

Asankhaya Sharma

Using LLMs and Generative AI
to Fix Software Vulnerabilities

2003

2007

2010

2014

2018

2019

2022

2023

Asankhaya Sharma, Co-Founder & CTO, https://patched.codes

SCA
Agent

https://patched.codes/

"Every magic trick consists of three parts, or acts." ~ John Cutter, The Prestige

Agenda

Evolution of Application Security
(The Pledge)

• Persistence of software vulnerabilities
• Changing software development practices

OWASP Top Ten

https://www.horangi.com/blog/real-life-examples-of-web-vulnerabilities

https://www.horangi.com/blog/real-life-examples-of-web-vulnerabilities

O
W

AS
P

To
p

Te
n

Dev Ops

QA Sec

UX Support

Generative
Agent Ops

https://cloud.google.com/blog/products/identity-security/shift-left-on-google-cloud-security-invest-now-save-later

Shift Left

https://cloud.google.com/blog/products/identity-security/shift-left-on-google-cloud-security-invest-now-save-later

building security tools
for developers

v/s

developer tools for
security

Rise of Generative AI
(The Turn)

• Code generation, bug fixing and vulnerability remediation
• RAG, SAG and SAGA

https://eventyay.com/e/7cfe0771/session/8146codex code-davinci-002 GPT-3.5-turbo GPT-4

Code LLMs

https://eventyay.com/e/7cfe0771/session/8146

https://arxiv.org/abs/2305.06161

Open-access Code LLMs

📑The Stack - a 6.4TB of source
code in 358 programming languages

from permissive licenses.Different sizes

starcoderbase-1b
starcoderbase-3b
starcoderbase-7b

StarCoder

StarCoderPlus StarChat-BetaStarCoderBase

StarCoderBase is a 15B
parameter decoder
trained on 1T tokens
of code in 80+
programming languages

Trained on additional
30B tokens of Python

Trained on additional
600B tokens of natural
text from RefinedWeb
and Wikipedia

fine-tuned
StarCoderPlus with an
"uncensored" variant
of the openassistant-
guanaco dataset

Open-access
Dataset

https://arxiv.org/abs/2305.06161

https://arxiv.org/abs/2305.07922

Different sizes
2B, 6B, 16B
initialized from
CodeGen model

InstructCodeT5+CodeT5+CodeT5+

Different sizes
220M, 770M

Fine-tuned with
data generated by
using OpenAI’s API

https://arxiv.org/abs/2305.07922

Code Llama

https://arxiv.org/abs/2308.12950

https://arxiv.org/abs/2308.12950

How do we evaluate Code LLMs?

https://arxiv.org/abs/2107.03374

HumanEval

A dataset of 164 python programs with unit tests to measure
functional correctness for synthesizing programs from docstrings

https://arxiv.org/abs/2107.03374

HumanEval Zero-shot pass@1 (%)

GPT-4 86.6

CodeLlama-34b-Python 53.29

InstructCodeT5+ 37

StarCoder 33.6

Code Generation Closed v/s Open Models

https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard

https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard

HumanEval Zero-shot pass@1 (%)

GPT-4 86.6

Phind-CodeLlama-34B-v2 71.95

WizardCoder-Python-34B-v1.0 70.73

CodeLlama-34b-Python 53.29

Code Generation (HumanEval)

Infilling with Code Generation

// some code
<FILL-HERE>
// some more code

<prefix>
// some code
<suffix>
// some more code
<middle>

<prefix>
// some code
<suffix>
// some more code
<middle>
// generated code

// some code
// generated code
// some more code

String output = Launcher.RESOURCES.getString("WinstoneResponse.ErrorPage",
// BUG: CWE-79 Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')
// new String[] { sc + "", (msg == null ? "" : msg), sw.toString(),
// FIXED:
new String[] { sc + "", URIUtil.htmlEscape(msg == null ? "" : msg),

URIUtil.htmlEscape(sw.toString()),Launcher.RESOURCES.getString("ServerVersion"),"" + new Date() });

response.setContentLength(output.getBytes(response.getCharacterEncoding()).length);
Writer out = response.getWriter();

