
A Critical Review of Dynamic Taint Analysis

and Forward Symbolic Execution
 Asankhaya Sharma

Department of Computer Science
National University of Singapore

asankhs@comp.nus.edu.sg

ABSTRACT

In this note, we describe a critical review of the paper titled “All

you wanted to know about dynamics taint analysis and forward

symbolic execution (but may have been afraid to ask)” [1]. We

analyze the paper using Paul Elder critical thinking framework

[2]. We start with a summary of the paper and motivation behind

the research work described in [1]. Then we evaluate the study

with respect to the universal intellectual standards of [2]. We find

that the paper provides a good survey of the existing techniques

and algorithms used for security analysis. It explains them using

the theoretical framework of operational runtime semantics.

However in some places the paper can do a better job in

highlighting what new insights or heuristics can be gained from a

runtime semantics formulation. The paper fails to convince the

reader how such an intricate understanding of operational

semantics of a new generic language SimpIL helps in advancing

the state of the art in dynamic taint analysis and forward symbolic

execution. We also found that the Paul Elder critical thinking

framework is a useful technique to reason about and analyze

research papers.

Keywords

Dynamic Taint Analysis, Forward Symbolic Execution, Security

Analysis

1. INTRODUCTION
Taint analysis refers to tracking of information flow through the

program. It can be used to enforce security policies and detect

malicious inputs. Taint analysis can be done using dynamic as

well as static techniques. The paper [1] focusses on dynamic taint

analysis and forward symbolic execution. The motivation for

undertaking such a study is the usefulness of these methods in

Unknown Vulnerability Detection, Automatic Input Filter

Generation, Malware Analysis and Test Case Generation. The

paper introduces a general language SimpIL which is used to

describe the dynamic taint analysis and forward symbolic

execution algorithms. SimpIL language provides a generic

uniform framework to describe and discuss existing dynamic taint

analysis and forward symbolic execution algorithms. Building on

the operational semantics for this language the paper shows how

taint policies can be specified and enforced as runtime semantics.

Forward symbolic execution can also be defined for SimpIL in a

similar way which can then be used for symbolic reasoning.

Thus the primary motivation behind the paper is to provide a well-

defined language and framework to compare and contrast existing

techniques of dynamic taint analysis and forward symbolic

execution. The paper also describes various challenges and design

choices that the user faces while building a taint analysis tool for a

particular real world system. Overall we find that the paper is well

motivated and explains the state of the art in taint analysis from a

theoretical perspective by using operational semantics of a

language. In existing work [3, 4] on dynamic taint analysis the

underlying language is not formalized and the operational

semantics are not given clearly. This leads to ambiguities in

interpretation of results and does not explain the design choices.

This paper builds on the operational semantics of SimpIL to

address these short comings and provides a common way to

describe the existing work on dynamic taint analysis.

On the other hand forward symbolic execution has been shown

[5] to be useful for malware analysis and finding unknown

vulnerability in the code. The operational semantics of SimpIL

can also be used to define a forward symbolic execution

framework for the language. This helps to understand the current

symbolic execution engines (KLEE [7], EXE [8], and Bitblaze

[6]) used for security analysis from the perspective of

programming language semantics. However the paper does not do

a good job of incorporating the static analysis results into a

symbolic execution framework as described in [9]. Our main

findings of this critical review are the following.

 The paper defines a generic language SimpIL which can

explain existing algorithms for dynamic taint analysis

and forward symbolic execution as extensions of

runtime semantics.

 The paper provides board coverage of existing

techniques and does not go in depth.

 The paper is not precise in explaining how to mitigate

some of the pitfalls in implementing these algorithms

for a real world system.

 The paper does not provide evaluation or evidence to

support the claim that operational semantics are a good

way to describe these algorithms. In particular it is not

clear to the reader what new or novel technique can be

supported in this framework which is not present in the

literature.

 There is no soundness or completeness result for the

operational semantics of SimpIL which leads to under

tainting and over tainting.

