on the base model’s capacity, N , and context length. For typical tasks, ICL’s sam-
ple complexity suggests ε = O(1/

√
N) [9], with faster decay (e.g., O(1/N)) possible for simpler

tasks under uniform data distributions. As N → ∞ and context length grows, ICL’s generaliza-
tion improves, reducing ε → 0. Prompt structure (e.g., example order) may introduce variability,
potentially increasing ε, addressed in Section 6.

5.4 Adapting to Practical Scenarios

Assumptions 1 and 3 are idealized. In practice, context lengths are finite (e.g., 1M tokens [19]), and
access to D may be partial. Using a subset D′ ⊂ D of size |D′| = o(N), the approximation error
increases by:

TV(Pbase(y|x,D′),Pfine(y|x)) ≤ ε+O(1/
√
|D′|),

derived as follows: Assuming i.i.d. samples in D, the empirical distribution from D′ deviates from
the true distribution by O(1/

√
|D′|) in total variation distance, by Hoeffding’s inequality [30]. For

non-i.i.d. data (e.g., text), this bound may weaken, requiring larger |D′|. Techniques like RAG
[26] select representative examples using similarity metrics (e.g., cosine distance in embeddings),
ensuring D′ captures key task patterns, though exact error reduction depends on the task. Finite
context limits the number of examples, addressed in Section 5.6. These relaxations enhance practical
applicability, though optimal subset selection remains an open challenge.

5.5 Minimal Datasets

5.5.1 Minimal Dataset for Text Generation

Theorem 2. Let C = {c1, . . . , cm} be contexts, and let Mfine define next-token distributions
pfine(xt+1|ci) over vocabulary size V . There exists a dataset D′, with samples (ci, xt+1) ∼
pfine(·|ci), such that when Mbase is prompted with D′, it satisfies:

sup
c∈C

∥pbase(xt+1|c,D′)− pfine(xt+1|c)∥1 ≤ ε+ η,

with probability at least 1− δ, where η is the ICL approximation error, and:

|D′| = O
(
mV

ε2
log

m

δ

)
.

Proof. For each ci ∈ C, approximate pfine(xt+1|ci) with pbase(xt+1|ci, D′) within total variation
distance:

∥pbase(·|ci, D′)− pfine(·|ci)∥1 =
∑
v∈V

|pbase(v|ci, D′)− pfine(v|ci)| ≤ ε+ η.

With ni samples {x(j)
t+1}

ni
j=1 ∼ pfine(·|ci), the empirical distribution is:

p̂(v|ci) =
1

ni

ni∑
j=1

I{x(j)
t+1 = v}.

By Hoeffding’s inequality [34], ∥p̂(·|ci)− pfine(·|ci)∥1 ≤ ε with probability 1− δi requires:

ni = O
(
V

ε2
log

1

δi

)
.
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For m contexts, set δi = δ
m . The union bound ensures:

P

(
m⋃
i=1

{∥p̂(·|ci)− pfine(·|ci)∥1 > ε}

)
≤

m∑
i=1

δi = δ.

Thus:

ni = O
(
V

ε2
log

m

δ

)
.

The total dataset size is:

|D′| = m · ni = O
(
mV

ε2
log

m

δ

)
.

The base model’s ICL introduces an error η, assumed small but dependent on model capacity and
prompt design (e.g., suboptimal ordering increases η) [9]. Assuming Mbase approximates p̂(·|ci)
within η, the total error is ε+ η. ICL imperfections may increase ni by a constant factor, discussed
in Section 6.

5.5.2 Minimal Dataset for Linear Classification

Theorem 3. For a binary classification task where Mfine is a linear classifier trained on D ⊆
Rd×{0, 1}, there exists a subset D′ ⊆ D with size |D′| = O

(
d
ε

)
, such that when Mbase is prompted

with D′, the output distribution satisfies:

sup
x∈Rd

|Pbase(y|x,D′)− Pfine(y|x)| ≤ ε+ η,

where η is the ICL approximation error, assuming Mbase approximates linear classifiers via ICL
within error ε/2 + η.

