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Abstract—Developers today use significant amounts of open
source code, surfacing the need for ways to automatically audit
and upgrade library dependencies, and giving rise to the subfield
of Software Composition Analysis (SCA). SCA products are con-
cerned with three tasks: discovering dependencies, checking the
reachability of vulnerable code for false positive elimination, and
automated remediation. The latter two tasks rely on call graphs
of application and library code to check whether vulnerability-
specific sinks identified in libraries are used by applications.
However, statically-constructed call graphs introduce both false
positives and false negatives on real-world projects. In this
paper, we develop a novel, modular means of combining call
graphs derived from both static and dynamic analysis to improve
the performance of false positive elimination. Our experiments
indicate significant performance improvements.

Index Terms—Software analysis, Software security and trust;
data privacy

I. MOTIVATION

Developers today use large amounts of third-party code
to build applications, as code reuse significantly increases
productivity and lowers development costs [25]. However,
given the fact that up to 80% of typical applications are
now third-party code, there is a growing need for tools to
manage open source risk [27]. The 2017 Equifax data breach
was infamously caused by a vulnerability in Apache Struts
2,1 an open source web framework. “Using Components with
Known Vulnerabilities” is listed in the OWASP Top 10 [23],
and the dependency upgrades required to remediate these are
time-consuming and often not carried out frequently enough
[7] [18] [8]. Furthermore, application dependencies constantly
change and are difficult to determine and audit manually due
to the complexity of modern package managers and library
ecosystems.

Software Composition Analysis (SCA) is an emerging sub-
field of application security concerned with precisely this
problem. SCA products offer a suite of services centered
around automated identification of third-party library depen-
dencies. Auxiliary services such as interfaces for viewing
software inventories, enforcing organization-wide policies, and
integration with CI/CD [9] setups may also be present.

Our SCA product solves two pain points with typical SCA
offerings. The first is false positives arising from straight-
forward dependency analysis – framework-based applications
pull in large trees of transitive dependencies, which, despite
the fact that they are included, may not be used in the final
application, or at least not in vulnerable ways. We analyze
application call graphs to identify and eliminate such cases.

1https://nvd.nist.gov/vuln/detail/CVE-2017-5638

The second pain point is remediation: we provide a way to
automatically upgrade dependencies, using call graphs again
to check if the upgrade is potentially breaking.

In this paper, we describe the architecture of a state-of-
the-art SCA product and discuss techniques for performing
the core SCA tasks: detection of libraries, reachability of
vulnerable code for false positive elimination, and automated
remediation. We motivate the need for dynamic analysis to
obtain accurate results across all tasks and illustrate a novel
means of composing call graphs derived from static analysis
and instrumentation in a manner that is modular in third-party
libraries, allowing analysis to be performed scalably in CI/CD
pipelines. Merging static and dynamic call graphs can result in
significantly more vulnerable methods discovered, improving
the performance of downstream tasks.

II. RELATED WORK

The problem of false positives in static call graph construc-
tion has been thoroughly investigated [16] [29], and attempting
to improve precision using dynamic analysis is a natural
next step [28] [30]. Blended analysis [21] [22] is a similar
approach, first obtaining the structure of a program using
dynamic analysis, then applying a static analysis on top of
it.

[26] is perhaps the most related work, similarly utilizing
a combination of static and dynamic analysis to eliminate
false positives in SCA. The key innovations of our approach
are the use of hand-curated, vulnerability-specific sinks and
the fact that the analysis is modular, not requiring call graph
construction on demand for libraries (an idea similar to [31]).
The latter makes the analysis scalable, allowing it to complete
in minutes on average and making running it in a CI pipeline
feasible.

III. DISCOVERING DEPENDENCIES

An essential problem in SCA is that of discovering depen-
dencies: determining the third-party libraries a project uses
given its source code. Results are typically drawn from some
universe of open source libraries, such as coordinates on
Maven Central.

A. Static Dependency Analysis

The most straightforward way of determining a project’s de-
pendencies is to read its dependency manifests, e.g. pom.xml.
These contain a listing of library coordinates and associated
version constraints. Package managers interpret these mani-
fests to perform dependency resolution: querying an external
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repository to determine the transitive dependencies of each
library (which may themselves introduce more constraints),
then selecting a set of libraries which satisfies all constraints.
In the event of an inability to satisfy every constraint, package
managers may fail or approximate a solution (e.g. Maven’s
nearest definition heuristic, which applies when multiple ver-
sions of the same library are required). The definition of what
constitutes a valid solution also varies, e.g. npm does not
require a single version of each library.

