
Automated Identification of Security Issues
from Commit Messages and Bug Reports

Yaqin Zhou
SourceClear, Inc.

yaqin@sourceclear.com

Asankhaya Sharma
SourceClear, Inc.

asankhaya@sourceclear.com

ABSTRACT

The number of vulnerabilities in open source libraries is increasing

rapidly. However, the majority of them do not go through public

disclosure. These unidenti�ed vulnerabilities put developers’ prod-

ucts at risk of being hacked since they are increasingly relying on

open source libraries to assemble and build software quickly. To

�nd unidenti�ed vulnerabilities in open source libraries and se-

cure modern software development, we describe an e�cient au-

tomatic vulnerability identi�cation system geared towards track-

ing large-scale projects in real time using natural language pro-

cessing and machine learning techniques. Built upon the latent in-

formation underlying commit messages and bug reports in open

source projects using GitHub, JIRA, and Bugzilla, our K-fold stack-

ing classi�er achieves promising results on vulnerability identi�ca-

tion. Compared to the state of the art SVM-based classi�er in prior

work on vulnerability identi�cation in commit messages, we im-

prove precision by 54.55% while maintaining the same recall rate.

For bug reports, we achieve a much higher precision of 0.70 and

recall rate of 0.71 compared to existing work. Moreover, observa-

tions from running the trained model at SourceClear in production

for over 3 months has shown 0.83 precision, 0.74 recall rate, and

detected 349 hidden vulnerabilities, proving the e�ectiveness and

generality of the proposed approach.

CCS CONCEPTS

• Security and privacy → Software security engineering;

KEYWORDS

vulnerability identi�cation, machine learning, bug report, commit

ACM Reference format:

Yaqin Zhou and Asankhaya Sharma. 2017. Automated Identi�cation of Se-

curity Issues from Commit Messages and Bug Reports. In Proceedings of

2017 11th Joint Meeting of the European Software Engineering Conference

and the ACM SIGSOFT Symposium on the Foundations of Software Engineer-

ing, Paderborn, Germany, September 4-8, 2017 (ESEC/FSE’17), 6 pages.

https://doi.org/10.1145/3106237.3117771

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full cita-
tion on the �rst page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5105-8/17/09. . . $15.00
https://doi.org/10.1145/3106237.3117771

1 INTRODUCTION

To aid in the software development, companies typically adopt

issue-tracking and source control management systems, such as

GitHub, JIRA, or Bugzilla. In fact, as of April 2017, GitHub reports

having almost 20 million users and 57 million repositories. Accord-

ing to Atlassian, JIRA is used by over 75,000 companies. These

tools are very popular for open source projects, and are essential

to modern software development. Developers work on reported is-

sues in these systems, then commit corresponding code changes

to GitHub (or other source code hosting platforms, e.g. SVN or Bit-

Bucket). Bug �xes and new features are frequently merged into a

central repository, which is then automatically built, tested, and

prepared for a release to production, as part of the DevOps prac-

tices of continuous integration (CI) and continuous delivery (CD).

There is no doubt that the CI/CD pipeline helps improve de-

veloper productivity, allowing them to address bugs more quickly.

However, a signi�cant amount of security-related issues and vul-

nerabilities are patched silently, without public disclosure, due to

the focus on fast release cycles as well as the lack of manpower and

expertise. According to statistics collected at SourceClear [2], 53%

of vulnerabilities in open source libraries are not disclosed publicly

with CVEs. For Go and JavaScript language libraries, the percent-

age is as high as 78% and 91% respectively.

In today’s world of agile software development, developers are

increasingly relying on and extending free open source libraries to

get things done quickly.Many fail to even keep track of which open

source libraries they use, not to mention the hidden vulnerabilities

that are silently patched in the libraries. So even if the vulnerabil-

ity is �xed in source code as seen by the commit message or bug

report, there may be users of the library who are not made aware

of the issue and continue using the old version. Unaware of these

hidden vulnerabilities, they are putting their products at risk of be-

ing hacked. Thus, it is important to locate such silent �xes as they

can be used to help developers decide about component updates.