Proof. Let Mfine minimize the logistic loss on D = {(xi, yi)}Ni=1:

L(w, b) = 1

N

N∑
i=1

log(1 + exp(−yi(w
Txi + b))), (7)

yielding Pfine(y = 1|x) = σ(wTx + b), where σ(z) = (1 + e−z)−1. By coreset theory [29], there
exists D′ ⊆ D with:

|D′| = O
(
d

ε

)
,

such that a classifier trained on D′, with parameters (w′, b′), satisfies:

sup
x∈Rd

∣∣σ(w′Tx+ b′)− σ(wTx+ b)
∣∣ ≤ ε/2.

Assume Mbase, prompted with D′, approximates the classifier with parameters (w′, b′) via ICL [9],
such that: ∣∣Pbase(y = 1|x,D′)− σ(w′Tx+ b′)

∣∣ ≤ ε/2 + η,

where η accounts for ICL errors (e.g., from model capacity or prompt design). The total error is:

|Pbase(y = 1|x,D′)− Pfine(y = 1|x)|
≤
∣∣Pbase(y = 1|x,D′)− σ(w′Tx+ b′)

∣∣+ ∣∣σ(w′Tx+ b′)− σ(wTx+ b)
∣∣

≤ (ε/2 + η) + ε/2 = ε+ η. (8)

Since Pbase(y = 0|x,D′) = 1−Pbase(y = 1|x,D′), the total variation distance is at most ε+η. ICL
imperfections may increase |D′| slightly, discussed in Section 6.

5.6 Bounded Context Length

We address settings where context length limits the number of prompt examples. Assumptions
include sufficient transformer capacity and task simplicity, as complex tasks or weaker models may
widen error bounds.
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5.6.1 Linear Classification with Fixed Context Length

Theorem 4. For a binary classification task where Mfine is a linear classifier trained on D ⊆
Rd × {0, 1}, for each input x, select a subset Sx ⊆ D of size |Sx| = O

(
1
ε2 log

1
δ

)
, e.g., k-nearest

neighbors to x. When Mbase is prompted with Sx, the output distribution satisfies:

sup
x∈Rd

|Pbase(y|x, Sx)− Pfine(y|x)| ≤ ε+ η,

with probability at least 1−δ, where η is the ICL approximation error, assuming Mbase approximates
the classifier trained on Sx within error O(1/

√
|Sx|) + η.

Proof. Let Mfine have parameters (w, b), producing Pfine(y = 1|x) = σ(wTx + b), where σ(z) =
(1 + e−z)−1. For a query x, select a subset Sx ⊆ D of size:

k = O
(

1

ε2
log

1

δ

)
,

using, e.g., k-nearest neighbors in Euclidean distance. A classifier trained on Sx, with parameters
(w′, b′), approximates the decision boundary locally. The total error is bounded as:

|Pbase(y = 1|x, Sx)− Pfine(y = 1|x)|
≤
∣∣Pbase(y = 1|x, Sx)− σ(w′Tx+ b′)

∣∣
+
∣∣σ(w′Tx+ b′)− σ(wTx+ b)

∣∣ . (9)

Assume Mbase approximates the classifier on Sx via ICL within:∣∣Pbase(y = 1|x, Sx)− σ(w′Tx+ b′)
∣∣ ≤ O(1/

√
k) + η,

where η accounts for ICL errors (e.g., due to model capacity or prompt design) [9], and O(1/
√
k)

reflects ICL sample complexity for linear functions [16]. The local classifier error is:∣∣σ(w′Tx+ b′)− σ(wTx+ b)
∣∣ = O(1/

√
k),

assuming Sx captures the decision boundary [34]. Since k = O
(

1
ε2 log

1
δ

)
, we have O(1/

√
k) ≤

ε/2. Thus, with probability at least 1− δ, the total error is:

(ε/2 + η) + ε/2 = ε+ η.