Infilling to Fix Vulnerabilities

https://arxiv.org/abs/2112.02125

https://arxiv.org/abs/2112.02125

Code
Generation

Bug
Fixing

Vulnerability
Remediation

In Private
Code

Across
Multiple Files

With Many
Steps

30% 45% 60% 75% 90% 100%0%

Fixing Software Vulnerabilities

Code LLMs
GPT-4

CodeLlama-34b-Python

Bug Fixing is Harder

def fibonacci(n):
 if n == 0:
 return 0
 elif n == 1 or n == 2:
 return 1
 else:
 return fibonacci(n-1) - fibonacci(n-2)

Fix bug in fibonacci

def fibonacci(n):
 if n == 0:
 return 0
 elif n == 1 or n == 2:
 return 1
 else:
 return fibonacci(n-1) + fibonacci(n-2)

Requires a LLM that
can follow instructions
(or is chatty)

HumanEvalFix

https://arxiv.org/abs/2308.07124

A dataset created by adding a bug
to each of the 164 HumanEval
solutions. Bugs are written such
that the code still runs but produces
an incorrect result leading to at
least one unit test failing.

HumanEvalFix Zero-shot pass@1 (%)

GPT-4 47

Phind-CodeLlama-34B-v2 39.57

WizardCoder-Python-34B-v1.0 38.66

CodeLlama-34b-Instruct 33.14

https://arxiv.org/abs/2308.07124

https://dl.acm.org/doi/10.1145/3379597.3387461

Are commits a good data source
for instruction tuning code LLMs?

https://dl.acm.org/doi/10.1145/3379597.3387461

https://hf.co/patched-codes/patched-coder-34b

Patched Coder
Instruction:
commit_msg

Input:
code_before

Response:
code_after

CommitPackFT is a 2GB filtered version
of CommitPack to contain only high-
quality commit messages that resemble
natural language instructions.

https://hf.co/datasets/bigcode/commitpackft

CodeLlama-34b-Python patched-coder-34b

https://hf.co/patched-codes/patched-coder-34b
https://hf.co/datasets/bigcode/commitpackft

Patched Coder is the SOTA Open Code LLM

Code LLM HumanEval HumanEvalFix

GPT-4 86.6 47

Phind-CodeLlama-34B-v2 71.95 39.57

WizardCoder-Python-34B-v1.0 70.73 38.66

patched-coder-34b 53.57 41.34

CodeLlama-34b 53.29 33.14

Code
Generation

Bug
Fixing

Vulnerability
Remediation

In Private
Code

Across
Multiple Files

With Many
Steps

30% 45% 60% 75% 90% 100%0%

Fixing Software Vulnerabilities

Code LLMs Instruction
Tuning

GPT-4
CodeLlama-34b-Python

GPT-4
patched-coder-34b

Static Analysis Eval

https://hf.co/datasets/patched-codes/static-analysis-eval

A dataset of 76 Python programs taken from real Python
open-source projects (top 1000 on GitHub), where each
program is a file that has exactly 1 vulnerability as
detected by a particular static analyzer (Semgrep).

https://hf.co/datasets/patched-codes/static-analysis-eval

Static Analysis Eval

1. Scan with static analyzer (Semgrep)
2. Extract <CWE>, <vulnerable line(s)> and <error message> from the output

of the analyzer
3. Prompt the code LLM to generate fix for the vulnerability
4. Scan again with the static analyzer to check if the error message goes away

Instruction:
<error message>

Fix vulnerability <CWE> in

<vulnerable line(s)>

Input:
vulnerable_code

Response:
fixed_code

Static Analysis Eval Zero-shot pass@1 (%)

GPT-4 55.26

patched-coder-34b 51.32

Code
Generation

Bug
Fixing

Vulnerability
Remediation

In Private
Code

Across
Multiple Files

With Many
Steps

30% 45% 60% 75% 90% 100%0%

Fixing Software Vulnerabilities

Code LLMs Instruction
Tuning

Prompting
with
Security
Context

GPT-4
CodeLlama-34b-Python

GPT-4
patched-coder-34b

GPT-4
patched-coder-34b

Retrieval Augmented Generation (RAG)