Motivated to �nd the unidenti�ed vulnerabilities in open source

libraries and secure modern software development, in this paper

we describe an automatic vulnerability identi�cation system that

tracks a large number (up to 10s of thousands) of open source li-

braries in real time at low cost.

Many techniques, such as static and dynamic analysis, are em-

ployed to �ag potentially dangerous code as candidate vulnerabil-

ities, but they are not appropriate for tracking existing unknown

vulnerabilities on a large scale, at low cost (due to false positives).

Firstly, these tools can only support one or two speci�c languages

and certain patterns of vulnerabilities well. For example, the static

analysis tool FlawFinder [19] is limited to �nding bu�er over�ow

risks, race conditions, and potential shell meta-character usage in

C/C++. Moreover, most of these approaches operate on an entire

914

https://doi.org/10.1145/3106237.3117771
https://doi.org/10.1145/3106237.3117771

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany Yaqin Zhou and Asankhaya Sharma

software project and deliver long lists of potentially unsafe code

with extremely high false positive rates (i.e., 99% shown in [14]).

They require a considerable amount of manual review and thus

are not suitable to track projects at large scale.

For most software systems, bugs are tracked via issue trackers

and code changes are merged in the form of commits to source

control repositories. Therefore, it is convenient to check these ba-

sic artifacts (a new bug report or commit) of software development

to detect vulnerabilities in real time. Besides, source code changes,

bug reports and commits messages contain rich contextual infor-

mation expressed in natural language that is often enough for a

security researcher to determine if the underlying artifact relates

to a vulnerability or not.

Building on these insights, we automate the above identi�ca-

tion process via natural language processing and machine learning

techniques. From GitHub, JIRA, and Bugzilla, we collected a wide

range of security related commits and bug reports for more than

5000 projects, created between Jan. 2012 and Feb. 2017, to build

commits and bug reports datasets with ground truth. The collected

data, however, demonstrates a highly imbalanced nature, where

vulnerability-related commits and bug reports are less than 10%.

Hence, it is challenging to train classi�ers to identify vulnerabili-

ties with good performance. To address it, we design a probability-

based K-fold stacking algorithm that ensembles multiple individ-

ual classi�ers and �exibly balances between precision and recall.

We summarize our major contributions below.

• We present an automatic vulnerability identi�cation sys-

tem that �ags vulnerability-related commits and bug re-

ports using machine learning techniques. Our approach

can identify various vulnerabilities regardless of program-

ming languages at low cost and large scale. Our proposed

K-fold stacking model for commits outperforms the state

of the art SVM model by 54.55% in precision. The com-

bined model for bug reports achieves an a precision of 0.70

and recall rate of 0.71, which is even better than the com-

mits considering that the data are more imbalanced.

• Wepresent an extensive experimental and production eval-

uation to validate our proposed approach. Speci�cally, we

integrate the trained model for commits into our produc-

tion system at SourceClear to track new projects and lan-

guages. 3 months of use in production has shown encour-

aging results, where the model identi�es vulnerabilities

with a precision and recall rate of 0.83 and 0.74 respec-

tively. Moreover, during the same period, it identi�ed 349

hidden vulnerabilities as compared to 333 CVEs.

2 RELATED WORK

We now compare prior work in static analysis, dynamic analysis,

symbolic execution, and machine learning with our approach for

vulnerability identi�cation.

Static analysis is a way of analyzing source code or binary with-

out actually executing it. A signi�cant part of e�ort in static vul-

nerability detection has been directed towards analyzing software

written in high-level languages, e.g. FlawFinder [19] and IST4 [18]

for C/C++, RATS for multiple languages (C, C++, Perl, PHP and

Python). However, these analyzers are language-speci�c and even

for supported languages may have cases where they fail to �nd

the underlying issues due to imprecision of analysis. For example,

RATS does not �nd Cross-Site Scripting (XSS) or SQL Injection vul-

nerabilities. Moreover, when applied to real world projects, these

tools raise massive false positives that are hard to reduce.

