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Abstract—Today software is built in fundamentally different
ways from how it was a decade ago. It is increasingly common
for applications to be assembled out of open-source components,
resulting in the use of large amounts of third-party code. This
third-party code is a means for vulnerabilities to make their
way downstream into applications. Recent vulnerabilities such
as Heartbleed, FREAK SSL/TLS, GHOST, and the Equifax data
breach (due to a flaw in Apache Struts) were ultimately caused
by third-party components. We argue that an automated way to
audit the open-source ecosystem, catalog existing vulnerabilities,
and discover new flaws is essential to using open-source safely.
To this end, we describe the Security Graph Language (SGL), a
domain-specific language for analyzing graph-structured datasets
of open-source code and cataloguing vulnerabilities. SGL allows
users to express complex queries on relations between libraries
and vulnerabilities in the style of a program analysis language.
SGL queries double as an executable representation for vul-
nerabilities, allowing vulnerabilities to be automatically checked
against a database and deduplicated using a canonical represen-
tation. We outline a novel optimization for SGL queries based on
regular path query containment, improving query performance
by up to 3 orders of magnitude. We also demonstrate the
effectiveness of SGL in practice to find zero-day vulnerabilities
by identifying several flaws in the open-source version of Oracle
GlassFish Server.

I. INTRODUCTION

The adoption of DevOps practices and sophisticated de-
ployment tools have made it straightforward to release and
consume software packages.

Developers assemble large applications using off-the-shelf
open-source components and libraries, which are distributed
through centralized repositories such as Maven Central, NPM,
RubyGems, and PyPI. Much of the busywork of downloading
sources and negotiating package versions is automated by
dependency management tools like npm, pip, or gem. A
single install command can pull in hundreds of libraries,
demonstrating how easily large volumes of third-party code
can be included in software projects.

There are many benefits to using open-source libraries: low
cost, code reuse, and the flexibility to customize it to one’s
needs. However, unaudited third-party code is also a means for
flaws and vulnerabilities to make their way downstream into
applications. Recent vulnerabilities – Heartbleed [6], FREAK
SSL/TLS [8], and GHOST [9] – were due to bugs in popular
open-source libraries. The recent Equifax data breach [12], the
largest in history, was also due to a known vulnerability in the
Apache Struts web framework.

We believe that an automated way to audit the open-source
ecosystem – by cataloguing existing vulnerabilities and bugs,
as well as discovering new ones – is essential to being able
to use open-source safely.

To this end, we describe the Security Graph Language
(SGL), a domain-specific language (DSL) for analyzing graph-
structured datasets of open-source code. SGL allows users to
express complex queries on relations between libraries and
vulnerabilities: for example, taking the transitive closure of a
calls relation in a call graph to discover if method calls from
a library reach a sink known to be associated with a given
vulnerability.

SGL doubles as a vulnerability description language. We
represent vulnerabilities intrinsically, as SGL queries. This
allows them to be deduplicated based on the structural types
of queries, providing a means of maintaining the quality of
vulnerability datasets. This representation also allows vul-
nerabilities to be easily verified against a given dataset by
executing them.

SGL is implemented by compilation to Gremlin, a graph
traversal language from the Apache TinkerPop [24] project.
This allows SGL to use any TinkerPop-based graph database
as a back-end; our own implementation uses the DataStax
Enterprise Graph database.

Our main technical contributions are:
• The implementation of a DSL capable of both describing

vulnerabilities and representing complex queries on real-
world vulnerability datasets.

• A strategy for vulnerability duplication checking based
on computing structural types for queries, leading us
to the idea of a canonical, executable representation for
vulnerabilities.

• A novel means of optimizing special cases of SGL
queries for runtime performance based on regular path
query containment. This can improve query performance
by up to 3 orders of magnitude.

This paper is structured as follows:
• Section II covers the problems SGL solves in greater

depth and compares SGL with prior work.
• In Section III, we provide an overview of Gremlin.
• In Section IV, we describe the syntax and semantics of

SGL.
• In Section V, we cover SGL’s type system and how it

supports canonical vulnerability representation.



• In Section VI, we describe how SGL queries may be
rewritten and optimized.

• In Section VII we evaluate the performance of rewritten
SGL queries and include a case study on identifying zero-
day vulnerabilities in the open-source version of Oracle
GlassFish Server.

• We conclude by discussing areas for future improvement
in Section VIII.