We have organized the critique as follows. In the next section we

will describe the SimpIL language and summarize the critics of

the features and semantics of the language. The section 3 will

focus on dynamic taint analysis, while section 4 deals with

forward symbolic execution. We will review some related work in

section 5 and finally we conclude in section 6.

mailto:asankhs@comp.nus.edu.sg

2. SIMPIL LANGUAGE
In existing work on dynamic taint analysis and forward symbolic

execution it has been shown that assembly-like languages can be

used to reason about programs written in any language. The

language used in the formalization of the paper resembles a

simple intermediate language used typically by compilers. The

expressions in the language are side-effect free. Following shows

a simple sample program written in SimpIL which is used for

illustration throughout this note.

In reality however the expression in a given assembly language

may not be side-effect free and thus have to be translated into a

form which makes them side-effect free [6]. The SimpIL language

does not have high-level features like functions, buffers and user-

level abstractions. These constructs also have to be encoded or

translated into the form used by SimpIL. The following example

shows how a function can be encoded in the SimpIL language.

Nevertheless, the language is powerful enough to describe most

dynamic taint analysis algorithms. The authors provide examples

of several taint policies which can be implemented as extensions

of runtime semantics of SimpIL. Several alternative policy

choices can all be incorporated in the same framework of

operational semantics. This is claimed by the authors to be the

biggest benefit of using such a formulation.

2.1 Operational Semantics
The approach taken in this paper is to introduce an operational

semantics for the language SimpIL which is later used to describe

dynamic taint analysis and forward symbolic execution. The

semantics of SimpIL presented in the paper is actually big step

semantics (and not small step semantics). The expressions are

evaluated to values in each of the rules. However the authors of

the paper do not mention this point and just use the generic term

of operational semantics to describe their algorithms. The

operational semantics is described clearly in the paper with

several examples. These examples help make the notion concrete

and precise for the reader.

The authors argue that since dynamic program analyses are

defined in terms of actual program executions, operational

semantics provide a natural way to define dynamic analysis. This

observation is critical to support both dynamic taint analysis and

forward symbolic execution as runtime extensions of the

operational semantics. This observation is fair from a security

analysis perspective however from a programming language

perspective this may be stretching the idea of operational

semantics a bit too much. In programming language research

semantics for languages have been widely studied. Several kinds

of semantics have been proposed and used depending on the

domain like operational semantics (big step and small step),

denotational semantics, axiomatic semantics, algebraic semantics

etc.

Usually a language is defined with syntax and semantics while

program analyses are understood in form of different frameworks

like monotone framework, abstract interpretation, type-effects

system etc. The problem with using operational semantics to

define dynamic analysis becomes clear when we have to introduce

a new semantics of every kind of taint policy. The taint policies

have to be baked into the semantics. So depending on the

application domain the user have to redefine all the rules of the

operational semantics to take into account the new taint policy.

This situation is not much different from the existing work where

users have to build new algorithms in order to handle different

application domains. We talk about it more in the next section.

3. DYNAMIC TAINT ANALYSIS
The purpose of dynamic taint analysis is to track information flow

between sources and sinks. A taint policy is used to determine

exactly how taint flows as a program executes. Since the

operational semantics described in the paper for the language

SimpIL is neither sound nor complete, the use of this operational

semantics leads to both under tainting and over tainting. This is a

common problem for most existing systems as well [3, 4, 6]. The

following example shows how the taint is propagated from input

in the sample SimpIL program.

3.1 Dynamic Taint Analysis Semantics
The operational semantics of SimpIL are modified to bake in taint

policy rules. All the existing operational semantics rules of the

SimpIL language are modified to take into account the

propagation of the taint. With evaluation of an expression the taint

is also propagated from the premise of the rule to the conclusion.

Given a taint policy the propagation of the taint can be tracked

through the program as defined by the dynamic taint analysis

semantics. The exposition in this section is quite precise and

detailed with examples explaining the user of taint policies in

deriving the dynamic taint analysis semantics. Given a dynamic

taint analysis semantics the taint policy can be applied to do taint

checking.

3.2 Dynamic Taint Checking
This section introduces several dynamic taint policies in the paper

taken from [6, 3, 2]. Taint can be introduced, propagated and

checked using the dynamic taint analysis based operational

semantics of SimpIL. Some application domains may have

specific requirements like – memory address should be tainted.

