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Abstract 

 

 In this paper we propose a new architecture for database intrusion detection. 

Recently there has been considerable interest in the design of intrusion detection system 

for databases. Most of the current systems take a laid back approach and concentrate 

more on containment and recovery once the database has been infected by malicious 

transaction. We propose a more proactive solution (DIDAR); DIDAR aims to detect the 

intrusions as soon as possible with support for damage containment and auto recovery as 

well.  DIDAR provides intrusion tolerance by working in two phases – learning and 

detection. During the learning phase based on the currently executing transactions we 

build a model of the legitimate queries for each user and later use that model to detect 

the malicious transactions. DIDAR guarantees quality of information assurance at 4 

different levels for each user. We have positive results based on our prototype and 

preliminary testing on synthetic database. With almost no load to the database DIDAR 

achieves high detection rates, quick damage containment and full recovery. 

 

Introduction 

 

 Intrusion detection is one of the prime areas of research currently in databases. 

With the advent of the internet and the World Wide Web, more and more work is now 

done online. All the necessary information from shopping orders to banking transactions 

is stored in databases. Protecting the information in such case is of utmost importance. 

Even with proper access control features there are several modes of attack possible like 

the SQL injection. Although   proper coding practices can prevent most attacks there are 

still number of legacy programs that have to be protected. Moreover even in case of an 

attack the system should still be able to degrade gracefully. The most comprehensive 

system that addresses most of these problems is the Intrusion Tolerant Database (ITDB) 

[1]. The intrusion tolerant database system can operate through attacks in such a way that 

the system can continue delivering essential services in the face of attacks. With a focus 

on attacks by malicious transactions, it can detect intrusions, and locate and repair the 

damage caused by the intrusions [2].  

 There has been considerable amount of work done in detecting intrusions in 

databases. The use of data mining has been found useful in detection based on mining 

user query frequent item sets [3, 4]. Another approach is to fingerprint the transactions 

and then build a classifier system to differentiate between malicious and benign 

transactions [5]. The way the DIDAFIT [5] system fingerprints the queries is by building 

regular expression based models of the legitimate queries but we take an entirely 

different approach by using relations, attributes and conditionals of the query to construct 

a fingerprint. All these system involve a learning mechanism for model building in some 

form and hence have false positives. Our approach here tries to combine the benefits of 



the data mining approach with the fingerprinting of transactions along with a feed back 

mechanism to give less false positives. 

 

DIDAR Framework 

 

 The basic framework can be divided in two phases – learning and detection. 

During the learning phase we build a model of legitimate queries and use that model to 

identify malicious transactions in the detection phase. We give the detailed algorithms of 

each of the phase below. 

 

1. Learning Phase 

 

 During this phase the model of legitimate queries is built using supervised 

learning. We assume every transaction currently executing in the database to be 

benign. Any SQL query can be written as the following general form with three 

clauses. 

 

SELECT  Attributes 

FROM  Relations/Tables 

WHERE  Conditions 

 

For every SQL query we associate a quadruple <t,R,A,C> which represents the 

fingerprint of the query [6]. 

Where, 

 

’t’ stands for the type of query (SELECT, UPDATE or DELETE) 

’R’ stands for the number of relations in the query 

’A’ stands for the number of Attributes in the query 

’C’ stands for the number of Conditions in the query 

 

Each such quadruple represents the whole query. Now for each user in the 

database we create a user access graph G (V, E) such that, V is the set of 

quadruples and E represent the access pattern of the queries in the database. While 

learning we read all the queries executing in the database, fingerprint them and 

convert them into a quadruple and add a node in the user access graph. Once the 

learning is finished the user access graph looks like something below. 

 



Once the learning is over each user has a user access graph where each node in 

the graph represents the fingerprint of the transaction. Based on this information 

we proceed to detection phase. 

 

2. Detection Phase 

 

 Detection is fairly simple, each transaction that is currently executing is 

fingerprinted and converted into a quadruple. We traverse the user access graph 

and look for a matching node (say u) with same quadruple. If we cannot find such 

a node the transaction is labeled malicious or else we proceed again with the next 

transaction. Since we need to follow only the edges of the user access graph, for 

the next transaction we simply check all the nodes ‘v’ such that there is an edge 

between ‘u’ and ‘v’. This way we can identify the malicious transactions.  

 Since it is not uncommon to have false positives we provide a feedback 

mechanism, if while in the detection phase some legitimate transaction is 

identified as malicious the user can give feedback and based on that we insert a 

new node in the user access graph with the quadruple representing the fingerprint 

of the current transaction. This will be clear from the following figure. 
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Once it is ensured the transaction is malicious we proceed according to the quality 

of information assurance (QoIA) [2] attached to the user. 

 

Quality of Information Assurance 

 

 Different database users will have different needs and expect different levels of 

information assurance. So while protecting the database it doesn’t make sense to provide 

one single level of security over the entire database. We propose four different levels of 

security which ensure quality of information assurance. 

 

1. Low 

 While the database is in a low level of security we only identify the 

intrusions with the feedback mechanism. There is no damage containment or 

recovery. This allows user to formulate a proper security perimeter with all 

possible transactions listed in the user access graph while also been aware of the 

security. 

 

2. Medium 

 In the medium level we provide the low level of security plus damage 

containment. After the detection we enter a damage containment phase. 

 

Damage Containment Phase 

 During this phase we take a lock manually on all the tables accessed in the 

malicious transaction. By taking a lock we ensure that no other transaction can 

execute which can read data from the infected tables thus effectively containing 

the damage. As no new data can be infected this prevents the intrusion to cause 

damage spreading. The user can release the lock by rollback or commit the 

transaction after preparing for manual recovery. 

   

3. High 

  The key aspect of the high level of security is in addition to the medium 

level of security, even the recovery can be automated. Soon after the damage 

containment phase the recovery starts. 

 

Recovery Phase 

 During automated recovery we rollback the database to the state just 

before the intrusion. Now we create a transaction dependency graph beginning 

from the malicious transaction. Using this graph we redo all the benign 

transactions. No malicious transactions are executed and hence the database heals 

itself to a correct and consistent state. 

 

4. Paranoid 

 This level provides the highest QoIA and uses most of the resources. We 

take the recovery one step ahead by introducing a blocking phase. 

 

 



Blocking Phase 

 Once we have identified the transaction and done full recovery, in order to 

prevent such incident from happening in the future we calculate a signature of the 

transaction. This signature is used to identify the transaction even before we enter 

the detection phase. If the signature matches we directly lock all the tables in the 

query and effectively block the transaction. The detection and blocking phase go 

on together simultaneously; hence now with each user along with the user access 

graph, a list of signatures is also associated. 

 

The following figure shows the most general representation of the DIDAR system. 

 

 
 

 

Conclusions 

 

 We take a more proactive approach in detecting intrusions in a database. DIDAR 

has support for damage containment, auto recovery and signature based blocking of 

intrusions. The framework is comprehensive and provides intrusion tolerance while 

consuming minimum resources and low overhead to the database itself. 

 

Future Work 

 

 The following are the directives for future work. 

 Complete implementation of DIDAR based on a commercial database like oracle. 

 More detailed fingerprinting for reducing false positives 

 Building a transaction simulator to test the system under different conditions with 

synthetic and real data. 
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