This bound holds uniformly for all x ∈ Rd.

5.6.2 Text Generation with Fixed Context Length

Theorem 5. For a text generation task with fixed output length l, let C = {c1, . . . , cm} be contexts,
and let Mfine define sequence distributions pfine(x1, . . . , xl|ci) over vocabulary V . For each context

c ∈ C, select a subset Sc of size |Sc| = O
(

l log |V |
ε2 log 1

δ

)
, with samples (ci, x

(i)
1 , . . . , x

(i)
l ) where

ci ≈ c and (x
(i)
1 , . . . , x

(i)
l ) ∼ pfine(·|ci). When Mbase is prompted with Sc, it satisfies:

sup
c∈C

∥pbase(x1, . . . , xl|c, Sc)− pfine(x1, . . . , xl|c)∥1 ≤ ε+ η,

with probability at least 1− δ, where η is the ICL approximation error.

Proof. Treat text generation of length l as multi-label classification over |V |l sequences. For each
c ∈ C, select Sc of size k = O

(
l log |V |

ε2 log 1
δ

)
, e.g., similar contexts ci. The error is:

∥pbase(x1, . . . , xl|c, Sc)− pfine(x1, . . . , xl|c)∥1.

This decomposes into:

• ICL approximation error: Bounded by O(1/
√
k) + η, where η accounts for model ca-

pacity and prompt design [9].
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• Similarity error: Bounded by O(1/
√
k) with similarity-based selection [26].

The multi-label problem reduces to |V |l binary decisions, with a union bound requiring:

k = O
(
log |V |l

ε2
log

|V |l

δ

)
= O

(
l log |V |

ε2
log

1

δ

)
.

With k as above, the total error is ε+ η, with probability 1− δ.

5.7 Generalization and Conclusion

Corollary 1. For any SFT capability of Mfine, there exists an inference technique T such that Mbase
approximates that capability within error ε+ η.

Proof. By Lemma 1, ffine is computable. By Lemma 2, Mbase simulates any computable function.
By Lemma 3, TSFT satisfies Equation (1). Theorems 2, 3, 4, and 5 provide minimal dataset sizes.

Proof of Theorem 1. By Corollary 1, the theorem follows.

6 Discussion

6.1 Theoretical Foundations

Our proofs show that SFT optimizes latent knowledge in transformers, aligning with their universal
approximation [15] and Turing completeness [2]. Theorem 1 establishes that ICL approximates
fine-tuned behavior, with error vanishing as resources grow. Theorems 2 and 3 quantify minimal
datasets, while Theorems 4 and 5 address bounded contexts.

For unseen inputs, ICL generalizes effectively under conditions like Lipschitz continuity of task
distributions, where nearby inputs have similar outputs, enabling ICL to approximate SFT with
diverse prompts. However, SFT learns global patterns via parameter updates, while ICL infers
locally from examples, making ICL more sensitive to prompt diversity. For linear classification,
coreset theory ensures robust generalization, but text generation’s reliance on empirical distributions
may weaken for novel inputs unless prompts cover the input space adequately.

6.2 Practical Implications

Our results enable efficient LLM deployment. For machine translation, a small set of sentence pairs
approximates fine-tuned performance, reducing costs. For sentiment classification, a minimal set of
labeled reviews suffices, ideal for resource-constrained settings.

Use Case: Customer Support Classification
Instead of fine-tuning a model with 50,000 examples, prompting a base LLM
with 30 well-chosen examples achieves near-parity in accuracy. This aligns with
the adaptive classifier framework [23], supported by our theoretical results under
idealized conditions.

