
Efficient Static Checking of Library Updates
Darius Foo

CA Technologies
Singapore

darius.foo@ca.com

Hendy Chua
CA Technologies

Singapore
hendy.chua@ca.com

Jason Yeo
CA Technologies

Singapore
jason.yeo@ca.com

Ang Ming Yi
CA Technologies

Singapore
mingyi.ang@ca.com

Asankhaya Sharma
CA Technologies

Singapore
asankhaya.sharma@ca.com

ABSTRACT
Software engineering practices have evolved to the point where
a developer writing a new application today doesn’t start from
scratch, but reuses a number of open source libraries and com-
ponents. These third-party libraries evolve independently of the
applications in which they are used, and may not maintain stable
interfaces as bugs and vulnerabilities in them are fixed. This in turn
causes API incompatibilities in downstream applications which
must be manually resolved. Oversight here may manifest in many
ways, from test failures to crashes at runtime. To address this prob-
lem, we present a static analysis for automatically and efficiently
checking if a library upgrade introduces an API incompatibility.

Our analysis does not rely on reported version information from
library developers, and instead computes the actual differences be-
tween methods in libraries across different versions. The analysis
is scalable, enabling real-time diff queries involving arbitrary pairs
of library versions. It supports a vulnerability remediation product
which suggests library upgrades automatically and is lightweight
enough to be part of a continuous integration/delivery (CI/CD)
pipeline. To evaluate the effectiveness of our approach, we deter-
mine semantic versioning adherence of a corpus of open source
libraries taken from Maven Central, PyPI, and RubyGems. We find
that on average, 26% of library versions are in violation of semantic
versioning. We also analyze a collection of popular open source
projects from GitHub to determine if we can automatically update
libraries in them without causing API incompatibilities. Our results
indicate that we can suggest upgrades automatically for 10% of the
libraries.

CCS CONCEPTS
• Software and its engineering → Software evolution;Main-
taining software; Automated static analysis;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5573-5/18/11. . . $15.00
https://doi.org/10.1145/3236024.3275535

KEYWORDS
automated remediation, library upgrades, call graphs, api diffs, se-
mantic versioning

ACM Reference Format:
Darius Foo, Hendy Chua, Jason Yeo, Ang Ming Yi, and Asankhaya Sharma.
2018. Efficient Static Checking of Library Updates. In Proceedings of the
26th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE ’18), November 4–
9, 2018, Lake Buena Vista, FL, USA. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3236024.3275535

1 INTRODUCTION
The use of open-source and third-party components has increased
in the development of software. Centralized package distribution
systems like Maven Central for Java, RubyGems for Ruby, and PyPI
for Python make the task of downloading and using these compo-
nents very convenient for the average developer. However, because
third-party libraries evolve independently of the applications that
use them, bugs and vulnerabilities in third-party components are
hard to trace and fix in downstream applications. Even when vul-
nerabilities can be fixed by updating to a newer version of a library,
there can be API incompatibilities with downstream applications
which must be manually resolved. Oversight here may manifest in
many ways, from test failures to crashes at runtime.

One solution is semantic versioning1 (SemVer), a structured ver-
sioning scheme which relies on adherence to conventions. Library
authors number versions with triplets of the form MAJOR.MINOR.
PATCH, and release a major version when introducing a backward-
incompatible API change to indicate this to downstream applica-
tions. As this versioning scheme is structured, version numbers
can be operated on by tools – an example is Bundler’s ∼> operator,
which only upgrades packages across patch version boundaries.
However, the compliance of source code to the scheme must be
manually enforced, and it has been criticized as inadequately able
to capture the nuances of change in software development [1].

To offer a better solution, we present a static analysis for auto-
matically and efficiently checking if a library upgrade introduces an
API compatibility (colloquially termed a breaking change). We do
not rely on a surrogate source of truth such as semantic versioning,
and instead statically compute the differences between source-level
elements of the library (in particular, methods and functions), also

1https://semver.org/

https://doi.org/10.1145/3236024.3275535
https://doi.org/10.1145/3236024.3275535
https://semver.org/

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA D. Foo et al.

taking control flow into account. Our analysis is scalable, enabling
real-time diff queries involving arbitrary pairs of library versions.