B. Dynamic Dependency Analysis

The main difficulty of detecting dependencies statically
is in modeling the implementation of a package manager
correctly. Package managers are typically unspecified and must
be each handled specially. Dependency resolution is also often
nondeterministic and might produce different results over time,
due to reliance on external repositories that may be updated by
developers. This suggests that a better approach is to perform
a dynamic analysis instead; a theme we explore in this paper.

A dynamic dependency analysis integrates with package
managers and can get the results of dependency resolution
exactly as they would have produced at a point in time. The
main shortcoming is that a full build of the project may be
required, which is time-consuming and difficult to automate
in general, due to the system dependencies and configuration
required.

Nevertheless, going from a purely static analysis to a
package-manager-integrated dynamic analysis demonstrably
improves accuracy. We evaluate this using a set of 41 mi-
crobenchmarks2 across 18 different package managers. On
average, we see that the dynamic analysis improves the number
of dependencies discovered by 204% (131 with purely static,
and 398 with dynamic), with no cases in which it performs
worse.

IV. IDENTIFYING VULNERABILITIES

A. Vulnerability Databases

The next step is to identify vulnerabilities due to libraries.
A baseline data source is the NVD; practically every SCA
product informs users of CVE vulnerabilities. SCA vendors
also curate their own vulnerability datasets, supported by both
data mining methods [3] [14] and custom tooling [2].

Determining if a vulnerability is exploitable in an appli-
cation would allow an SCA product to report fewer false
positives. This is valuable because notification fatigue from
false positives becomes the bottleneck when fixes are deployed
automatically [8]. Furthermore, the amount of false positive
reduction is significant: commercial SCA products report that
70-80% of dependencies are never referenced in application
code.

Our approach is based on a lightweight reachability analysis
using call graphs. We discuss the tradeoffs of various call
graph construction methods before covering our implemen-
tation of the analysis and how it fits into our SCA product.

2https://github.com/srcclr/efda

B. Static Call Graphs

Given an application’s source code, we may view it as a
call graph, a structure that expresses the calling relationships
between its methods. A directed edge e from method m1

to method m2 indicates that a call site within m1 invokes
m2 in some execution of the program. A call chain is a
sequence of edges e1e2...en where (mn,mn+1) = en and
(mn+1,mn+2) = en+1, i.e. consecutive edges must share a
method vertex.

Call graph construction for object-oriented programs must
model the effects of dynamic dispatch correctly. False positives
are possible when applying such analyses [15], leading to
infeasible edges which are present in the graph but do not
occur in any concrete run of the program. Furthermore, call
chains comprising only feasible edges may themselves prove
be infeasible. On average, 25.5% of call chains created by
static approaches are infeasible [16].

The presence of infeasible call chains means that a reacha-
bility analysis would produce false positives, traversing paths
which will never occur at runtime.

C. Dynamic Call Graphs

Real-world static analysis tools often deliberately eschew
prohibitively expensive or conservative approximations that
would render analysis less useful when “hard” language fea-
tures such as reflection are involved [19]. This causes problems
when analyzing highly dynamic frameworks, such as Spring
or Rails: the resulting call graphs are incomplete and lead to
false negatives in reachability analyses.

An alternative is the use of runtime instrumentation, a form
of dynamic analysis. Executing a program’s tests and recording
its flows has the upside of never producing any infeasible call
graph edges, since only flows which were actually observed
are reported. Support for all language features is also a given.

The downsides are that this approach produces false neg-
atives (missing paths to sinks called by code not covered by
tests) and requires code to actually build and run in order to
be analyzed. Instrumentation also imposes overhead, slowing
test execution.

D. Combined Static and Dynamic Graphs

The relationship between static and dynamic call graphs,
as well as how they approximate a theoretically ideal call
graph, has been investigated by [28]. In short, the ideal call
graph is the union of dynamic call graphs across all possible
executions of a program (making the dynamic call graph for
one execution a subset of it), and the static call graph is a
superset of the ideal call graph due to the presence of infeasible
edges. Due to the soundiness [19] of our approach (because of
false negatives from unsupported language features; covered
in detail in Section IV-E1), we modify the definition slightly,
so that neither the static call graph nor the ideal call graphs
are subsets of each other. The modified relationship is shown
in Figure 1.