6.3 Bounded Context Length Results

Theorems 4 and 5 offer practical bounds. For linear classification, O
(

1
ε2 log

1
δ

)
examples (e.g., 500

for ε = 0.1, δ = 0.01) fit modern context windows [19]. For text generation, O
(

l log |V |
ε2 log 1

δ

)
examples leverage similarity-based selection (e.g., RAG [26]), enhancing applicability.

6.4 Prompt Sensitivity

ICL performance depends on prompt design (e.g., example order, phrasing) [12]. Suboptimal
prompts may increase approximation errors in Theorems 1–5, contributing to the ICL error η. Future
work should explore robust prompting strategies [21] to minimize variability and optimize perfor-
mance.
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6.5 Relaxing Theoretical Assumptions

Assumption 1 is unrealistic, as context windows are finite. Theorems 4 and 5 mitigate this, with
RAG [26] and few-shot learning [27] selecting relevant examples. Partial access to D (Assumption
3) is addressed via sampling or clustering [30]. Text generation is less robust to small subsets due to
complexity [33], but strategic selection helps [29]. ICL imperfections, captured by η, may require
larger datasets than predicted (e.g., by a constant factor), as noted in Theorems 2 and 3.

6.6 Limitations

• Finite Context: Smaller context windows challenge prompts, requiring RAG [26].
• Knowledge Gaps: Base models may lack niche task knowledge [10].
• Prompt Sensitivity: Careful prompt design is critical [12].
• Task Specificity: Results focus on text generation and linear classification, with broader

tasks needing exploration.

6.7 Future Directions

Future work could combine minimal fine-tuning with inference-time techniques. Robust prompting
[21], advanced data selection [30], and empirical validation on benchmarks (e.g., GLUE, WikiText)
could reduce dataset sizes and confirm our bounds. Exploring sequence-to-sequence or reasoning
tasks would broaden applicability. Empirical studies on out-of-distribution inputs are needed to
validate ICL’s generalization compared to SFT.

7 Conclusion

This paper demonstrates that base transformers can approximate SFT capabilities using ICL, re-
quiring minimal datasets for text generation and linear classification. Under idealized conditions,
datasets of size O

(
mV
ε2 log m

δ

)
and O

(
d
ε

)
suffice, while with fixed contexts, O

(
l log V

ε2 log 1
δ

)
and

O
(

1
ε2 log

1
δ

)
are sufficient. These results, leveraging transformer Turing completeness [2], enable

efficient LLM deployment via techniques like RAG [26]. Limitations include approximation er-
rors, prompt sensitivity, and task specificity. Future research should focus on empirical validation,
broader tasks, and robust prompting to enhance performance across diverse domains.
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A Additional Details

A.1 Pseudocode for In-Context Learning Prompting

The inference technique TSFT, as described in Lemma 3, enables a base transformer model Mbase to
approximate the output distribution of a fine-tuned model Mfine using in-context learning (ICL). ICL
allows the model to adapt to a specific task by conditioning on a prompt that includes input-output
examples from the fine-tuning dataset D = {(xi, yi)}Ni=1, followed by a query input x. The prompt
is structured to concatenate these examples with a special separator token, typically denoted [SEP],
to clearly delineate each example pair and the query. This structure leverages the transformer’s self-
attention mechanism [1] to infer the task distribution Pfine(y|x), enabling Mbase to produce outputs
that closely mimic those of Mfine.

Below, we provide detailed pseudocode for constructing the ICL prompt, followed by an explanation
of each step and practical considerations. The pseudocode is designed to be general, applicable
to various tasks such as sentiment classification, machine translation, or question answering. To
prevent text overflow in the single-column layout, we use the ‘lstlisting‘ environment with line
wrapping enabled.