Users may also wish to define their own taint policy. These

application and user specific requirements can lead to different

x := 2 * get_input(.)

y := 5 + x

goto y

x := 2 * get_input(.) {x T}

y := 5 + x {x T, y T}

goto y {x T, y T}

/* Caller function */

esp := esp + 4

store (esp , 6) /* retaddr is 6 */

goto 9

/* The call will return here */

halt

/* Callee function */

…

goto load (esp)

taint policies which can be handled by modifying the semantics to

suit the policy.

There are two short comings of the approach mentioned in the

paper – one it still leads to under tainting and over tainting, as the

operational semantics is neither sound nor complete with respect

to the taint policy. Under tainting refers to the case when the

dynamic taint analysis does not introduce taint when it should. It

can happen because of many reasons – unknown code, insufficient

instrumentation, language features etc. Over tainting refers to the

case when the analysis introduces taint when it is not necessary.

Over tainting may be considered a sound and conservative

approximation of the analysis. In practice it may lead to a large

number of false positives.

In addition, there is no way in the semantics of SimpIL described

in the paper to remove taint once it is added in the system. This is

called the sanitization problem. In certain cases users may write

routines to perform sanitization or to detect and handle malicious

inputs. Existing systems like Temu [6] and TaintCheck [4], allow

some simple cases to handle sanitization problem. They check for

well-known constant functions to eliminate taint. It is not clear as

to how the dynamic taint checking described in this paper can

handle the sanitization routines. The language SimpIL does not

have provision for functions and higher level constructs. It is not

possible to add sanitization checks directly as extension of the

runtime semantics. This leads us back to the situation in prior

work where ad hoc heuristics are used to handle such corner

cases. There are many challenges when implementing a taint

analysis for a real system. They are discussed in the next section

in detail.

3.3 Challenges
Many of the common problems with existing system are still there

with the operational semantics of SimpIL. The time of detection

vs. time of attack problem shows that a dynamic taint analysis

may raise an alert too late. This paper does not address that issue.

Some form of static checking may be helpful in these situations.

Another aspect of the dynamic taint analysis semantics is that it

cannot detect taint based on control flow. In [9], symbolic jumps

are handled in the control flow by using a combination of static

and dynamic techniques for taint analysis. This paper leaves out

any static methods from its scope and thus is a bit narrow when

addressing the challenges faced by practitioners in the field.

Existing systems for dynamic taint analysis use several heuristics

to make them work in practice. The paper does not mention how

these heuristics can be incorporated in the operational semantics

of SimpIL. The description of dynamic taint analysis as an

extension to runtime semantics of SimpIL does make the

formulation easy to understand and read. The real world practical

problems and pitfalls are mentioned in the paper although no

solution is proposed. The paper also recognizes the limitations of

doing a dynamic analysis, we cannot reason about multiple paths.

The next section describes how they address the problem using

forward symbolic execution.

4. FORWARD SYMBOLIC EXECUTION
Forward symbolic execution allows to reason about behavior of

program on multiple paths by using logical formula to represent

the program execution. This paper describes the semantics of

forward symbolic execution for SimpIL and shows how that can

be used to reason about security of the program. The description

in the paper about this section is brief and only shows the rules for

a subset of the SimpIL language. However it is clear to the reader

how the other rules will look like as there are many examples. The

following example shows how forward symbolic execution builds

the path condition formula for the sample SimpIL program.

4.1 Semantics of Forward Symbolic Execution
Similar to section 3.1 the forward symbolic execution rules are

given as extensions to runtime semantics of the language SimpIL.

For each of the operational semantics rule there is now a symbolic

counterpart. It evaluates the premise symbolically and builds a

formula called the path condition. The process of building a

symbolic execution though conceptually simple has many

practical problems. Some of them are mentioned in the paper.

 Symbolic Memory. All the memory references in the

formula may not be concrete. Thus when taint is

propagated it is not clear how to handle the variable

which corresponds to symbolic memory.

 System Calls. The analysis may not have access to all

the source code. System calls (such as IO), libraries and

unknown procedures may lead to loss in precision of the

analysis.

 Path Selection. During forward symbolic execution it is

often not clear which path to choose. In general the

number of paths in a program may be unbounded so

some heuristic is needed in practice.

The paper does a good job of describing the problems but again

falls short of giving solutions to some of these problems. The

paper cites relevant existing systems and mention how they handle

these issues. The semantics of forward symbolic execution are

described only briefly.