The final call graph that we search for uses of vulnerability-
specific sinks is derived by taking the union of the static

https://github.com/srcclr/efda


Fig. 1. Combined static and dynamic call graphs

and dynamic call graphs, the intuition being that it brings us
closer to the ideal call graph. In the following sections, we
explain how this is done in a modular fashion, preserving the
properties of the graph that allow a fast reachability check.

E. Vulnerable Methods

We consider a vulnerable library to be possibly used in an
application if a vulnerability-specific sink is reachable from the
application’s call graph. This is weaker than determining if a
vulnerability is exploitable as control flow is not taken into
account, admitting false positives. We curate these sinks by
hand; these are the method-level root causes of vulnerabilities
mentioned in CVEs and proprietary vulnerabilities.

1) Static Call Graph Construction: To illustrate our ap-
proach, we refer to Figure 3, which shows the final graph,
with labels for vertices (e.g. A) and contours for subgraphs
(e.g. CC). Given an application, we start by constructing a
static call graph Gs = (Vs, Es), represented by the contour
Gs. As we only analyze the application, Vs consists of both
application methods (B, A, D, E) and the entry points of
libraries called directly by the application (C, U); transitively-
called library methods (V, P, Q) are absent.

Es is initialized to the set of statically-known static or
virtual calls; given a method call a.b() in method m, we add
an edge between m and the method b of a, using a’s declared
class or interface.

We expand the set Es with a number of passes:

1) Class Hierarchy Analysis (CHA) [4], which determines
possible receiver classes for b using subclass relations

2) Rapid Type Analysis (RTA) [5], which rules out receiver
classes using information about object instantiations

3) Reflection analysis, which adds edges for reflective calls
with constant arguments; as this is a subset of all

1: for e in e1e2...en do
2: (m1,m2)← e
3: if m1 ∈ Vs then
4: add e...en to G′

s

5: break
6: end if
7: end for

Fig. 2. Merging vulnerable method call chains

possible edges due to reflective calls, the approach is
soundy [19]

Thus we have G′
s = (Vs, RTA(CHA(Es))). We define the

set of first-party entry points Ve as the set of methods without
callers, i.e. {m1 | ∃m1 ∈ V s, ∀(m2,m3) ∈ Es,m1 6= m3}. A
and D in the diagram are examples. Methods of Ve must be
first-party, as third-party methods must be called by a first-
party method to appear at all. Ve may be further filtered
down (e.g. by considering only main methods) depending
on analysis goals. G′

s is constructively a graph of all methods
reachable from a first-party entry point.

Separately, we precompute vulnerable method call chains
CC for libraries: sequences of directed edges e1e2...en such
that en ends at a vulnerable method (Z, V, Q), and e1 is an
entry point of the library (Y, X, U, P). A call chain represents
a path from a library entry point to a library-specific sink.

2) Merging Library Call Chains: Given a vulnerable
method call chain e1e2...en and a static call graph G′

s, we
merge them using the algorithm in Figure 2. For each call
chain, we iterate through its edges (line 1), looking for a
suffix which begins at an existing edge in the graph (lines
2-3), adding the suffix to the graph if we find it (line 4).

Applied to G′
s, this would result in V being added. The

approach ensures that we do not introduce third-party entry
points (X, Y, P): new outgoing edges are only attached to
existing ones and no new incoming edges are added. This
preserves the property that all vertices are reachable from a
first-party entry point. Consequently, determining if a vulner-
able method is called in some execution of the program –
the key question we are interested in answering – is a simple
membership check.

3) Dynamic Call Graph Construction: Given tests, we
instrument them to derive a dynamic call graph, then compose
it with the static call graph and vulnerable method call chains
to find more potentially reachable vulnerable methods.

Running the tests, we construct a dynamic call graph
Gd = (Vd, Ed). Vd comprises both first- and third-party
methods (J, T, S, R, B), and Ed contains only feasible edges
and paths. In contrast to Es, where method callers were
only ever first-party methods and callees were either first-
or third-, Ed contains third-party callers and callees – this
may be observed from the execution of a framework such
as JUnit, where a main method defined in JUnit itself (J)
is called, which dynamically discovers @Test-annotated user
methods (T) to invoke reflectively. This inversion of control



Fig. 3. Example of a composed call graph. The boundary lines represent (from
left to right) the sets Gd, G′

d, Gs = G′
s, methods of a direct dependency,

methods of a transitive dependency, and CC.

is a common pattern in framework-based applications [26].
First-party entry points (T) thus do have callers.