Algorithm: In-Context Learning Prompt Construction
Input:
- Dataset D = {(x_i, y_i)}_{i=1}^N, where x_i is the input and y_i is the output
- Query input x
- Separator token [SEP] (e.g., "[SEP]", "<|SEP|>", or a period)

Output: Prompt p for M_base

1. Initialize an empty string p = ""
2. For each pair (x_i, y_i) in D:

a. Append the input x_i to p
b. Append the output y_i to p
c. Append the separator token [SEP] to p

3. Append the query input x to p
4. Return the prompt p

# Example 1: Sentiment Classification
D = [("Great␣movie!", "positive"), ("Terrible␣plot.", "negative")]
x = "Amazing␣soundtrack!"
p = "Great␣movie!␣positive␣[SEP]␣Terrible␣plot.␣negative␣[SEP]␣Amazing␣soundtrack!"

# Example 2: Machine Translation (English to French)
D = [("Hello,␣how␣are␣you?", "Bonjour,␣comment␣vas-tu␣?"),

("I␣love␣to␣travel.", "J’aime␣voyager.")]
x = "Good␣morning!"
p = "Hello,␣how␣are␣you?␣Bonjour,␣comment␣vas-tu␣?␣[SEP]␣I␣love␣to␣travel.␣J’aime␣

voyager.␣[SEP]␣Good␣morning!"
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# Example 3: Question Answering
D = [("What␣is␣the␣capital␣of␣France?", "Paris"),

("What␣is␣the␣capital␣of␣Japan?", "Tokyo")]
x = "What␣is␣the␣capital␣of␣Brazil?"
p = "What␣is␣the␣capital␣of␣France?␣Paris␣[SEP]␣What␣is␣the␣capital␣of␣Japan?␣Tokyo␣

[SEP]␣What␣is␣the␣capital␣of␣Brazil?"

The pseudocode operates as follows:

• Initialization (Step 1): The prompt starts as an empty string to ensure a clean slate for
concatenation. This prevents residual content from interfering with the transformer’s pro-
cessing.

• Iterative Concatenation (Step 2): For each input-output pair (xi, yi) in the dataset D,
the input xi is appended, followed by the output yi, and then the separator token [SEP].
The separator ensures that the transformer’s attention mechanism can distinguish between
different examples and the query, preventing confusion during token processing.

• Query Append (Step 3): The query input x is appended at the end, signaling to the model
that it should predict the corresponding output y.

• Output (Step 4): The final prompt p is returned, ready to be tokenized and fed into Mbase.

When Mbase processes the prompt p, it computes:
Pbase(y|x, p),

approximating Pfine(y|x). The effectiveness of this approximation depends on several factors:

• Separator Token Role: The [SEP] token is critical because transformers use self-attention
to weigh all tokens in the input sequence [1]. Without clear separators, the model might
blend contexts, leading to incorrect predictions. For example, in the sentiment classification
example, [SEP] ensures that "Great movie!" and "positive" are treated as a single example.

• Prompt Design Impact: The order and selection of examples in D affect the ICL error η in
Theorems 1–5. Randomly ordered examples may confuse the model, increasing η, while
examples ordered by similarity to the query (e.g., using cosine similarity in embeddings
[26]) can improve performance. For instance, in the machine translation example, selecting
sentences with similar structures to "Good morning!" enhances translation accuracy.

• Practical Challenges: Large datasets may exceed the model’s context window (e.g., 1M
tokens in GPT-4.1 [19]), requiring subsampling. Additionally, tokenization differences
across models (e.g., BERT vs. GPT) may affect how [SEP] is interpreted, necessitating
model-specific adjustments.

A.2 Detailed Derivation for Theorem 2

Theorem 2 addresses the minimal dataset size required for a base transformer model to approxi-
mate the fine-tuned next-token distribution pfine(xt+1|ci) for a set of contexts C = {c1, . . . , cm}
in text generation tasks. The goal is to construct a dataset D′ such that the empirical distribution,
derived from samples in D′, closely matches pfine within a specified error bound. This derivation is
critical for understanding the sample complexity of ICL in text generation, providing a theoretical
foundation for efficient LLM deployment.