Dynamic analysis analyzes the source code by executing it on

real inputs. Basic dynamic analysis (or testing) tools search for vul-

nerabilities by trying a wide range of possible inputs. There are

also dynamic taint analysis tools that do taint tracking at runtime

[1, 3, 13]. For example, PHP Aspis does dynamic taint analysis to

identify XSS and SQL vulnerabilities [13]. ZAP [1], a popular test-

ing tool in industry, �nds certain types of vulnerabilities in web

applications. It requires users to de�ne scan policies before scan-

ning and perform manual penetration testing after scanning.

Symbolic execution [8] is a technique that exercises various code

paths through a target system. Instead of running the target system

with concrete input values like dynamic analysis, a symbolic execu-

tion engine replaces the inputs with symbolic variables which ini-

tially could be anything, and then runs the target system. Cadar et

al. [5] present KLEE, an open-source symbolic execution tool to an-

alyze programs and automatically generate system input sets that

achieve high levels of code coverage. However, it requires manual

annotation and modi�cation of the source code. Also, like most

symbolic execution tools, runtime grows exponentially with the

number of paths in the program which leads to path explosion.

Machine learning.Besides the above techniques that focus exclu-

sively on the raw source code, machine-learning techniques pro-

vide an alternative to assist vulnerabilities detection bymining con-

text and semantic information beyond source code. Among these

works, some [11, 16, 17, 20, 20] focus on detecting vulnerabilities

combined with program analysis. For instance, Shar et al. [17] fo-

cus on SQL injection and cross-site scripting while Sahoo et al. [16]

investigate malicious URL detection.

The aforementioned works are related to �nding new vulnera-

bilities in source code. Our work and others described below are

related to �nd existing vulnerabilities that are unidenti�ed. The

work most similar to ours is from Perl et al. [14] that classi�es if

a commit is related to a CVE or not. They mapped 718 CVEs to

GitHub commits to create a vulnerable commit database which in-

cludes 66 C/C++ GitHub projects, 640 vulnerability-contributing

commits, and trained a SVM classi�er to �ag suspicious commits.

The CVE IDs are very unique features to identify the vulnerability-

contributing commits, which make the learning task much easier.

Extending and building upon their work, we �nd hidden vulnera-

bilities without assigned CVE IDs among 5000+ projects and 6 lan-

guages. Our experiment results in Section 4 show that the linear

SVM classi�er adopted in [14] cannot handle highly imbalanced

data sets without the unique CVE ID features. Thus, the best re-

sult for the state of the art linear SVM based classi�er on our com-

mit dataset has a precision rate of 0.22 with 0.72 recall. Under the

same recall rate, the precision of our proposed approach is 54.55%

higher.

3 APPROACH
We now present the design of a commit-message/bug-report based

vulnerability identi�er developed using supervised machine learn-

ing techniques. Our identi�er extracts a wide range of security-

related information from the commits/bug reports stream in real

915

Automated Identification of Security Issues

from Commit Messages and Bug Reports ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

Table 1: Examples of regular expression used to �lter out security-unrelated issues

Rule name Regular Expression

strong_vuln

_patterns

(?i)(denial .o f .service |\bXXE\b |remote .code .execution |\bopen.redirect |OSVDB |\bvuln |\bCVE\b

|\bXSS\b |\bReDoS\b |\bNVD\b |malicious |x − f rame − options |attack |cross .site |exploit |directory.

traversal |\bRCE\b |\bdos\b |\bXSRF\b |clickjack |session. f ixation |hijack |advisory |insecure |security

|\bcross − oriдin\b |unauthori[z |s]ed |in f inite .loop)

medium_vuln

_patterns

(?i)(authenticat (e |ion) |brute force |bypass |constant .time |crack |credential |\bDoS\b |expos (e |inд) |hack

|harden |injection |lockout |over f low |password |\bPoC\b |proo f .o f .concept |poison |privelaдe |\b (in)?secur

(e |ity) |(de)?serializ |spoo f |timinд |traversal)

time, and locates the tiny portion of vulnerability-related commits/bug

reports among the massive data.

