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Open-Source Library Growth



Projection: > 400M Libraries by 2026



Complexity of Libraries has exploded

For every 1 Java 
library you add to 
your projects, 4 
others are added

For every one 
library you add to a 
Node.js project, 9 
others are added



The Code Cocktail



Vulnerabilities in Open-Source Libraries
● Known Sources

○ CVEs / NVD

○ Advisories

○ Mailing list disclosures

● Unidentified issues
○ Commit logs

○ Bug reports

○ Change logs

○ Pull Requests 

Security Issues are 
often not reported or 
publically mentioned



Mining for unidentified vulnerabilities



WOPR: Tool for Reviewing Unidentified Issues
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Machine Learning for Identifying Vulnerabilities

“do machine learning like the great engineer you are, not like the great machine 
learning expert you aren’t.”

Martin Zinkevich, Rules of Machine Learning: Best Practices for ML Engineering 
http://martin.zinkevich.org/rules_of_ml/rules_of_ml.pdf

http://martin.zinkevich.org/rules_of_ml/rules_of_ml.pdf


System overview



ML Pipeline



Data collection

● Regular expression to filter out security-unrelated 

issues
○ Rule sets cover almost all possible expressions related to 

security issues

● Tracked 8536 projects in 6 languages
○ Tracked languages: Java, Python, Ruby, JavaScript, 

Objective C, and Go

● Ground truth datasets
○ Professional security researchers label all data, and create 

vulnerability reports
○ Available at  SourceClear Registry

Source # of tracked projects

Github 5002

JIRA 1310

Bugzilla 2224



Datasets
Highly imbalanced 

Dataset Size # vulnerability_related Imbalanced ratio

Commit 12409 1303 10.50%

GitHub bug reports 10414 612 5.88%

JIRA bug reports 11145 204 1.83%

Bugzilla bug reports 2629 1089 41.42%

Mails 4499 2721 60.48%

Commits & bug reports initial training data: Jan. 2012 - Feb. 2017
Mails initial training data: Feb. 2017 - Aug. 2017



Samples

Noisy, diverse, mixed with urls, directories, variable names...

Commit Bug report



Features

Commits

● Commit messages
● Comments

○ Most null

● Project name
○ Might impact prediction on 

projects not in training data

● Name of author
○ Common names and 

changed names etc

Bug reports

● Title
● Description
● Comments, number of 

comments
● Number of attachments
● Labels
● Created date and Last edited 

date

Mails

● Subject
● Content
● Sender



Text feature-Word embedding
● Word embedding

○ Map words to vectors so that computers can understand

● Word2vec

○ A word embedding method that uses a shallow 2-layer neural network to learn vector 

representation of words based on similarity in context

Built word2vec model based on 3 million unfiltered commits



First training attempts-random forest
How Random Forest works?

● Training

○ Generate a forest of binary 
decision trees through 
randomly sampling a subset of 
train set and fitting

● Prediction
○ Each data sample traverses 

each tree until it reaches a leaf
○ At the leaf node, each tree 

creates a vote, the proportion 
of related votes is the 
prediction for the data sample 

Sample 1
Sample 1
2 votes related,
1 vote not related,
Vulnerability risk = 0.67



First training attempts-SVM

How SVM  works?

● Mapping data to a high-dimensional feature space so that data points can be categorized
● Kernel - Mathematical function used for transformation

○ Linear
○ Polynomial
○ RBF (Radial basis function)



Unfortunately, these basic binary classifiers, even with best tuning parameters, 
failed us...



K-fold stacking

Split training data 
into K folds

…

Test: kth fold
Train: rest K-1 
folds

train set

test set

Feed to train 6 
basic classifiers

Gaussian 
Naïve Bayes

Random 
Forest

K-nearest 
neighbors

Gradient 
Boosting

Adaboost

SVM

RF

GNB

KNN

SVM

GB

Ada

Output 6 sets 
of test results

GNB

KNN

SVM

GB

Ada

RF

Each classifier has K 
folds of test results

Logistic 
regression

Feed to optimize 
ensemble of basic 
classifiers 

In each iteration k in [1,K]



Evaluation-metrics
• Precision rate

• Helps us focus on true vulnerabilities 
and save manual work on false 
positives

• Recall rate

•  Indicates the coverage of existing 
vulnerabilities

● Probability threshold of vulnerability to 
control the tradeoff between two metrics



Evaluation-test results of commits

Table: Comparison with basic classifiers under the same 
recall rate in commits

Figure:  Identification performance of our stacking 
approach under commits



Production observation
• The initial 3-months observation from commit watcher

• Observation period

• 03/2017 – 05/2017

• Deployed Model 

• 12-fold stacking with probability threshold 0.75

• Test precision 0.44 and recall rate 0.62

• Added ~3000 new projects

• 2070 -> 5002

• Precision 0.83 and recall rate 0.74

Commits 
(Total)

Commits 
(Positive)

Commits 
(Negative)

True 
positive

False  
positive



Production observation
● Track vulnerabilities at large scale and low cost in real time

○

○
■

●
●

● Current Github/Jira issues can spot vulnerabilities at the first time

Sources GitHub JIRA Bugzilla

#Projects 10113 1310 2224



Demo



Thanks!