Consider a text generation task where each context ci ∈ C is a sequence of tokens, and pfine(xt+1|ci)
is the probability distribution over the next token xt+1 ∈ V , where V is the vocabulary (e.g., |V | =
50, 000 for a typical LLM). For each context ci, we collect ni samples {x(j)

t+1}
ni
j=1, each drawn

independently from pfine(·|ci). The empirical distribution is defined as:

p̂(v|ci) =
1

ni

ni∑
j=1

I{x(j)
t+1 = v},

where I is the indicator function, and v ∈ V . The objective is to ensure that the total variation
distance between the empirical and fine-tuned distributions is bounded:

∥p̂(·|ci)− pfine(·|ci)∥1 =
∑
v∈V

|p̂(v|ci)− pfine(v|ci)| ≤ ε,
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with probability at least 1− δi.

To derive the required number of samples ni, we apply Hoeffding’s inequality for multinomial
distributions [34]. For a single token v ∈ V , the probability estimate p̂(v|ci) is the average of
ni independent Bernoulli trials, each with success probability pfine(v|ci). Hoeffding’s inequality
states that for a binomial random variable X ∼ Binomial(ni, p), the deviation of the sample mean
p̂ = X/ni from the true mean p is bounded as:

P(|p̂− p| > ε′) ≤ 2 exp
(
−2niε

′2) .
For the total variation distance over |V | tokens, we need |p̂(v|ci) − pfine(v|ci)| ≤ ε/|V | for each v,
so the total error is

∑
v∈V (ε/|V |) = ε. Setting ε′ = ε/|V |, the probability of exceeding this error

for a single token is:

P(|p̂(v|ci)− pfine(v|ci)| > ε/|V |) ≤ 2 exp
(
−2ni(ε/|V |)2

)
.

Using a union bound over all |V | tokens, the probability that any token’s estimate exceeds the error
is:

P

(⋃
v∈V

{|p̂(v|ci)− pfine(v|ci)| > ε/|V |}

)
≤ 2|V | exp

(
−2ni(ε/|V |)2

)
.

To ensure this probability is at most δi, set:

2|V | exp
(
−2ni(ε/|V |)2

)
≤ δi.

Solving for ni:

exp

(
−2ni

ε2

|V |2

)
≤ δi

2|V |
,

−2ni
ε2

|V |2
≤ ln

δi
2|V |

,

ni ≥
|V |2

2ε2
ln

2|V |
δi

= O
(
V

ε2
ln

V

δi

)
.

For m contexts, we control the overall failure probability by setting δi =
δ
m . Substituting:

ln
V

δi
= ln

V m

δ
,

so:

ni = O
(
V

ε2
ln

V m

δ

)
= O

(
V

ε2
log

m

δ

)
,

since ln(V m) = lnV + lnm, and the lnV term is absorbed into the big-O notation for large V .
The total dataset size is:

|D′| = m · ni = O
(
mV

ε2
log

m

δ

)
.

The base model’s ICL introduces an additional error η, which arises from factors such as:

• Model Capacity: A model with fewer parameters may struggle to generalize from limited
examples, increasing η.

• Prompt Structure: Suboptimal example ordering or poorly chosen separators can confuse
the model, as transformers rely on attention patterns [1].

• Distribution Complexity: If pfine is highly skewed (e.g., favoring common tokens like
"the"), fewer samples may suffice, but complex distributions (e.g., rare tokens or long-tail
patterns) increase η.

For example, if V = 50, 000, m = 100, ε = 0.1, and δ = 0.01, then:

ni ≈
50, 000

0.12
log

100

0.01
≈ 5, 000, 000 · log 10, 000 ≈ 46, 000, 000,

|D′| ≈ 100 · 46, 000, 000 = 4.6 · 109.
This large dataset size reflects the worst-case scenario; in practice, techniques like retrieval-
augmented generation (RAG) [26] can reduce ni by selecting contexts similar to the query, as dis-
cussed in Section 6.
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A.3 Practical Considerations for ICL Prompting

Constructing effective ICL prompts in real-world applications involves several practical challenges,
each requiring careful design to minimize the ICL error η. Below, we discuss key considerations in
detail, providing examples and strategies to optimize performance.

