
Using Machine Learning to Identify
Security Issues in Open-Source Libraries

Asankhaya Sharma
Yaqin Zhou
SourceClear

Outline

- Overview of problem space
- Unidentified security issues
- How Machine Learning can help
- Results
- WOPR Demo

Open-Source Library Growth

Projection: > 400M Libraries by 2026

Complexity of Libraries has exploded

For every 1 Java
library you add to
your projects, 4
others are added

For every one
library you add to a
Node.js project, 9
others are added

The Code Cocktail

Vulnerabilities in Open-Source Libraries
● Known Sources

○ CVEs / NVD

○ Advisories

○ Mailing list disclosures

● Unidentified issues
○ Commit logs

○ Bug reports

○ Change logs

○ Pull Requests

Security Issues are
often not reported or
publically mentioned

Mining for unidentified vulnerabilities

WOPR: Tool for Reviewing Unidentified Issues

Researcher

D
at

a
S

ou
rc

e
R

es
ea

rc
h

To
ol

NVD CVE

Reserved CVEGitHub

Bugzilla Changelogs

Mailing ListJIRA

Commit Watcher

Misc.

REST API

QueueVulnerability
Knowledgebase Workflow Engine

Machine
Learning

Machine Learning for Identifying Vulnerabilities

“do machine learning like the great engineer you are, not like the great machine
learning expert you aren’t.”

Martin Zinkevich, Rules of Machine Learning: Best Practices for ML Engineering
http://martin.zinkevich.org/rules_of_ml/rules_of_ml.pdf

http://martin.zinkevich.org/rules_of_ml/rules_of_ml.pdf

System overview

ML Pipeline

Data collection

● Regular expression to filter out security-unrelated

issues
○ Rule sets cover almost all possible expressions related to

security issues

● Tracked 8536 projects in 6 languages
○ Tracked languages: Java, Python, Ruby, JavaScript,

Objective C, and Go

● Ground truth datasets
○ Professional security researchers label all data, and create

vulnerability reports
○ Available at SourceClear Registry

Source # of tracked projects

Github 5002

JIRA 1310

Bugzilla 2224

Datasets
Highly imbalanced

Dataset Size # vulnerability_related Imbalanced ratio

Commit 12409 1303 10.50%

GitHub bug reports 10414 612 5.88%

JIRA bug reports 11145 204 1.83%

Bugzilla bug reports 2629 1089 41.42%

Mails 4499 2721 60.48%

Commits & bug reports initial training data: Jan. 2012 - Feb. 2017
Mails initial training data: Feb. 2017 - Aug. 2017

Samples

Noisy, diverse, mixed with urls, directories, variable names...

Commit Bug report

Features

Commits

● Commit messages
● Comments

○ Most null

● Project name
○ Might impact prediction on

projects not in training data

● Name of author
○ Common names and

changed names etc

Bug reports

● Title
● Description
● Comments, number of

comments
● Number of attachments
● Labels
● Created date and Last edited

date

Mails

● Subject
● Content
● Sender

Text feature-Word embedding
● Word embedding

○ Map words to vectors so that computers can understand

● Word2vec

○ A word embedding method that uses a shallow 2-layer neural network to learn vector

representation of words based on similarity in context

Built word2vec model based on 3 million unfiltered commits

First training attempts-random forest
How Random Forest works?

● Training

○ Generate a forest of binary
decision trees through
randomly sampling a subset of
train set and fitting

● Prediction
○ Each data sample traverses

each tree until it reaches a leaf
○ At the leaf node, each tree

creates a vote, the proportion
of related votes is the
prediction for the data sample

Sample 1
Sample 1
2 votes related,
1 vote not related,
Vulnerability risk = 0.67

First training attempts-SVM

How SVM works?

● Mapping data to a high-dimensional feature space so that data points can be categorized
● Kernel - Mathematical function used for transformation

○ Linear
○ Polynomial
○ RBF (Radial basis function)

Unfortunately, these basic binary classifiers, even with best tuning parameters,
failed us...

K-fold stacking

Split training data
into K folds

…

Test: kth fold
Train: rest K-1
folds

train set

test set

Feed to train 6
basic classifiers

Gaussian
Naïve Bayes

Random
Forest

K-nearest
neighbors

Gradient
Boosting

Adaboost

SVM

RF

GNB

KNN

SVM

GB

Ada

Output 6 sets
of test results

GNB

KNN

SVM

GB

Ada

RF

Each classifier has K
folds of test results

Logistic
regression

Feed to optimize
ensemble of basic
classifiers

In each iteration k in [1,K]

Evaluation-metrics
• Precision rate

• Helps us focus on true vulnerabilities
and save manual work on false
positives

• Recall rate

• Indicates the coverage of existing
vulnerabilities

● Probability threshold of vulnerability to
control the tradeoff between two metrics

Evaluation-test results of commits

Table: Comparison with basic classifiers under the same
recall rate in commits

Figure: Identification performance of our stacking
approach under commits

Production observation
• The initial 3-months observation from commit watcher

• Observation period

• 03/2017 – 05/2017

• Deployed Model

• 12-fold stacking with probability threshold 0.75

• Test precision 0.44 and recall rate 0.62

• Added ~3000 new projects

• 2070 -> 5002

• Precision 0.83 and recall rate 0.74

Commits
(Total)

Commits
(Positive)

Commits
(Negative)

True
positive

False
positive

Production observation
● Track vulnerabilities at large scale and low cost in real time

○

○
■

●
●

● Current Github/Jira issues can spot vulnerabilities at the first time

Sources GitHub JIRA Bugzilla

#Projects 10113 1310 2224

Demo

Thanks!