In particular it is not clear how the paper adds to the

understanding of the use of forward symbolic execution for

security analysis. The formulation of this section in the paper is

weaker when compared with dynamic taint analysis. There is

already a huge amount of work in forward symbolic execution for

test case generation and debugging from the software engineering

community. This paper does not do a good job to showing how it

builds on that body of work or how security analysis lead to some

unique challenges in this area. In the next section we review some

of the challenges mentioned in the paper on forward symbolic

execution.

4.2 Challenges
The common challenges encountered while building a symbolic

execution framework as described in the paper are already listed

in section 4.1. The paper describes the symbolic memory problem

in detail and shows how using a SMT Solver [11, 12] may be

useful in such a scenario. By using satisfying solutions to the

path condition formula containing the symbolic address we can

generate new inputs for the program. This is already used in tools

which do automated random testing like CUTE [10] and DART

[13].

Another big problem with symbolic execution is deciding which

path to choose. This is referred as the path selection problem in

the paper. Path exploration has been well studied in the literature

x := 2 * get_input(.) [true]

if x – 5 == 14 goto 3 else goto 4 [(2 * s) – 5 == 14]

if x – 5 == 14 goto 3 else goto 4 ![(2 * s) – 5 == 14]

on testing and debugging. This paper recalls some of the existing

approaches.

 Depth-First Search. Exploring the paths in a depth first

manner as used in KLEE [7] and EXE [8]. This

approach can get stuck in an unwinding loop.

 Concolic Testing. This refers to using concrete

execution to produce a trace of a program execution and

then building the formula to follow the same path. This

search strategy is also called generational search and is

used in [10, 14, 15].

 Random Paths. KLEE [7] has support for choosing the

path randomly with weights that are assigned to path

based on depth.

 Heuristics. Most of the real systems use many heuristics

like distance between instructions, states etc.

The path selection problem is a common challenge for symbolic

execution engines and the forward symbolic execution based

operational semantics of SimpIL also suffers from these

shortcomings.

Another difficult aspect of forward symbolic execution is how to

handle system/library calls or unknown code. One approach is to

create summaries of their side effects [16, 7, 8]. Another approach

can be to use concolic execution as in [10]. The paper mentions

some existing work on this but cannot show the usefulness of the

operational semantics based formulation of the forward symbolic

execution of SimpIL.

The performance of forward symbolic execution is usually

exponential in the number of program branches due to the path

explosion problem. Existing systems perform heuristics which use

caching of formulas [7, 8], elimination of redundant terms [15,

17] and weakest preconditions [18-21]. The following trivial

example in form of a SimpIL program shows how program

branches can quickly lead to exponential blowup. Even though all

the assignments are same but the path conditions for these

assignments can blow up if substitution is used.

5. RELATED WORK
The focus of the paper is on the use of operational semantics to

define dynamic security mechanisms like taint analysis and

forward symbolic execution. However there are other approaches

which provide a similar framework for this [22, 23]. The prior

work doesn’t focus so much on dynamic taint analysis and taint

policy checking.

The analysis descriptions in [13, 14, 24] use an informal

semantics which can lead to ambiguities and errors in

implementation. The paper provides a good comparison with

existing related work and delineates the contribution of the

authors well. The paper also lists some of the open problems in

the area in form of challenges and opportunities. The work

described in the paper can be applied to several different domains.

Some of the applications provided in related work of the paper are

as follows.

 Automatic Test-case Generation. Forward symbolic

execution has been widely used in test-case generation

to achieve high code coverage [7, 8, 13-15, 25].

However the paper does not provide an evaluation on

how good the operational semantics of SimpIL is when

compared to the rest.

 Automatic Filter Generation. Input filters can detect

and block malicious inputs from the input stream [16-

18]. No such filter for the SimpIL has been shown in the

paper nor is it clear how such a filter can be derived

from the operational semantics.

 Automatic Network Protocol Understanding.

Dynamic taint analysis can help in understanding

behavior of network protocols [26, 27]. The dynamic

taint analysis semantics of the paper can help in

formalization of some of the techniques present in

papers on network protocol understanding.

 Malware Analysis. Dynamic taint analysis and forward

symbolic execution can be used to analyze the malware

behavior [5]. The paper presents a good framework for

these analyses to be expressed as extensions of the

runtime semantics.