When composing the static and dynamic call graphs, we
would like to preserve the property that allowed us to de-
termine reachability using set membership. We have to add
entry points now, though, because tests were never considered
earlier; the solution is then to ensure that they are first-party.

We first instrument tests, and when the test run completes
(either in success or failure), the resulting edges form the
graph Gd. Next we identify framework entry points: these are
the edges which span framework and application code (JT).
We identify frameworks manually here as there is no good
way to differentiate them without more context, special-casing
common ones like JUnit and TestNG.

Finally, given a framework entry point, we take the vertices
of its transitive closure (T, S, R, B) and add it to a new graph
G′

d – a graph of dynamic edges whose entry points are first-
party.

The union of G′
s and G′

d gives us Gc, a combined static
and dynamic call graph with only first-party entry points. We
may further merge the static call chains into Gc. Paths in Gc

may then span both static and dynamic edges.

F. Discussion

A limitation of vulnerable method call chains being com-
puted for single libraries in isolation is that vulnerable meth-
ods called only within third-party code will be missed. For
example, the edge UP will not be in any call chain because
we cannot tell when computing call chains that P is the start
of a vulnerable method call chain from another library. The
dynamic call graph does handle this case, however, as shown
by S and R; if there were an edge RP (analogous to UP), we
would be able to detect the vulnerable method call.

V. REMEDIATION

Another task we perform automatically is remediate library
vulnerabilities. Our approach [1] is a static analysis that
precomputes diffs between library versions to determine the
changes between them. The diffs are augmented with call
graphs (constructed as in Section IV-E) and are thus semantic
in nature, e.g. considering methods changed if their callees
change.

We then check if methods in the diffs of potential library
upgrades occur in the application’s call graph. These are shown
as potential breaking changes in pull requests that we create
automatically, indicating to developers which upgrades are
riskier.

A. Dynamic Analysis

In keeping with the theme of the paper, we outline an
extension to the above analysis which uses an instrumentation-
derived call graph to improve accuracy. The analysis depends
on accurate call graphs when computing diffs with semantic
information, and checking if an application uses a method of
a combined diff. The latter may benefit from this, especially
if there are tests available. Given that a dynamic call graph
will not contain infeasible edges, there will be not be addi-
tional false positive calls to libraries, leading to fewer library
upgrades being considered as breaking when they are not.

There is also the obvious “dynamic analysis”: executing
tests to check if an upgrade introduces breakage. This does
not subsume the entire analysis for breaking changes as the
latter reveals changes occurring outside the coverage of the
test suite and non-breaking semantic changes.

VI. EVALUATION

TABLE I
CALL GRAPH EDGES

project
static

vertices
static
edges

dynamic
vertices

dynamic
edges

static
sinks

dynamic
sinks

helios 7930 26746 12287 39813 1 3616
immutables 30206 319934 398 874 5 5
java-apns 536 999 4240 8685 58 859
retrofit 1925 5269 7339 22565 6 6

We evaluated the performance of call graph construction on
four real-world Maven-based Java projects (Table I). On aver-
age, we find that dynamic call graphs add 824% more vertices
and 361% more edges, allowing us to discover significantly
more call sites from which vulnerable methods are reachable
in 2/4 cases (shown in the static sinks and dynamic sinks
columns). Most of the extra edges are from third-party depen-
dencies. The tradeoff is that dynamic call graphs less easy to
apply automatically, as manual effort is required to configure
projects so that they compile successfully and their tests run
at least partially. There is also significant variance between
projects in test coverage (and correspondingly, dynamic call
graph size and vulnerable method reachability).



VII. CONCLUSION AND FUTURE WORK

We motivated and described the SCA problem: the fact
that major portions of modern applications are third-party
emphasizes the need for tooling to automatically audit and
upgrade dependencies. Our approach has three components:
dependency analysis, call-graph-based analysis of library use
augmented with hand-annotated library-specific sinks, and
automated remediation. We illustrate the need for dynamic
analysis in each of these tasks, using package manager in-
tegrations to identify dependencies and instrumentation to
build dynamic call graphs. We also describe a novel means
of composing the dynamic and static call graphs together
with precomputed call chains, making the analysis modular in
the library dependencies of the application. This significantly
improves the ability to find vulnerable methods.

In future, we hope to focus on automated remediation, for
example by performing transitive dependency upgrades, or
optimizing upgrades by pruning redundant dependencies or
reacting to dependency conflicts [12].
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