• Example Selection: The quality of examples in D significantly affects ICL performance.
Ideally, examples should be representative of the task distribution. For instance, in senti-
ment classification, including a mix of positive, negative, and neutral reviews ensures the
model learns a balanced mapping. Techniques like k-nearest neighbors (k-NN) or cluster-
ing [30] can select examples based on similarity to the query x. For example, in a k-NN
approach, embeddings of inputs are computed using a model like BERT, and the k most
similar inputs to x are selected using cosine similarity:

similarity(xi, x) =
embedding(xi) · embedding(x)

∥embedding(xi)∥∥embedding(x)∥
.

This ensures that the prompt contains relevant context, reducing η.

• Prompt Length: Modern transformers have finite context windows (e.g., 1M tokens in
GPT-4.1 [19]), limiting the number of examples in the prompt. Theorems 4 and 5 provide
bounds for fixed context lengths, but in practice, systems must balance example quantity
and quality. Dynamic example selection, such as RAG [26], retrieves a small subset of
examples that fit within the context window while maximizing relevance. For example,
in a text generation task with a 4,096-token limit, RAG might select 10 examples of 400
tokens each, leaving room for the query.

• Separator Tokens: The choice of separator token affects how the transformer parses the
prompt. Common separators include [SEP] (used in BERT), <|SEP|>, or natural language
delimiters like periods. For example, in a question-answering task, using a period as a
separator:

p =

{ "What is the capital of France? Paris.
What is the capital of Japan? Tokyo.
What is the capital of Brazil?"

may be more intuitive for some models than [SEP]. Experimentation is key, as the wrong
separator can increase η by causing the model to misinterpret example boundaries.

• Order Sensitivity: The order of examples in the prompt influences ICL performance, as
transformers prioritize recent tokens in their attention mechanisms [12]. Placing examples
most similar to the query closer to the end of the prompt can improve predictions. For
instance, in the machine translation example above, placing "Hello, how are you? Bonjour,
comment vas-tu ?" last (since it’s structurally similar to "Good morning!") may enhance
accuracy. Empirical studies show that optimal ordering can reduce η by up to 10% in some
tasks [12].

A.4 Error Analysis for Bounded Context Scenarios

In bounded context settings (Section 5.6), the ICL error η in Theorems 4 and 5 arises from multiple
sources, each impacting the ability of Mbase to approximate Pfine. Below, we analyze these sources
in detail, providing examples and mitigation strategies.

• Model Capacity: The base model’s parameter count and pre-training data determine its
ability to generalize from few examples. A model with insufficient capacity (e.g., a small
transformer with 100M parameters) may fail to capture complex patterns in the prompt,
increasing η. For example, in sentiment classification, a small model might misclassify
nuanced reviews (e.g., "Good but flawed") due to limited understanding, whereas a larger
model like DeepSeek-R1 [3] can better generalize, reducing η.

• Task Complexity: Linear classification (Theorem 4) is simpler, as it involves a low-
dimensional decision boundary, typically requiring fewer examples and resulting in smaller
η. In contrast, text generation (Theorem 5) involves high-dimensional sequence distribu-
tions over |V |l possible sequences, where l is the output length. For instance, generating
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a 10-token sequence with |V | = 50, 000 involves 50, 00010 possibilities, making η larger
unless the prompt captures sufficient diversity.

• Data Distribution: The theoretical bounds assume i.i.d. samples, but text data often ex-
hibits long-range dependencies (e.g., coherent paragraphs in WikiText [33]). This violates
Hoeffding’s inequality assumptions, potentially requiring larger subsets to achieve the same
ε. For example, in a dialogue generation task, if the dataset contains only formal dialogues,
a casual query may increase η due to distribution mismatch.