 Web Applications. Taint analysis has also been used to

detect attacks like SQL injection in web applications.

However the SimpIL language is focused at assembly

level and binary attacks, it does not directly correspond

to such use cases.

 Taint Performance & Frameworks. The paper

mentions techniques used in literature to improve the

performance of taint analysis but does not offer any new

insight in this aspect. The framework proposed in the

paper is the key contribution of the paper. The

operational semantics of SimpIL language can be

extended to incorporate most of the existing taint

analysis algorithms

 Extensions to Taint Analysis. The rules proposed in

the paper assume data to be either tainted or not. Recent

work [28] has proposed a generalization of taint

analysis based on channel capacity which can quantify

the amount of influence an input has on a particular

program statement.

6. CONCLUSION
This note described a critical review of the paper titled “All you

wanted to know about dynamics taint analysis and forward

symbolic execution (but may have been afraid to ask)”. We found

the paper to be well written, clear and easy to read. Judging by

using Paul Elder critical thinking framework we make the

following observations. The paper has more breadth than depth.

The paper is precise at most of the places. The paper is not very

accurate as the operational semantics is not sound and complete.

The paper is clear and follows a logical progression.

x := get_input(.)

x := x + x

x := x + x

x := x + x

if e1 then S1 else S2

if e2 then S3 else S4

if e3 then S5 else S6

assert(x < 10)

Starting from basics and definitions it builds on to describe the

techniques and framework. The contribution of the paper is not

significant as it does not report any new or novel results but helps

in understanding existing systems. The paper is also not fair in its

use of operational semantics as it requires defining a new

semantics for each kind of taint policy. The paper is highly

relevant to the research at that time. It provides a framework in

which readers can describe problems and consider challenges.

We find the paper interesting and joy to read. The reader learns a

lot about the field of dynamic taint analysis and forward symbolic

execution. The paper also exposes to some unsolved problems and

challenges in the area which are ripe targets for future work.

Overall from programming language perspective the paper may

not contribute much to the state of the art but it is very useful

survey for the practitioners in security analysis. The Paul Elder

critical thinking framework is a good way to analyze a research

paper. It helped us reason about the paper from several different

aspects and universal intellectual standards.

7. REFERENCES
[1] Edward J. Schwartz , Thanassis Avgerinos , David Brumley,

All You Ever Wanted to Know about Dynamic Taint

Analysis and Forward Symbolic Execution (but Might Have

Been Afraid to Ask), Proceedings of the 2010 IEEE

Symposium on Security and Privacy, p.317-331, May 16-19,

2010.

[2] Paul Elder Critical Thinking Framework.

http://louisville.edu/ideastoaction/what/critical-

thinking/paul-elder-framework

[3] James Clause, Wanchun Li, Alessandro Orso, Dytan: a

generic dynamic taint analysis framework, Proceedings of the

2007 international symposium on Software testing and

analysis, July 09-12, 2007.

[4] James Newsome and Dawn Song. Dynamic taint analysis for

automatic detection, analysis, and signature generation of

exploits on commodity software. In Proceedings of the

Network and Distributed System Security Symposium,

February 2005.

[5] Andreas Moser, Christopher Kruegel, Engin Kirda,

Exploring Multiple Execution Paths for Malware Analysis,

Proceedings of the 2007 IEEE Symposium on Security and

Privacy, p.231-245, May 20-23, 2007.

[6] Bitblaze binary analysis project.

http://bitblaze.cs.berkeley.edu, 2007.

[7] Cristian Cadar, Daniel Dunbar, Dawson Engler, KLEE:

unassisted and automatic generation of high-coverage tests

for complex systems programs, Proceedings of the 8th

USENIX conference on Operating systems design and

implementation, p.209-224, December 08-10, 2008.

[8] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski , David L.

Dill , Dawson R. Engler, EXE: automatically generating

inputs of death, Proceedings of the 13th ACM conference on

Computer and communications security, October 30-

November 03, 2006.

[9] Gogul Balakrishnan, Thomas Reps, WYSINWYX: What you

see is not what you eXecute, ACM Transactions on

Programming Languages and Systems (TOPLAS), v.32 n.6,

p.1-84, August 2010.