3.1 Data Collection

We collected data from GitHub, JIRA, and Bugzilla to track the

source code changes and reported bugs of open source projects.

For each of the three sources, we tracked projects covering the fol-

lowing 6 programming languages: Java, Python, Ruby, JavaScript,

Objective C and Go. We collected all the commits, pull requests

and issues from 5002 projects in GitHub, all the issue tickets of 1310

projects in JIRA, and all the bug reports of 2224 projects in Bugzilla.

As the format and provided information of GitHub pull requests,

issues, JIRA tickets and Bugzilla reports are similar, we normalized

them to a uniform bug report format. Considering the signi�cant

amount of information in such a large-scale tracking task, we �l-

tered out the commits and bug reports clearly unrelated to secu-

rity by matching with a set of regular expression rules. To cover

all possible vulnerabilities, our regular expression rules included

almost all possible expressions and key words related to security

issues, such as security, vulnerability, attack, CVE, DoS, and XSS

etc. (Please refer to Table 1 for part of the rule set). Consequently,

we have a GitHub commits dataset, GitHub bug reports dataset

(including pull requests and issues), JIRA bug reports dataset, and

Bugzilla bug reports dataset.

We used the data from Jan. 2012 and Feb. 2017 for initial train-

ing. In the commit dataset, out of the 12409 collected commits dur-

ing this period, 1303 are vulnerability-related. In the bug report

datasets, 612 out of 10414 bug reports from GitHub, 204 out of

11145 from JIRA, and 1089 out of 2629 fromBugzilla are vulnerability-

related. Thus, except Bugzilla (that has a more balanced ratio be-

tween issues related and unrelated to vulnerabilities), other data

sources are highly imbalanced in nature.

Ground truth.Wehave a team of professional security researchers

whomanually investigated the collected data. The security researchers

checked every single commit and bug report. The overall e�ort

took almost one man year. To ensure the accuracy of results, for an

entry (a commit or bug report) that is related to a vulnerability, our

security researchers conduct at least two rounds of analysis on it.

In the �rst round, one security researcher will �rst check if the vul-

nerability is published publicly in National Vulnerability Database

(NVD) or the SourceClear Registry[2], then analyze the exploita-

tion process, CVSS score, vulnerable code, a�ected versions, and

document it in a vulnerability report. In the second round, another

security researcher will verify the vulnerability report by examin-

ing all the details, then publish it on the SourceClear Registry. In

addition, all disputed reports are set aside for team discussion be-

fore a �nal decision. The data can be accessed from SourceClear

Registry, where the data for CVEs are free and the data for vulner-

abilities without CVEs are commercially accessible.

3.2 Classi�er Features

Commits. The initial features collected in this study for commits

included commit messages, comments, project name, and the name

of the person who committed the code. We �nally choose commit

messages as the only feature, because 1) only a few commits have

comments, 2) we exclude the project name because we want to

apply the trained model tomore projects that are not in the current

data set, 3) we can not get information about whether a person

belongs to the development team of the projects or not; di�erent

persons may share the same name, and one person may change

their name over time, which may cause inaccuracy.

We use the word2vec embeddingmethod [12] to transform com-

mit message text to numerical vectors. After tuning the parameters

for the word2vec models, we decided to use a 400-dimensional vec-

tor to represent a commit message. We build the word2vec model

over 3 million commit messages without being �ltered from the

regular expressionmatching. This gives us better performance over

the word2vec model trained on only �ltered commit messages.

Bug Reports. We select title, description, comments, comment

number, attachment number, labels, created date, and last edited date

as the features, as this information is generally available in most

of the bug reports, and can provide potential signals for vulnera-

bilities. Among the selected features, title, description, comment,

and labels are text features that contain the semantic information

of the report. The numbers of comments and attachments are nu-

meric features whichmay re�ect the attention and resolution a bug

report received. Similarly, the di�erence between the created and

last edited date re�ects the resolution time.