Our solution forms the basis for a new feature in the CA Ve-
racode Software Composition Analysis product which suggests
library upgrades automatically and is lightweight enough to be part
of a continuous integration/delivery (CI/CD) pipeline [17]. Left to
their own devices, developers do not update dependencies [11], as it
is seen as “extra effort and added responsibility”, and the downsides
of failing to do so are not as visible. We believe that the ability to
have upgrades automatically carried out – but not carelessly, with
guarantees about their effects – would go a long way towards elimi-
nating easily-preventable classes of mistakes and vulnerabilities. A
recent study on automated pull requests [14] reached the same con-
clusions, finding that automation caused a 60% increase in upgrades,
and that notification fatigue and concerns about breaking changes
became the bottleneck thereafter. Our analysis directly address the
problem of breaking changes in that we can statically show the
user which library upgrades are possible without introducing API
incompatibilities in their application.

To evaluate the effectiveness of our approach, we determine
semantic versioning adherence of a corpus of open source libraries
collected from our customer scan data. These libraries cover three
different languages from their respective central repositories – Java
(Maven Central), Python (PyPI), and Ruby (RubyGems). We find
that on average, 26% of library versions are in violation of semantic
versioning, i.e. they break backward compatibility without a major
version update. We also analyze a sample of popular open source
GitHub projects to determine the prevalence of API incompatibil-
ities in practice. We find that, using our static analysis, we can
automatically suggest upgrades for 10% of the libraries in these
open source projects.

Our main technical contributions are:
• A static analysis that detects breaking changes in libraries
accurately, allowing upgrades to be suggested.
• Anovel method of composing diffs which enables diff queries
on arbitrary library version pairs to be answered in real time,
at the cost of linear space (instead of quadratic).
• A case study of open source libraries published on Maven
Central, PyPI, and RubyGems to assess adherence to seman-
tic versioning. On average, 72% of libraries violate SemVer in
some version, and 26% of all library versions violate SemVer.

2 RELATEDWORK
2.1 Automated library upgrades
Prior work suggesting automated upgrades ranges from following
simple rules, such as always updating all dependencies within their
constraints and relying on test suites to check for breakage23, to
sophisticated attempts to actually patch APIs or dependent code
[4, 8, 21] by inferring new API usage from examples. In contrast,
our approach statically computes diffs to check for breakage and
automatically update libraries that do not cause incompatiblities.

Other static analysis approaches for analyzing library upgrades
make use of dependency analysis [19], symbolic execution [3] and
JML contracts [23] to model the semantics of changes.
2https://www.deppbot.com/
3https://greenkeeper.io/

2.2 Structured diffs
Textual, subsequence-based diffs, such as those produced by the
Unix diff tool, are widely used for visually comparing program
fragments and sharing patches. They can be computed quickly, but
do not take into account programming language syntax, making
them unsuitable for applications such as automated program repair.

Syntactic diffs utilize syntax to ignore textual details. They may
be computed at multiple levels of abstraction: syntactic API diffs
include only program elements intended for external use, such as
classes and methods. Examples are the documents published by
Apple4 and Google5 to summarize differences between versions of
their mobile APIs. UMLDiff [20], GumTree [6], and Wuu Yang [22]
are implementations of syntactic diffs which compare the syntax
trees of source code instead of only interfaces.

Diffs may also reflect semantic information, such as control flow
and state [9]. Semantic Diff [10] computes differences in the ob-
servable input-output behaviour of procedures by reasoning about
dependencies between variables. SymDiff [12] checks for partial
equivalence between programs – terminating executions with iden-
tical inputs and outputs. Mezzetti et al. [13] use a dynamic analysis
based on the test suites of dependent libraries to infer library in-
terfaces for comparison. Our approach sits in this category, as we
compute syntactic API diffs that are enriched with control flow
information, applying diff composition thereafter to compare arbi-
trary versions of a given library.