To quantify η, empirical studies can measure the total variation distance between Pbase and Pfine
on benchmarks like GLUE (for classification tasks) [32] or WikiText (for text generation) [33].
For instance, in sentiment classification on the SST-2 dataset (part of GLUE), experiments with
100 examples might yield η ≈ 0.05, but this increases to η ≈ 0.1 for complex tasks like text
summarization on WikiText due to higher dimensionality.

Mitigation strategies include:

• Using larger models to reduce capacity-related η.

• Selecting diverse examples to cover the task distribution.

• Applying RAG [26] to dynamically select relevant examples, minimizing distribution mis-
match.

A.5 Extensions to Other Tasks

The framework in Theorems 2 and 5 focuses on next-token prediction, but it extends to sequence-
to-sequence tasks like machine translation, text summarization, or question answering. For a task
with input sentence x and output sequence y, the prompt structure is:

p = [x1, y1, [SEP], x2, y2, [SEP], . . . , xN , yN , [SEP], x].

For example, in text summarization:

• Dataset:

D =

{
("A long article about climate change...", "Climate change is a global issue..."),
("A report on AI advancements...", "AI is advancing rapidly...")

}
• Query:

x = "A study on renewable energy..."

• Prompt:
"A long article about climate change... Climate change is a global
issue... [SEP] A report on AI advancements... AI is advancing rapidly...
[SEP] A study on renewable energy..."

The dataset size scales with the output sequence length l, as shown in Theorem 5, because longer out-
puts increase the complexity of the distribution pfine(x1, . . . , xl|ci). Token dependencies in y (e.g.,
grammatical coherence in translation) require the prompt to capture sequential patterns, potentially
increasing η. Future work could derive precise bounds for such tasks, modeling dependencies using
Markov assumptions or autoregressive structures.

Other applicable tasks include:

• Question Answering: Using prompts with question-answer pairs to predict answers for
new questions.

• Dialogue Generation: Providing conversation snippets to generate coherent responses.

Research questions for future work include deriving sample complexity for multi-token outputs and
optimizing prompt design for tasks with complex dependencies.
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A.6 Limitations of Theoretical Bounds

The bounds in Theorems 2–5 rely on idealized assumptions, which may not hold in practice. Below,
we discuss these limitations in detail, with examples and mitigation strategies.

• Non-i.i.d. Data: The bounds assume i.i.d. samples, but text data often exhibits long-
range dependencies. For example, in a storytelling task, a dataset of story beginnings
may have correlated structures (e.g., narrative arcs), violating i.i.d. assumptions. This can
increase the required dataset size, as Hoeffding’s inequality underestimates the variance.
Data augmentation, such as paraphrasing examples, can help mitigate this by increasing
diversity.

• Out-of-Distribution Inputs: If the query x differs significantly from the dataset D, ICL
may fail to generalize, increasing η. For instance, in sentiment classification, if D contains
movie reviews but x is a product review, the model may mispredict due to domain mis-
match. RAG [26] addresses this by retrieving examples similar to x, using embeddings to
measure relevance.

• Computational Constraints: Finite context windows (e.g., 4,096 tokens in many models)
limit the number of examples in Sx. For example, a prompt with 100 examples of 50
tokens each requires 5,000 tokens, exceeding smaller context windows. Efficient example
selection, such as clustering [30], ensures that the most informative examples are included
within the limit.

Empirical validation is crucial to confirm these bounds. Benchmarks like MMLU (for diverse tasks)
and BigBench (for complex reasoning) [32] provide standardized datasets to test ICL performance.
For example, an experiment on MMLU’s science questions could measure η by comparing ICL pre-
dictions to fine-tuned model outputs, using metrics like accuracy or total variation distance. Future
work should design experiments to quantify η across tasks and explore hybrid approaches combining
ICL with minimal fine-tuning.
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