As with commits, we use word2vec to obtain the vectors for rep-

resentation of text features. In this case, we �nd 200-dimensional

vectors are enough as larger dimensional vectors do not improve

the model but severely slow down the training process.

3.3 Classi�er Training and Design

Wecompare a number of classi�cation algorithms that are reported

to perform well for imbalanced datasets and natural language pro-

cessing in literature, including SVM, random forest, Gaussian naive

Bayes,K-nearest neighbors, AdaBoost, and gradient boosting [7, 9].

However, the performance of a single classi�er is inadequate. Thus

we propose a K-fold stacking algorithm that ensembles multiple

916

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany Yaqin Zhou and Asankhaya Sharma

Figure 1: K-fold Stacking Model

classi�ers to address the di�culty brought by the highly imbal-

anced nature of the dataset.

Fig. 1 illustrates the �ow ofK-fold stacking model. First, we split

the training set in K parts. For each fold 1 ≤ k ≤ K , the kth part of

data will be used as the test data, while the rest of the K − 1 parts

serve as the training data which a set of individual classi�ers is

trained over. We choose random forest (RF), Gaussian Naive Bayes

(GNB), K-nearest neighbors (KNN), linear SVM, gradient boosting

(GB), and AdaBoost (Ada) as the basic classi�ers in the set. For

every basic classi�er, the trained model is tested on the kth part

of data. After the K folds training, each classi�er has K sets of test

results where the union is the whole training set. We feed the test

results of all the basic classi�ers to a logistic regression, to �nd the

best ensemble of the set of classi�ers.

4 EVALUATION

We evaluate the e�ectiveness of our automatic vulnerability iden-

ti�cation system in several aspects. First, we shu�e and split the

dataset into training and test sets to evaluate the predictiveness of

the stacking algorithm. We compare it with several individual clas-

si�ers, including the state-of-the-art linear SVM described in [14,

15]. Table 2 summarizes the distribution of the commits and bug re-

ports.We de�ne the imbalanced ratio as the ratio between the num-

ber of positive samples and negative samples. During this step, we

conducted over a hundred di�erent experiments for tuning the pa-

rameters on embeddingwordmodels (from bag-of-words toword2vec),

sampling techniques to balance the data (e.g., SMOTE [4, 6], Bal-

anceCascade [10]), a number of individual classi�ers, and ensem-

ble methods. We present the results of the tuned parameters based

on the best prediction results. To validate the generality of our sys-

tem, we deployed the automatic vulnerability identi�cation system

in production for real-time vulnerability tracking on 2000+ new

projects that had no records in training data, and compared the

predicted results with the ground truth.

Evaluation metrics. To measure vulnerability prediction re-

sults, we use two metrics: Precision and Recall rate (or true positive

rate). Here is a brief de�nition:

Precision =
true positive

true positive + f alse positive
(1)

Recall rate =
true positive

true positive + f alse neдative
(2)

The reasons that we target these two metrics are:

(1) Precision re�ects the ratio of true and false positives, in

unbalanced scenarios like here it helps us focus on true

vulnerabilities. The overall ratio of vulnerability-related

items in our datasets is less than 8% percent. That is, if

manual e�ort is devoted to checking the data, 92% of that

time would be spent on false-positive items. Therefore, a

high precision would save a lot of manual work from false

positives. This also explains that why we don’t use false

positive rate directly as it can not intuitively re�ect the

percentages of false positives among predicted positives.

(2) Recall rate indicates the coverage of existing vulnerabil-

ities. We aim to cover all the vulnerability-related com-

mits/bug reports, where a higher recall rates means only a

smaller percentage of vulnerabilities are missed (i.e., com-

mits/bug reports predicted as vulnerability-unrelated even

though they are actually related to a vulnerability).