2.3 SemVer compliance
We conduct a case study of three open source ecosystems: Maven
Central, RubyGems, and PyPI to evaluate the adherence of library
developers to SemVer scheme. Prior work in this area by Raemaek-
ers et al. [16] goes into much greater detail, but only for Maven
Central. Other related studies evaluate breaking changes in open
source projects on npm [13] and CRAN [2].

3 APPROACH
3.1 Basic diffs
Consider the problem of computing diffs for library APIs. We begin
by computing a minimal, language-agnostic representation of a
library’s API, which we term a signature. The representation we
use is a set of tuples of an identifier and a hash.

The identifiers give canonical names to the program elements
in libraries that we wish to compare. For example, the methods of
an object-oriented API, are represented as a tuple of module, class,
method names and an argument descriptor.

The hashes summarize the content of the program element, al-
lowing us to quickly determine if it has changed – for example, we
hash the bytecode of Java methods, eliding syntactic features such
as variable names, but including literals and instructions that affect
control flow.

Given the signatures of two libraries, we use Myers’ algorithm
[15] to compute a diff : an edit script relating them, with the slight
modification that we key elements by identifier instead of position

4https://developer.apple.com/library/archive/releasenotes/General/iOS10APIDiffs/
index.html
5https://developer.android.com/sdk/apidiff/p-dp1/changes

https://www.deppbot.com/
https://greenkeeper.io/
https://developer.apple.com/library/archive/releasenotes/General/iOS10APIDiffs/index.html
https://developer.apple.com/library/archive/releasenotes/General/iOS10APIDiffs/index.html
https://developer.android.com/sdk/api_diff/p-dp1/changes

Efficient Static Checking of Library Updates ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

class A {

public int a() {

return 2;

}

public int b(int x) {

return x + 3;

}

}

Figure 1: Example: v1

class A {

// Method a deleted

public int b(int x) {

return x + 2; // Modified

}

public int c() { // Inserted

return 1;

}

}

Figure 2: Example: v2

method operation
A.a()I DELETE
A.b(I)I CHANGE
A.c()I INSERT

Table 1: Example: computed diff from v1 to v2

in a sequence. This gives us a set of tuples of identifier and diff oper-
ation, where the latter is one of the symbols INSERT, DELETE, or
CHANGE. CHANGEs are opaque as program content is summa-
rized using a hash. In particular, we do not perform a more granular
syntax-tree-based diff, like GumTree [6] does.

Since diffs are meant to relate the public APIs of libraries, as a
post-processing step we exclude program elements which we know
not to be publicly accessible. In Java, this information is explicit;
for dynamically-typed languages such as Python and Ruby, we rely
on heuristics (based on variable names and statically-known calls
to methods that modify access) to exclude such elements.

As a running example, consider two versions of a Java class
(Figures 1 and 2). The computed set of diff operations between
these two versions is shown in Table 1.

3.2 Transitively-changed methods
Hashing methods gives us an approximate way to detect changes,
but processing methods in isolation (i.e. ignoring inter-procedural
control flow) causes transitive changes to methods to be missed.
For example, if public methodm1 calls private methodm2 and only
m2 has changed, we would miss the fact that m1’s semantics is
now different if we exclude m2 due to its private access. This is
illustrated in Figure 3.

To solve this problem, we first build call graphs of library pro-
grams – our call graph construction algorithm uses standard tech-
niques of CHA [5] and VTA [18] and is deployed as part of the CA
Veracode Software Composition Analysis product. We then use the
call graphs to improve diffs: given a methodm whose identifier is
present in a diff, we also include all public methods that callm.m

class A { // Before

public int m1(int x) {

return m2(x);

}

private int m2(int y) {

return y + 1;

}

}

class A { // After

public int m1(int x) {

// Syntactically unchanged, but

// returns a different result and

// so should have a different hash

return m2(x);

}

private int m2(int y) {

return y + 2; // Changed

}

}

Figure 3: Example: transitive changes

method operation
A.a()I INSERT
A.b(I)I CHANGE
A.c()I DELETE

Table 2: Example: computed diff from v2 to v3

may or may not be later dropped from the diff, depending on if it is
public, but we will no longer exclude its public callers.

