
Detecting Intrusions in Databases

Asankhaya Sharma

Asankhaya@yahoo.com

 NIT Warangal

Abstract

 In this paper we propose a new architecture for database intrusion detection.

Recently there has been considerable interest in the design of intrusion detection system

for databases. Most of the current systems take a laid back approach and concentrate

more on containment and recovery once the database has been infected by malicious

transaction. We propose a more proactive solution (DIDAR); DIDAR aims to detect the

intrusions as soon as possible with support for damage containment and auto recovery as

well. DIDAR provides intrusion tolerance by working in two phases – learning and

detection. During the learning phase based on the currently executing transactions we

build a model of the legitimate queries for each user and later use that model to detect

the malicious transactions. DIDAR guarantees quality of information assurance at 4

different levels for each user. We have positive results based on our prototype and

preliminary testing on synthetic database. With almost no load to the database DIDAR

achieves high detection rates, quick damage containment and full recovery.

Introduction

 Intrusion detection is one of the prime areas of research currently in databases.

With the advent of the internet and the World Wide Web, more and more work is now

done online. All the necessary information from shopping orders to banking transactions

is stored in databases. Protecting the information in such case is of utmost importance.

Even with proper access control features there are several modes of attack possible like

the SQL injection. Although proper coding practices can prevent most attacks there are

still number of legacy programs that have to be protected. Moreover even in case of an

attack the system should still be able to degrade gracefully. The most comprehensive

system that addresses most of these problems is the Intrusion Tolerant Database (ITDB)

[1]. The intrusion tolerant database system can operate through attacks in such a way that

the system can continue delivering essential services in the face of attacks. With a focus

on attacks by malicious transactions, it can detect intrusions, and locate and repair the

damage caused by the intrusions [2].

 There has been considerable amount of work done in detecting intrusions in

databases. The use of data mining has been found useful in detection based on mining

user query frequent item sets [3, 4]. Another approach is to fingerprint the transactions

and then build a classifier system to differentiate between malicious and benign

transactions [5]. The way the DIDAFIT [5] system fingerprints the queries is by building

regular expression based models of the legitimate queries but we take an entirely

different approach by using relations, attributes and conditionals of the query to construct

a fingerprint. All these system involve a learning mechanism for model building in some

form and hence have false positives. Our approach here tries to combine the benefits of

the data mining approach with the fingerprinting of transactions along with a feed back

mechanism to give less false positives.

DIDAR Framework

 The basic framework can be divided in two phases – learning and detection.

During the learning phase we build a model of legitimate queries and use that model to

identify malicious transactions in the detection phase. We give the detailed algorithms of

each of the phase below.

1. Learning Phase

 During this phase the model of legitimate queries is built using supervised

learning. We assume every transaction currently executing in the database to be

benign. Any SQL query can be written as the following general form with three

clauses.

SELECT Attributes

FROM Relations/Tables

WHERE Conditions

For every SQL query we associate a quadruple <t,R,A,C> which represents the

fingerprint of the query [6].

Where,

’t’ stands for the type of query (SELECT, UPDATE or DELETE)

’R’ stands for the number of relations in the query

’A’ stands for the number of Attributes in the query

’C’ stands for the number of Conditions in the query

Each such quadruple represents the whole query. Now for each user in the

database we create a user access graph G (V, E) such that, V is the set of

quadruples and E represent the access pattern of the queries in the database. While

learning we read all the queries executing in the database, fingerprint them and

convert them into a quadruple and add a node in the user access graph. Once the

learning is finished the user access graph looks like something below.

Once the learning is over each user has a user access graph where each node in

the graph represents the fingerprint of the transaction. Based on this information

we proceed to detection phase.

2. Detection Phase

 Detection is fairly simple, each transaction that is currently executing is

fingerprinted and converted into a quadruple. We traverse the user access graph

and look for a matching node (say u) with same quadruple. If we cannot find such

a node the transaction is labeled malicious or else we proceed again with the next

transaction. Since we need to follow only the edges of the user access graph, for

the next transaction we simply check all the nodes ‘v’ such that there is an edge

between ‘u’ and ‘v’. This way we can identify the malicious transactions.

 Since it is not uncommon to have false positives we provide a feedback

mechanism, if while in the detection phase some legitimate transaction is

identified as malicious the user can give feedback and based on that we insert a

new node in the user access graph with the quadruple representing the fingerprint

of the current transaction. This will be clear from the following figure.