Probability-based Classi�cation. It is challenging to achieve

both high precision and recall rate as the two are in con�ict with

each other. However, we can select a reasonable tradeo� between

the two metrics. To achieve this, instead of directly outputting a

binary prediction result to classify if an entry is related to vul-

nerability or not, the stacking model calculates the probability of

vulnerability-relatedness. Thus, it is �exible to set the probability

threshold to balance the precision and recall rate.

917

Automated Identification of Security Issues

from Commit Messages and Bug Reports ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

Table 2: Distribution of commits and bug reports

Data Imbalance ratio Train (positive) Train (negative) Test (positive) Test (negative)

Commits 0.1050 997 8309 306 2797

BR_Github 0.0588 449 7361 163 2441

BR_JIRA 0.0183 150 8208 54 2733

BR_Bugzilla 0.4142 802 1169 287 371

BR_Combined 0.0788 1414 16727 491 5556

Note: BR is abbreviation of bug report

Figure 2: Identi�cation performance of our stacking ap-

proach under commits

Table 3: Comparison with basic classi�ers under the same

recall rate in commits

Classi�er Recall rate
Precision (compared clas-

si�er vs.stacking)
Linear SVM 0.72 0.22 vs. 0.34

Logistic Regression 0.76 0.22 vs. 0.31

Random Forest 0.76 0.19 vs. 0.31

Gaussian Naive Bayes 0.77 0.14 vs. 0.28

4.1 Commits

Fig. 2 illustrates the tradeo� between the precision and recall rate

for the commits dataset based on our algorithm. As the probability

threshold increases, the precision increases while the recall rate de-

creases. Under the probability of 0.75, the precision and recall rates

are almost the same, respectively 0.50 and 0.51. Table 3 compares

the best results of linear SVM, logistic regression, random forest,

and Gaussian Naive Bayes with our model under the same recall

rate. It shows that our model improves precision by at least 0.12.

4.2 Bug Reports

Bug reports have 3 data sources. We train a model for each source,

and an additional combinedmodelwith a source feature, indicating

whether the bug report is from GitHub, JIRA, or Bugzilla.

Fig.3 shows the precision and recall rate for GitHub, JIRA, and

Bugzilla bug reports, and the combined bug report model. From

Fig.3, the trained model for Bugzilla has best performance due to a

well-balanced dataset, while the trained model for JIRA has worst

performance due to an extremely imbalanced ratio of 0.0183. Over-

all, the combinedmodel achieves encouraging performance in both

precision and recall rate (respectively 0.70 and 0.71), which ismuch

Figure 3: Identi�cation performance of our stacking ap-

proach under bug reports

better than the commit dataset even though it has a more imbal-

anced structure (imbalance ratio is 0.1050 for commits vs. 0.0788

for bug reports).

4.3 Production Observations

We deployed our trained commit model on SourceClear production

system and evaluated the model for initial 3 months (March 2017-

May 2017). We choose the 12-fold stacking model with probability

threshold 0.75 (test precision 0.44 and recall 0.62) to deploy, with

the number of projects increased from the initial 2070 to 5002.

Table 4 shows the validation results at the production system,

where the precision and recall rate are 0.83 and 0.74 respectively.

This is 88.63% and 19.35% higher than the test results.

To validate the value on �nding hidden vulnerabilities, we only

count the number of hidden vulnerabilities without CVEs found

by our automatic vulnerability detection system though it �ags

vulnerabilities with CVEs as well, and compare it with the total

number of published vulnerabilities with �nal and reserved CVEs

from NVD and other o�cial sources during the same period. The

number of hidden vulnerabilities released on SourceClear platform

are 66, 69, and 214 in March, April, and May, while the number of

public vulnerabilities with CVEs are respectively 123, 80, and 130.

In May we have a surge in the hidden vulnerabilities because we

added a new language Go to the platform. Consequently, during

the same period, the total number of found hidden vulnerabilities

is 349, even larger than the total number of CVEs 333.