3.3 Fast queries
Call graph construction is thus necessary for the accuracy of diffs,
but imposes nontrivial overhead. For instance, the largest libraries
on Maven Central may take hours to completely analyze. This
makes it infeasible to compute accurate diffs on demand, say as
part of an automated library upgrade step in a CI/CD pipeline. In
this section, we describe a means of precomputing information that
enables real-time diff queries on arbitrary pairs of library versions.

A naive approach would be to precompute and store every pair
of diffs, consuming space that grows quadratically with the number
of versions. This is unlikely to scale since real-world libraries have
hundreds of versions, and in general libraries may have up to one
version per commit6. Doing this for a commonly-accessed subset
of libraries and a window of recent versions is feasible, but shifts
the problem to determining this subset, and of course only works
for versions within the subset.

Our approach is to precompute diffs between only consecutive
pairs of library versions, then compose individual diffs to derive diffs
for arbitrary version ranges. This strikes a good balance, requiring
a linear amount of space and running quickly enough in practice.

3.4 Diff composition
We begin with a concrete example of diff composition. Consider
the diffs given in Table 1 and Table 2, assuming they are computed

6https://mvnrepository.com/artifact/com.lihaoyi/ammonite-terminal

https://mvnrepository.com/artifact/com.lihaoyi/ammonite-terminal

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA D. Foo et al.

method operation
A.a()I CHANGE
A.b(I)I CHANGE
A.c()I MISSING

Table 3: Example: composed diff from v1 to v3

data State = Absent | Present

data Diff : State -> State -> Type where

Insert : Diff Absent Present

Change : Diff Present Present

Delete : Diff Present Absent

Unchanged : Diff Present Present

Missing : Diff Absent Absent

Figure 4: Modeling diffs as a type

from consecutive library versions v1 and v2, and v2 and v3, respec-
tively. Method a was DELETEd, then reINSERTed: because we no
longer have access to its content, we must assume conservatively
that the reinsertion is different, and that it has CHANGEd overall.
Method b was CHANGEd in both diffs: we can say no more than
that it is CHANGEd as well. Finally, method c was INSERTed,
then DELETEd: it is nowMISSING (an operation we have not yet
defined), and we must treat it as such in any further composition
of the resulting diff. The final, composed diff is given in Table 3.
We see also that it is impossible for a diff between v3 to v4 to have
that method c is DELETEd (given that it was never present in v3
to begin with), suggesting that composition is partial.

We now formalize diff composition. As defined earlier, a diff is a
set of tuples of a method identifier and some diff operation which
describes how the method changed across versions.

There are 5 primitive diff operations –we saw INSERT,DELETE,
andCHANGE earlier, and introduce twomore for explicitness:UN-
CHANGED, whichmeans that amethod appears unchanged across
versions, and MISSING, for when it is missing altogether. The lat-
ter two operatons are never produced when diffs are computed, but
we include (and distinguish) them because certain compositions
of operations are absurd, e.g. INSERT followed by INSERT. The
validity of an operation relating two methods across versions de-
pends on the methods’ states: e.g. a method must be absent for an
INSERTion of it to make sense, and it must be present after. UN-
CHANGED andMISSING relate methods with different states.

We may represent the diff operations collectively as a type in-
dexed by the states of the method they relate before and after they
are applied. Each diff operation becomes an inhabitant of this type.
This is shown in Figure 4.

The diff composition function must then have the following type:

compose : Diff a b -> Diff b c -> Diff a c

In this way, we partially reduce the problem of checking the va-
lidity of a particular composition to determining how the operands
of compose constrain its result.

compose is uniquely defined onmany inputs. For example, compose
Delete Missing must be Delete; no other operation is well-typed.
The fact that compositon is partial is reflected in the fact that illegal
compositions such as compose Insert Insert are not well-typed.