<0,2,3,1>

<0,2,1,1>

<2,1,2,3>

<0,2,3,2>

<0,2,4,3>

<1,3,1,3>

<1,2,3,2>

<2,1,2,3>

New

Node

<0,2,3,1>

<0,2,1,1>

<2,1,2,3> <0,2,3,2>
<0,2,4,3>

<1,3,1,3>

<1,2,3,2>

Once it is ensured the transaction is malicious we proceed according to the quality

of information assurance (QoIA) [2] attached to the user.

Quality of Information Assurance

 Different database users will have different needs and expect different levels of

information assurance. So while protecting the database it doesn’t make sense to provide

one single level of security over the entire database. We propose four different levels of

security which ensure quality of information assurance.

1. Low

 While the database is in a low level of security we only identify the

intrusions with the feedback mechanism. There is no damage containment or

recovery. This allows user to formulate a proper security perimeter with all

possible transactions listed in the user access graph while also been aware of the

security.

2. Medium

 In the medium level we provide the low level of security plus damage

containment. After the detection we enter a damage containment phase.

Damage Containment Phase

 During this phase we take a lock manually on all the tables accessed in the

malicious transaction. By taking a lock we ensure that no other transaction can

execute which can read data from the infected tables thus effectively containing

the damage. As no new data can be infected this prevents the intrusion to cause

damage spreading. The user can release the lock by rollback or commit the

transaction after preparing for manual recovery.

3. High

 The key aspect of the high level of security is in addition to the medium

level of security, even the recovery can be automated. Soon after the damage

containment phase the recovery starts.

Recovery Phase

 During automated recovery we rollback the database to the state just

before the intrusion. Now we create a transaction dependency graph beginning

from the malicious transaction. Using this graph we redo all the benign

transactions. No malicious transactions are executed and hence the database heals

itself to a correct and consistent state.

4. Paranoid

 This level provides the highest QoIA and uses most of the resources. We

take the recovery one step ahead by introducing a blocking phase.

Blocking Phase

 Once we have identified the transaction and done full recovery, in order to

prevent such incident from happening in the future we calculate a signature of the

transaction. This signature is used to identify the transaction even before we enter

the detection phase. If the signature matches we directly lock all the tables in the

query and effectively block the transaction. The detection and blocking phase go

on together simultaneously; hence now with each user along with the user access

graph, a list of signatures is also associated.

The following figure shows the most general representation of the DIDAR system.

Conclusions

 We take a more proactive approach in detecting intrusions in a database. DIDAR

has support for damage containment, auto recovery and signature based blocking of

intrusions. The framework is comprehensive and provides intrusion tolerance while

consuming minimum resources and low overhead to the database itself.

Future Work

 The following are the directives for future work.

 Complete implementation of DIDAR based on a commercial database like oracle.

 More detailed fingerprinting for reducing false positives

 Building a transaction simulator to test the system under different conditions with

synthetic and real data.

Database

Learning

Detect

User

Access

Graph

Damage

Containment

Transaction

Dependency Graph

Recovery

Signatures

Block

References

[1] Asankhaya Sharma, Govindarajan S, Srivatsan V, DIDAR - Database Intrusion

Detection with Automated Recovery, B.Tech Thesis NITW 2007.

[2] Pramote Luenam, Peng Liu, The Design of an Adaptive Intrusion Tolerant

Database System, Proceedings of the Foundations of Intrusion Tolerant Systems,

2003.

[3] Peng Liu, Architectures of Intrusion Tolerant Database Systems, Proceedings of

18th Annual Computer Security Applications Conference, 2002.

[4] Yi Hu, Brajendra Panda, A Data Mining Approach for Database Intrusion

Detection, Proceedings of ACM Symposium on Applied Computing, 2004.

[5] Abhinav Srivastava, Shamik Sural, A.K. Majumdar, Database Intrusion Detection

using Weighted Sequence Mining, Journal of Computers, vol. 1, no. 4, July, 2006.

[6] Wai Lup LOW, Joseph LEE, Peter TEOH, DIDAFIT detecting intrusions in

databases through fingerprinting transactions, Proceedings of International

Conference on Enterprise Information Systems, 2002.

[7] Bertino, E. Terzi, E. Kamra, A. Vakali, Intrusion Detection in RBAC-

administered Databases, Proceedings of 21st Annual Computer Security

Applications Conference, 2005.