918

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany Yaqin Zhou and Asankhaya Sharma

Table 4: Validation of performance on production

Projects Commits (Total) Commits (Positive) Commits (Negative) True positive False positive

5002 2268 215 2053 160 32

5 DISCUSSION

Our experiments demonstrate that our approach can automatically

spot unidenti�ed vulnerabilities from commits and bug reportswith

high precision and recall rate. Compared to manual checking and

other vulnerability identi�cation techniques, it provides an e�-

cient but low-cost way to track and detect vulnerabilities in real

time, securing the development processes of various projects that

use open source libraries.

Especially notable is the fact that we applied the trained model

for commits in production,where we added Ruby andGo languages

that were not covered in the training data, and increased the num-

ber of projects from 2070 in the model training process to 5002.

The 0.83 precision and 0.74 recall rate, which is even better that

the test result, has shown the generality and scalability of our ap-

proach. The reason for that is that we use the features that are not

language-speci�c, and we exclude the project name. Consequently,

we believe that applying our results to other new projects and lan-

guages will not threaten validity.

In evaluation on test data, we see that the model trained for bug

reports achieves a much better result than the model trained for

commits. There are several reasons for this: 1) Bug reports have

richer text information than commits. Commit messages summa-

rize the code changes that have �xed an issue, thus they usually

tend to be short and concise, while bug reports are submitted to de-

scribe an issue that waits for a �x, thus usually they have a detailed

description. 2) We have collected more useful features to train the

model for bug reports. For commits we only obtain commit mes-

sages that are useful. Short commit messages may be not unique

enough to re�ect the distinction between vulnerability-relatedness

and vulnerability-unrelatedness. In our future work, we will fetch

and analyze more features to improve the model.

6 CONCLUSION AND FUTURE WORK

We have designed and implemented an automated vulnerability

identi�cation system based on commits and bug reports collected

from thousands of open source projects. It can identify a wide

range of vulnerabilities, including undisclosed vulnerabilities with-

out CVE IDs, and signi�cantly reduce false positives by more than

90% when compared to manual e�ort. The experimental results

on test data and validation data from production show that it is

promising to utilize machine-learning techniques to track and de-

tect hidden vulnerabilities in open source projects.

Our work demonstrates an encouraging application of machine

learning techniques to a realistic industrial problem of large-scale

vulnerability identi�cation in an economic way. We are still work-

ing to improve both the precision and recall rate of our system.

In future work, we will explore more features (e.g., code changes,

project properties), advanced machine learning techniques such as

deep learning to learn hidden representations from the data, and

neutral networks to train our models.

REFERENCES
[1] 2017. OWASP Zed Attack Proxy Project. (2017).

https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
[2] 2017. SourceClear. (2017). https://www.sourceclear.com/
[3] Sruthi Bandhakavi, Prithvi Bisht, P Madhusudan, and VN Venkatakrishnan.

2007. CANDID: preventing sql injection attacks using dynamic candidate eval-
uations. In Proceedings of the 14th ACM conference on Computer and communi-
cations security. ACM, 12–24.

[4] Gustavo EAPA Batista, Ana LC Bazzan, and Maria Carolina Monard. 2003. Bal-
ancing Training Data for Automated Annotation of Keywords: a Case Study.. In
WOB. 10–18.

[5] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. KLEE: Unassisted
and Automatic Generation of High-Coverage Tests for Complex Systems Pro-
grams.. In OSDI, Vol. 8. 209–224.

[6] Nitesh V Chawla, KevinW Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.
2002. SMOTE: synthetic minority over-sampling technique. Journal of arti�cial
intelligence research 16 (2002), 321–357.

[7] Mikel Galar, Alberto Fernandez, Edurne Barrenechea, Humberto Bustince, and
FranciscoHerrera. 2012. A reviewon ensembles for the class imbalance problem:
bagging-, boosting-, and hybrid-basedapproaches. IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews) 42, 4 (2012), 463–484.

[8] James C King. 1976. Symbolic execution and program testing. Commun. ACM
19, 7 (1976), 385–394.

[9] Bartosz Krawczyk. 2016. Learning from imbalanced data: open challenges and
future directions. Progress in Arti�cial Intelligence 5, 4 (2016), 221–232.

