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Open-Source Library Growth
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Projection: > 400M Libraries by 2026
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Complexity of Libraries has exploded

Average number of dependencies per repo

B direct M ftransitive FOI‘ every one
library you add to a
Node.js project, 9
For every 1 Java others are added
library you add to
your projects, 4
others are added
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The Code Cocktaill

Open-Source = 90%

Open-source code (~ 70%)

Custom Code (~10%)

Open-source code (~ 20%)




Vulnerabilities in Open-Source Libraries

e Known Sources
o CVEs/NVD
o Advisories
o Mailing list disclosures

e Unidentified issues
o Commitlogs
o Bugreports
o Change logs
o Pull Requests



Mining for unidentified vulnerabilities

Number of days a vulnerability is unidentified

I Data reviewed
over 2016-2017

GitHub Fix GitHub Issues GitHub Pull Bugzilla Entries JIRA Tickets
Commits Requests




WOPR: Tool for Reviewing Unidentified Issues

Researcher

Vulnerability Workflow Engine Queue Machine
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Machine Learning for Identifying Vulnerabilities

“do machine learning like the great engineer you are, not like the great machine
learning expert you aren’t.”

Martin Zinkevich, Rules of Machine Learning: Best Practices for ML Engineering
http://martin.zinkevich.org/rules_of _ml/rules_of ml.pdf



http://martin.zinkevich.org/rules_of_ml/rules_of_ml.pdf

System overview

Data Sources

Commits
JIRA tickets

Bugzilla reports

GitHub issues
& pull requests

Smart Vulnerability Identifiers

Commits ML model
JIRA ML model

Bugzilla ML model

GitHub ML model

Mails ML model
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ML Pipeline
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Not Pass

<] Validate

l_ Pass
Generating more triaged data,

driving better models
Deploy




Data collection

e Regular expression to filter out security-unrelated

ISssues
o Rule sets cover almost all possible expressions related to Source # of tracked projects
security issues
e Tracked 8536 projects in 6 languages Github
o  Tracked languages: Java, Python, Ruby, JavaScript,
Objective C, and Go JIRA

e Ground truth datasets
o Professional security researchers label all data, and create
vulnerability reports
o  Available at SourceClear Registry

Bugzilla




Datasets

Dataset Size # vulnerability_related Imbalanced ratio

Commit 10.50%
GitHub bug reports 5.88%

JIRA bug reports 1.83%

Bugzilla bug reports 41.42%

Mails 60.48%

Commits & bug reports initial training data: Jan. 2012 - Feb. 2017
Mails initial training data: Feb. 2017 - Aug. 2017



Samples

Pull requests Issues Marketplace Gist

( ' This repository  Search
Fork 1,142

Issues Marketplace Gist
© Watch~ | 190 * Star 1,01

kiegroup / drools

Pull requests

O This repository
©@Watch~ 8

apache / syncope
11 Pull requests 1 Projects 0

[RHBPMS-4659] - logback: Serialization vulnerability in SocketServer

westar | 36
Insights ~

<> Code Pull requests 0 Projects 0 Insights

Browse files

Adding warning about not reporting user's security answer
on May 19

s master
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+ [WARNING]
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Projects
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Features

Commits Bug reports Mails

e Commit messages o Title e Subject
e Comments e Description e Content

o Mostnull e Comments, number of e Sender
e Project name comments

o Mightimpact prediction on e  Number of attachments

projects not in training data e Labels
e Name of author e Created date and Last edited
date

o Common names and
changed names etc



Text feature-Word embedding

e Wordembedding

o Map words to vectors so that computers can understand

e Word2vec

o Aword embedding method that uses a shallow 2-layer neural network to learn vector
representation of words based on similarity in context

>>> word2vec['xss']
array([-0.06691808, 0.01889833, 0.08988539, 0.03727728, 0.09463213,

0.04498576, 0.02401953, 0.01821383, -0.04510168,...., -0.00888534], dtype=float32)
>>> word2vec.most_similar('xss')
[(u'vulnerability', 0.6009132862091064), (u'attacks', 0.5554373860359192), (u'forgery’,
0.4951219856739044), (u'spoofing', 0.49092593789100647), (u'dos', 0.4852156937122345), (u'prevention’,
0.48259809613227844), (u'clickjacking', 0.48095956444740295), (u'protection’, 0.46756529808044434),
(u'csrf', 0.457594096660614), (u'vuln', 0.4533842206001282)]




First training attempts-random forest

Forest
(n=10,001 trees)

Related

Tree

Feature A

Not related

Related

Feature C
Feature B Not related

Related
Feature D
Not related

Sample 1

Sample 1

2 votes related,

1 vote not related,
Vulnerability risk = 0.67

How Random Forest works?

Training
o  Generate aforest of binary
decision trees through
randomly sampling a subset of
train set and fitting
Prediction
o Eachdatasample traverses
each tree until it reaches a leaf
o  Attheleaf node, each tree
creates a vote, the proportion
of related votes is the
prediction for the data sample



First training attempts-SVM

Data with separator added

How SVM works?

e Mapping data to a high-dimensional feature space so that data points can be categorized
e Kernel - Mathematical function used for transformation

o Linear

o  Polynomial

o  RBF (Radial basis function)



Unfortunately, these basic binary classifiers, even with best tuning parameters,
failed us...



K-fold stacking

In each iteration kin[1,K]

Feed to train 6 Output 6 sets Each classifier has K
basic classifiers of test results folds of test results
Random ||
Split training data Test: kth fold Forest Feed to optimize
into K folds Trair.r rest K-1 Gaussian ensemble of basic
folde . Naive Bayes classifiers
: K-nearest
N : , [
K test set neighbors N Logistic
regression

Gradient
Boosting GB ||
Adaboost

Ada “




Evaluation-metrics

e Precisionrate

e Helps us focus on true vulnerabilities
and save manual work on false Commits Commits Commits True False

positives (Total) (Positive) | (Negative) | positive | positive

. true positive
Precision = P

true positive + false positive

100

e Recallrate

) o Totally (70+35) = 105 shown to researchers
e Indicates the coverage of existing

vulnerabilities e Precision rate = 70/ (70+35) = 66.67%
e Recall rate =70/ 100 = 70%

true positive
Recall rate = P

e Filtered commits: 895, 89.5%

true positive + false negative



Evaluation-test results of commits

Table: Comparison with basic classifiers under the same
recall rate in commits

. Precision (compared clas-
Classifier Recall rate | . i P
sifier vs.stackin;

Linear SVM 0.22 vs. 0.34

—*—Precision

Recall

Logistic Regression 0.22 vs. 0.31
Random Forest 0.19 vs. 0.31

Gaussian Naive Bayes 0.14 vs. 0.28

0.4 0.45 0.5 0.55 0.65 0.7 0.75 0.8

0.6
Probability

Figure: Identification performance of our stacking
approach under commits



Production observation

e The initial 3-months observation from commit watcher
e Observation period

e Deployed Model

e Added ~3000 new projects

* Precision 0.83 and recall rate 0.74

Commits Commits Commits
(Total) (Positive) (Negative)

True
positive

False
positive




Production observation

e Track vulnerabilities at large scale and low cost in real time
o Increased number of projects, e.g., for Github, 4 times more

Sources GitHub JIRA Bugzilla

#Projects

o Accelerate vulnerability identification
m When we firstly added go projects from Github in May, by May 29, 2017*

e Current Github/Jiraissues can spot vulnerabilities at the first time



Demo
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