CodeT5+’s encoder-decoder architecture enables end-to-end retrieval-augmented code generation

Retrieval Augmented Generation (RAG)
1. Unimodal (text or code)
2. Bimodal (code and description pairs)
3. Bimodal with context (instruction with

before_code and after_code pairs)

Build a few-shot prompt

Instruction:
<retrieved_similar_commit_message>

Input:
<retrieved_similar_vulnerable_code>

Response:
<retrieved_fix>

Instruction:
<error message>

Fix vulnerability <CWE> in <vulnerable line(s)>

Input:
vulnerable_code

Response:
fixed_code

Use obfuscation to preserve structural fix

https://arxiv.org/abs/2303.07263

Fixing vulnerabilities with RAG

https://arxiv.org/abs/2303.07263

Code
Generation

Bug
Fixing

Vulnerability
Remediation

In Private
Code

Across
Multiple Files

With Many
Steps

30% 45% 60% 75% 90% 100%0%

Fixing Software Vulnerabilities

Code LLMs Instruction
Tuning

Prompting
with
Security
Context

With RAG
(Retrieval
Augmented
Generation)

Static Analysis-augmented Generation (SAG)

Instruction:
<error message>

Fix vulnerability <CWE> in

<vulnerable line(s)>

Input:
related_code

vulnerable_code

Response:

https://twitter.com/Pavel_Asparagus/
status/1699872712749936677

1. Feed GPT-4 file structure of
project + feature I'm trying to
implement

2. Ask what filenames it needs to
see to implement that feature

3. Put those files into context
window

4. Ask if it's seen enough, if No go
to step 1 while keeping context
from current loop

5. If yes, ask for filenames and
specific changes

https://twitter.com/Pavel_Asparagus/status/1699872712749936677
https://twitter.com/Pavel_Asparagus/status/1699872712749936677

https://arxiv.org/abs/2309.12288

https://arxiv.org/abs/2309.12288

SAG

1. Reachability analysis
2. Impact analysis

https://www.veracode.com/blog/managing-appsec/vulnerable-methods-under-hood

https://www.veracode.com/blog/managing-appsec/vulnerable-methods-under-hood

https://dl.acm.org/doi/10.1145/3236024.3275535

https://dl.acm.org/doi/10.1145/3236024.3275535

Code
Generation

Bug
Fixing

Vulnerability
Remediation

In Private
Code

Across
Multiple Files

With Many
Steps

30% 45% 60% 75% 90% 100%0%

Fixing Software Vulnerabilities

Code LLMs Instruction
Tuning

Prompting
with
Security
Context

With RAG
(Retrieval
Augmented
Generation)

With SAG
(Static
Analysis-
augmented
Generation)

Static Analysis-augmented Generative Agents (SAGA)

https://arxiv.org/abs/2309.12499

https://arxiv.org/abs/2309.12499

Code
Generation

Bug
Fixing

Vulnerability
Remediation

In Private
Code

Across
Multiple Files

With Many
Steps

30% 45% 60% 75% 90% 100%0%

Fixing Software Vulnerabilities

Code LLMs Instruction
Tuning

Prompting
with
Security
Context

With RAG
(Retrieval
Augmented
Generation)

With SAG
(Static
Analysis-
augmented
Generation)

With SAGA
(Static
Analysis-
based
Generative
Agents)

Developer Less Security
(The Prestige)

• Patched Coder
• Static Analysis Eval

https://www.mckinsey.com/capabilities/mc
kinsey-digital/our-insights/the-economic-
potential-of-generative-ai-the-next-
productivity-frontier#business-value

https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/the-economic-potential-of-generative-ai-the-next-productivity-frontier
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/the-economic-potential-of-generative-ai-the-next-productivity-frontier
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/the-economic-potential-of-generative-ai-the-next-productivity-frontier
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/the-economic-potential-of-generative-ai-the-next-productivity-frontier

Asankhaya Sharma
asankhaya@patched.codes