[10] Xu-Ying Liu, Jianxin Wu, and Zhi-Hua Zhou. 2009. Exploratory undersampling
for class-imbalance learning. IEEE Transactions on Systems, Man, and Cybernet-
ics, Part B (Cybernetics) 39, 2 (2009), 539–550.

[11] Ibéria Medeiros, Nuno F Neves, and Miguel Correia. 2014. Automatic detection
and correction of web application vulnerabilities using data mining to predict
false positives. In Proceedings of the 23rd international conference on World wide
web. ACM, 63–74.

[12] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Je� Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems. 3111–3119.

[13] Ioannis Papagiannis, Matteo Migliavacca, and Peter Pietzuch. 2011. PHP
Aspis: Using Partial Taint Tracking to Protect Against Injection Attacks.
In Proceedings of the 2Nd USENIX Conference on Web Application De-
velopment (WebApps’11). USENIX Association, Berkeley, CA, USA, 2–2.
http://dl.acm.org/citation.cfm?id=2002168.2002170

[14] Henning Perl, Sergej Dechand, Matthew Smith, Daniel Arp, Fabian Yamaguchi,
Konrad Rieck, Sascha Fahl, and Yasemin Acar. 2015. Vcc�nder: Finding potential
vulnerabilities in open-source projects to assist code audits. In Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security. ACM,
426–437.

[15] Carl Sabottke, Octavian Suciu, and Tudor Dumitras. 2015. Vulnerability
Disclosure in the Age of Social Media: Exploiting Twitter for Predicting
Real-world Exploits. In Proceedings of the 24th USENIX Conference on Secu-
rity Symposium (SEC’15). USENIX Association, Berkeley, CA, USA, 1041–1056.
http://dl.acm.org/citation.cfm?id=2831143.2831209

[16] Doyen Sahoo, Chenghao Liu, and Steven C. H. Hoi. 2017. Malicious URL
Detection using Machine Learning: A Survey. CoRR abs/1701.07179 (2017).
http://arxiv.org/abs/1701.07179

[17] Lwin Khin Shar, Hee Beng Kuan Tan, and Lionel C. Briand. 2013. Min-
ing SQL Injection and Cross Site Scripting Vulnerabilities Using Hybrid
Program Analysis. In Proceedings of the 2013 International Conference on
Software Engineering (ICSE ’13). IEEE Press, Piscataway, NJ, USA, 642–651.
http://dl.acm.org/citation.cfm?id=2486788.2486873

[18] J. Viega, J. T. Bloch, Y. Kohno, and G. McGraw. 2000. ITS4: a static vulnerability
scanner for C and C++ code. In Computer Security Applications, 2000. ACSAC ’00.
16th Annual Conference. 257–267.

[19] David A. Wheeler. 2017. Flaw�nder. (2017).
https://www.dwheeler.com/�aw�nder/

[20] Dumidu Wijayasekara, Milos Manic, Jason L. Wright, and Miles McQueen.
2012. Mining Bug Databases for Unidenti�ed Software Vulnerabilities. In
Proceedings of the 2012 5th International Conference on Human System In-
teractions (HSI ’12). IEEE Computer Society, Washington, DC, USA, 89–96.
https://doi.org/10.1109/HSI.2012.22

919

https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.sourceclear.com/
http://dl.acm.org/citation.cfm?id=2002168.2002170
http://dl.acm.org/citation.cfm?id=2831143.2831209
http://arxiv.org/abs/1701.07179
http://dl.acm.org/citation.cfm?id=2486788.2486873
https://www.dwheeler.com/flawfinder/
https://doi.org/10.1109/HSI.2012.22

	Abstract
	1 introduction
	2 related work
	3 approach
	3.1 Data Collection
	3.2 Classifier Features
	3.3 Classifier Training and Design

	4 evaluation
	4.1 Commits
	4.2 Bug Reports
	4.3 Production Observations

	5 discussion
	6 conclusion and future work
	References