I C D U M
I ⊥ I M I ⊥

C ⊥ C D C ⊥

D C ⊥ ⊥ ⊥ D
U ⊥ C D U ⊥

M I ⊥ ⊥ ⊥ M
Table 4: Diff composition function

I C D UM
I ⊥ I UM I
C ⊥ C D C
D C ⊥ ⊥ D
UM I C D UM

Table 5: Conflated diff composition function

The only ambiguity arises when selecting between CHANGE
and UNCHANGED; as we do not model hashes in our types, they
have the same type Diff Present Present (only methods which are
present throughout may be said to have changed or remained un-
changed). We resolve the ambiguity manually, choosing CHANGE
where possible as it is more conservative than UNCHANGED.

The final composition function is given in Table 4. Rows are the
first argument and columns are the second. We represent ill-typed
combinations with the ⊥ symbol. Composition is not symmetric:

compose Insert Delete = Missing

compose Delete Insert = Change

However, it is associative (which can proven by exhaustion).

3.5 Conflating operations
It turns out that we can conflate UNCHANGED and MISSING
into a single operation, UNKNOWN (abbreviated UM), since they
occur in mutually exclusive scenarios. This is useful in practice. Say
we diff a list of 100 items against a list of 101; we would want to
store a single INSERT instead of also storing 100UNCHANGEDs.
Defaulting to UNKNOWN when an item is absent allows us to
store the information concisely. This doesn’t change composition
semantics (proven by exhaustion).

Implementing this change gives us the new function, in Table 5.
The time complexity of diff composition is linear in the number of
library methods and versions, like diff computation itself.

3.6 Suggesting upgrades
We then use diffs to suggest upgrades and determine if they induce
breaking changes. In the CAVeracode Software Composition Analy-
sis product, we identify vulnerable versions of a library and suggest
upgrades to fix those versions. Given a library at versionv1 and the
set of versions vs of the same library, we choose another version
from vs which succeeds v1 and does not possess vulnerabilities7
associated with v1. This may be done using various heuristics and
may be further optimized; we currently choose the closest version
to minimize diff size and induce the fewest breaking changes.

Given the library diff and the pair of library versions involved
in the upgrade vf rom and vto , we restrict it to only DELETE and
CHANGE operations; this is exactly the set of methods in vf rom
7Vulnerability data is assumed to come from an external source, such as NVD or a
proprietary vulnerability database [24]

Efficient Static Checking of Library Updates ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

Figure 5: Generated patch to pom.xml

Type Library From To Breaking

MAVEN org.apache.struts
struts2-core 2.5.12 2.5.13 No

MAVEN net.bull.javamelody
javamelody-core 1.59.0 1.62.0 Possibly

Table 6: Report in generated pull request

whose callers will be affected by the upgrade. We then check the
call graphs we compute from user code to see if they are calling
any affected methods; if so, we consider the upgrade to be a break-
ing change. We use SGL, a domain-specific language for program
analysis, to perform the call graph traversal. The specifics of SGL
are described in [7] and are out of scope for this work.

The next step is to generate a patch, rendered in Figure 5 as a
GitHub pull request. Since we patch files typically maintained by
hand, we take care to minimize changes by parsing the files, then
using position information to make granular edits. An example of
what we include in generated pull requests is shown in Table 6: we
specify the to- and from-versions of the upgrade and say whether
or not we could statically determine that the change was breaking.

4 EXPERIMENTS AND EVALUATION
4.1 SemVer compliance
We analyzed 5106 libraries (based on our customer scan data) across
three popular open source library repositories: Maven Central (3273
libraries), RubyGems (1332), and PyPI (501), computing diffs for
114,199 library versions in total.

Our results indicate that on average, 72% of libraries violate
SemVer in some version: the actual numbers are 80% (RubyGems),
67% (Maven Central), and 82% (PyPI). In addition, on average, 26%
of all library versions are in violation, actual numbers being 31%
(RubyGems), 24% (Maven Central), and 31% (PyPI). The figure for
Maven Central agrees with prior work [16], which puts the number
of violating versions between 28.4% and 23.7% over time. The overall
distribution of violations is shown in Figure 6, as a plot of the
number of libraries (y-axis) that have a given percentage of versions
within them in violation (x-axis).