[10] Koushik Sen, Darko Marinov , Gul Agha, CUTE: a concolic

unit testing engine for C, Proceedings of the 10th European

software engineering conference held jointly with 13th ACM

SIGSOFT international symposium on Foundations of

software engineering, September 05-09, 2005.

[11] Clark Barrett and Sergey Berezin. CVC Lite: A New

Implementation of the Cooperating Validity Checker. In

Proceedings of the 16th International Conference on

Computer Aided Verification (CAV '04), volume 3114 of

Lecture Notes in Computer Science, pages 515-518.

Springer, July 2004.

[12] Vijay Ganesh, David L. Dill, A decision procedure for bit-

vectors and arrays, Proceedings of the 19th international

conference on Computer aided verification, July 03-07,

2007.

[13] Patrice Godefroid, Nils Klarlund, Koushik Sen, DART:

directed automated random testing, Proceedings of the 2005

ACM SIGPLAN conference on Programming language

design and implementation, June 12-15, 2005.

[14] Michael Emmi, Rupak Majumdar, Koushik Sen, Dynamic

test input generation for database applications, Proceedings

of the 2007 international symposium on Software testing and

analysis, July 09-12, 2007.

[15] Patrice Godefroid, Michael Levin, and David Molnar.

Automated whitebox fuzz testing. In Proceedings of the

Network and Distributed System Security Symposium,

February 2008.

[16] David Brumley, James Newsome, Dawn Song, Hao Wang,

and Somesh Jha. Towards automatic generation of

vulnerability-based signatures. In Proceedings of the IEEE

Symposium on Security and Privacy, pages 2–16, 2006.

[17] Manuel Costa, Miguel Castro, Lidong Zhou, Lintao Zhang,

and Marcus Peinado. Bouncer: Securing software by

blocking bad input. In Proceedings of the ACM Symposium

on Operating System Principles, October 2007.

[18] David Brumley, Hao Wang, Somesh Jha, and Dawn Song.

Creating vulnerability signatures using weakest

preconditions. In Proceedings of the IEEE Computer

Security Foundations Symposium, 2007.

[19] C. Flanagan and J.B. Saxe. Avoiding exponential explosion:

Generating compact verification conditions. In Proceedings

of the Symposium on Principles of Programming Languages,

2001.

[20] K. Rustan M. Leino. Efficient weakest preconditions.

Information Processing Letters, 93(6):281–288, 2005.

[21] William G. J. Halfond, Ro Orso, and Panagiotis Manolios.

Using positive tainting and syntax-aware evaluation to

counter SQL injection attacks. In Proceedings of the ACM

SIGSOFT Symposium on Foundations of Software

Engineering. ACM Press, 2006.

[22] Patrice Godefroid, Michael Levin, and David A. Molnar.

Active property checking. In Proceedings of the ACM

international conference on Embedded software, 2008.

[23] George C. Necula, Scott McPeak, and Westley Weimer.

CCured: type-safe retrofitting of legacy code. In Proceedings

of the Symposium on Principles of Programming Languages,

2002.

http://louisville.edu/ideastoaction/what/critical-thinking/paul-elder-framework
http://louisville.edu/ideastoaction/what/critical-thinking/paul-elder-framework
http://bitblaze.cs.berkeley.edu/

[24] Wei Xu, Eep Bhatkar, and R. Sekar. Taint-enhanced policy

enforcement: A practical approach to defeat a wide range of

attacks. In Proceedings of the USENIX Security Symposium,

2006.

[25] Cristian Cadar and Dawson Engler. Execution generated test

cases: How to make systems code crash itself. In Proceedings

of the International SPIN Workshop on Model Checking of

Software, 2005.

[26] Juan Caballero, Heng Yin, Zhenkai Liang, and Dawn Song.

Polyglot: Automatic extraction of protocol message format

using dynamic binary analysis. In Proceedings of the ACM

Conference on Computer and Communications Security,

October 2007.

[27] Gilbert Wondracek, Paolo Milani Comparetti, Christopher

Kruegel, and Engin Kirda. Automatic network protocol

analysis. In Proceedings of the Network and Distributed

System Security Symposium, 2008.

[28] James Newsome, Stephen McCamant, and Dawn Song.

Measuring channel capacity to distinguish undue influence.

In Proceedings of the ACM Workshop on Programming

Languages and Analysis for Security, 2009.