As a concrete example, consider the popular requests library,
between versions 2.3.0 and 2.4.0 – aminor version bump, over which
breaking changes are not expected – requests.structures.
IteratorProxywas deleted8. For this not to be considered a SemVer
violation, IteratorProxy must not be part of requests’ pubilc
API, however it is difficult to determine this using a static analy-
sis (as nothing prevents one from importing requests.structures).

8https://github.com/requests/requests/compare/v2.3.0...v2.4.0#diff-
2bdbe7e19f5215e8c319573cdd114f01L16

Figure 6: Semantic versioning compliance

Java Python Ruby
Projects 274 422 503
Direct dependencies 4777 2572 4096
Direct vulnerable
dependencies 246 110 250

Suggested upgrades 150 64 123
Non-breaking 28 (19%) 0 (0%) 7 (6%)

Table 7: API incompatibilities on GitHub

Consulting human-readable sources like commit messages and the
change log also yielded nothing in this case, so we assume it to be
a breaking change. The fact that such mistakes may slip through is
why a manually-enforced convention like SemVer is insufficient to
ensure reliable upgrades.

4.2 API incompatibilities in open source
projects

We analyzed a collection of popular open source projects from
GitHub to determine the impact of API incompatibilities on sug-
gesting upgrades automatically. A dynamic dependency analysis
was first performed to identify libraries included: e.g. as shown in
Table 7, in Java we identified 4777 unique direct dependencies, of
which 246 had known vulnerabilities in our database. We were then
able to suggest upgrades for 150 of those; 36 had no safe versions
to upgrade to, and 60 failed due to the errors in an earlier part
of the pipeline (such as malformed class files or the inability to
successfully compute a call graph). Of the 150 upgrades, we are
able to statically show that 28 (18.7%) are non-breaking.

Across languages, 10% of upgrades are non-breaking on average.
We believe the notably-lower numbers for Python and Ruby are
due to the difficulties of static call graph construction for those lan-
guages and the false positives that result from over-approximation.

https://github.com/requests/requests/compare/v2.3.0...v2.4.0#diff-2bdbe7e19f5215e8c319573cdd114f01L16
https://github.com/requests/requests/compare/v2.3.0...v2.4.0#diff-2bdbe7e19f5215e8c319573cdd114f01L16

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA D. Foo et al.

5 DISCUSSION
5.1 Threats to validity
To handle large real-world libraries as part of a CI/CD product,
our static analysis techniques rely on a number of approximations
which may introduce unsoundness. They are listed in this section.

Limitations of static analysis. A call graph computed using CHA/VTA
over-approximates the dynamic control flow of a program, causing
false positives: call graph edges that are never traversed at runtime.

Separately, bytecode hashing is used to determine if methods
have changed. This results in false positives if methods differ syn-
tactically, but are semantically unchanged, e.g. due to refactoring
changes, or because different (versions of) compilers may emit
different instruction sequences for the same piece of source code.

Unsupported language features. False negatives also occur due
to lack of support for dynamic language features such as reflection
and classpath introspection. These manifest as missing call graph
edges, causing potentially-breaking changes to be missed.

Computing diffs in isolation. Call graphs and diffs are computed
for single libraries at a time. If a version of a library va depends on
vb , and the version that comes after va (denoted v ′a) depends on
v ′b , we will fail to pick up potential breaking changes due to calls to
methods which now have different semantics due to the transitive
upgrade from vb to v ′b .

Insufficient semantic information. There is also the issue of in-
sufficient semantic information being statically present in source
code. An example is the access levels of methods in Python, which
are mostly implicit – while the runtime does treat underscore-
prefixed names specially in some contexts, it is mostly a convention.
Whether or not an API is meant to be internal is not always de-
ducible from source code, and so we necessarily over-approximate,
employ heuristics, and guess when analyzing such programs.

6 CONCLUSION AND FUTUREWORK
We presented a static analysis for computing diffs between libraries
and determining if an upgrade introduces an API incompatibility.
It is scalable, supporting real-time diff queries involving arbitrary
pairs of library versions. This makes it lightweight enough to be
part of a continuous integration/delivery (CI/CD) pipeline, enabling
a vulnerability remediation product that is able to automatically
upgrade libraries in 10% of cases. We also evaluated adherence
to the semantic versioning scheme on Maven Central, PyPI, and
RubyGems, finding that 26% of library versions are in violation.

For future work, we aim to improve accuracy and lower false
positive rates. A dynamic analysis could be combinedwith static call
graphs to improve their accuracy, and usability and false negative
rates could both be improved by accounting for more language
features. Another direction is to make results more actionable by
generating test cases which exercise code paths which we know to
be involved in a breaking upgrade, or optimizing the selection of
upgrade versions tominimize themanual work users must perform.

REFERENCES
[1] 2014. Why Semantic Versioning Isn’t. https://gist.github.com/jashkenas/

cbd2b088e20279ae2c8e

[2] Christopher Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung. 2016.
How to Break an API: Cost Negotiation and Community Values in Three Soft-
ware Ecosystems. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE 2016). ACM, New York,
NY, USA, 109–120. https://doi.org/10.1145/2950290.2950325

[3] Marcel Böhme, Abhik Roychoudhury, and BrunoC. d. S. Oliveira. 2013. Regression
Testing of Evolving Programs. Advances in Computers 89 (2013), 53–88.

[4] Barthelemy Dagenais and Martin P. Robillard. 2009. SemDiff: Analysis and
Recommendation Support for API Evolution. In Proceedings of the 31st Interna-
tional Conference on Software Engineering (ICSE ’09). IEEE Computer Society,
Washington, DC, USA, 599–602. https://doi.org/10.1109/ICSE.2009.5070565

[5] Jeffrey Dean, David Grove, and Craig Chambers. 1995. Optimization of object-
oriented programs using static class hierarchy analysis. In European Conference
on Object-Oriented Programming. Springer, 77–101.

[6] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin
Monperrus. 2014. Fine-grained and accurate source code differencing. In Pro-
ceedings of the 29th ACM/IEEE international conference on Automated software
engineering. ACM, 313–324.

[7] Darius Foo, Jason Yeo, Ming Yi Ang, and Asankhaya Sharma. 2018. SGL: A
domain-specific language for large-scale analysis of open-source code. IEEE
Cybersecurity Development, SecDev (2018).

[8] Johannes Henkel and Amer Diwan. 2005. CatchUp!: Capturing and Replaying
Refactorings to Support API Evolution. In Proceedings of the 27th International
Conference on Software Engineering (ICSE ’05). ACM, New York, NY, USA, 274–283.
https://doi.org/10.1145/1062455.1062512

[9] Susan Horwitz. 1990. Identifying the Semantic and Textual Differences Between
Two Versions of a Program. In Proceedings of the ACM SIGPLAN 1990 Conference
on Programming Language Design and Implementation (PLDI ’90). ACM, New
York, NY, USA, 234–245. https://doi.org/10.1145/93542.93574

[10] Daniel Jackson, David A Ladd, et al. 1994. Semantic Diff: A Tool for Summarizing
the Effects of Modifications.. In ICSM, Vol. 94. 243–252.

[11] Raula Gaikovina Kula, Daniel M German, Ali Ouni, Takashi Ishio, and Katsuro
Inoue. [n. d.]. Do developers update their library dependencies? Empirical
Software Engineering ([n. d.]), 1–34.

[12] Shuvendu K Lahiri, Chris Hawblitzel, Ming Kawaguchi, and Henrique Rebêlo.
2012. Symdiff: A language-agnostic semantic diff tool for imperative programs.
In International Conference on Computer Aided Verification. Springer, 712–717.

[13] Gianluca Mezzetti, Anders Møller, and Martin Toldam Torp. [n. d.]. Type Regres-
sion Testing to Detect Breaking Changes in Node.js Libraries. ([n. d.]).

[14] Samim Mirhosseini and Chris Parnin. 2017. Can automated pull requests encour-
age software developers to upgrade out-of-date dependencies?. In Proceedings of
the 32nd IEEE/ACM International Conference on Automated Software Engineering.
IEEE Press, 84–94.

[15] Eugene W Myers. 1986. An O(ND) difference algorithm and its variations. Algo-
rithmica 1, 1-4 (1986), 251–266.

[16] S. Raemaekers, A. van Deursen, and J. Visser. 2014. Semantic Versioning versus
Breaking Changes: A Study of the Maven Repository. In 2014 IEEE 14th Interna-
tional Working Conference on Source Code Analysis and Manipulation. 215–224.
https://doi.org/10.1109/SCAM.2014.30

[17] Mojtaba Shahin, Muhammad Ali Babar, and Liming Zhu. 2017. Continuous
integration, delivery and deployment: a systematic review on approaches, tools,
challenges and practices. IEEE Access 5 (2017), 3909–3943.

[18] Vijay Sundarespan, Laurie Hendren, Chrislain Razafimahefa, Raja Vallée-Rai,
Patrick Lam, Etienne Gagnon, and Charles Godin. 2000. Practical virtual method
call resolution for Java. Vol. 35. ACM.

[19] Mohsen Vakilian, Raluca Sauciuc, J David Morgenthaler, and Vahab Mirrokni.
2015. Automated decomposition of build targets. In Software Engineering (ICSE),
2015 IEEE/ACM 37th IEEE International Conference on, Vol. 1. IEEE, 123–133.

[20] Zhenchang Xing and Eleni Stroulia. 2005. UMLDiff: An Algorithm for Object-
oriented Design Differencing. In Proceedings of the 20th IEEE/ACM International
Conference on Automated Software Engineering (ASE ’05). ACM, New York, NY,
USA, 54–65. https://doi.org/10.1145/1101908.1101919

[21] Z. Xing and E. Stroulia. 2007. API-Evolution Support with Diff-CatchUp. IEEE
Transactions on Software Engineering 33, 12 (Dec 2007), 818–836. https://doi.org/
10.1109/TSE.2007.70747

[22] Wuu Yang. 1991. Identifying syntactic differences between two programs. Soft-
ware: Practice and Experience 21, 7 (1991), 739–755.

[23] Jooyong Yi, Dawei Qi, Shin Hwei Tan, and Abhik Roychoudhury. 2013. Expressing
and checking intended changes via software change contracts. In Proceedings of
the 2013 International Symposium on Software Testing and Analysis. ACM, 1–11.

[24] Yaqin Zhou and Asankhaya Sharma. 2017. Automated identification of security
issues from commit messages and bug reports. In Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering. ACM, 914–919.

https://gist.github.com/jashkenas/cbd2b088e20279ae2c8e
https://gist.github.com/jashkenas/cbd2b088e20279ae2c8e
https://doi.org/10.1145/2950290.2950325
https://doi.org/10.1109/ICSE.2009.5070565
https://doi.org/10.1145/1062455.1062512
https://doi.org/10.1145/93542.93574
https://doi.org/10.1109/SCAM.2014.30
https://doi.org/10.1145/1101908.1101919
https://doi.org/10.1109/TSE.2007.70747
https://doi.org/10.1109/TSE.2007.70747

	Abstract
	1 Introduction
	2 Related Work
	2.1 Automated library upgrades
	2.2 Structured diffs
	2.3 SemVer compliance

	3 Approach
	3.1 Basic diffs
	3.2 Transitively-changed methods
	3.3 Fast queries
	3.4 Diff composition
	3.5 Conflating operations
	3.6 Suggesting upgrades

	4 Experiments and Evaluation
	4.1 SemVer compliance
	4.2 API incompatibilities in open source projects

	5 Discussion
	5.1 Threats to validity

	6 Conclusion and Future Work
	References