II. MOTIVATION

A. Large-scale program analysis and graph qeuries

SGL is a DSL for program analysis. It is meant to express
relations involving open-source libraries, their file contents,
and associated vulnerabilities. Examples of domain objects are
files and file hashes (library-level), as well as methods, classes,
and bytecode hashes (source-level). The full schema is shown
in Figure 3.

Source-level granularity is required because vulnerabilities
ultimately originate in programs, and an understanding of
program semantics is required to accurately analyze their
effects. For example, to determine if a software project inherits
a vulnerability from an open-source library it uses, one might
check if it calls a vulnerable method (i.e. a known sink
identified by a vulnerability research team for that particular
vulnerability). This entails building a call graph [1][2], pos-
sibly also performing a data-flow analysis. The purpose of
doing this at scale is to discover zero-day vulnerabilities from
inter-library relationships.

A useful representation of an entire open-source ecosystem,
from its libraries to their methods, is likely too large to fit
in memory. Our Java dataset contains data for 79M vertices
and 582M edges, computed from 1.4M libraries and totalling
about 76GB. This is why SGL is at heart a graph query
language, intended to interact with databases of library code
and vulnerabilities.

As a general-purpose graph query language, SGL’s closest
relative is Gremlin [24], from which it inherits its core seman-
tics. As a declarative fragment of Gremlin, it is able to express
path queries without joins, but is not Turing-complete. Like
Gremlin, it operates at a lower level of abstraction than other
graph query languages, like Cypher [14] (Neo4j), Datomic
Datalog [10] (Datomic), and GraQL [19] (Grakn), and has
limited facilities for aggregation.

As a DSL for program analysis, SGL exists in the same
space as LogicBlox LogicQL [20], Semmle QL [18], PQL
[23], and Soufflé [22]. Joern [27] is a similar effort which
abstracts over source code with a code property graph [28]
model, but relies on Gremlin directly. Unlike the Datalog-
derived languages in this category, SGL is not capable of
general computation, and the classes of queries it can express
are limited to reachability queries, path enumeration, and
simple aggregations like counting and projection. It also does
not have as many built-in facilities specifically for program
analysis (e.g. syntax for program representation), as it is
currently focused on the more general domain of open-source

security. We hope to grow the language in these two areas in
future.

B. Canonical vulnerability representation

SGL is also intended to give vulnerabilities a canonical,
executable representation. This gives it a secondary use as a
vulnerability description language that works in a distributed
setting.

Vulnerabilities are possible only under specific conditions,
require specific versions of components, and have varying and
relative severity. Without some form of identifier, it is difficult
to pinpoint the particular vulnerability one is discussing and
get it the attention it requires.

Centralized vulnerability databases (e.g. NVD) are the de
facto means of cataloging flaws and bugs in software compo-
nents. They assign nominal identifiers (e.g. CVE-2017-1234)
to instances of vulnerabilities, giving researchers a way to refer
to them.

The CVE format is not completely machine-readable. Com-
ponents that a CVE pertains to are identified inconsistently,
leading to false positives when trying to assess if a CVE is
relevant to some real-world system.

DSLs meant to add structure to CVEs exist; OVAL [3] is
perhaps the most widely-adopted standard for vulnerability
description. It uses information derived from CVEs and CPEs
to identify vulnerable system configurations. Other efforts in
the space are OASIS AVDL [4], for describing web application
exploits, and VuXML [5], which captures vulnerabilities in
software packages for FreeBSD.

As a vulnerability description language, SGL is focused on
the domain of open-source libraries and vulnerabilities, and
on drawing insights from large datasets offline, instead of
live systems. It is also generally terser (allowing interactive
use; see Section II-C) and contains fewer auxiliary details
(such as a component’s vendor), but has enough to identify
software components unambiguously. Where it does better
than its competitors is in its support for automated verification
and deduplication.

Every SGL description of a vulnerability is a graph query,
which can be trivially tested by executing it against a database.
This makes the ability to gather the data the only requirement
for being able to gain insight from an SGL-described vulner-
ability.

Furthermore, in SGL, every vulnerability has a structural
canonical form (see Section V-B). Anyone can specify a
vulnerability, execute it against their own vulnerability dataset,
and share it with others. Not relying on a surrogate key, such
as a CVE-ID, allows this scheme to work in the absence of a
centralized authority.

C. As a domain-specific language

SGL was designed for the domain of open-source security.
Its target audience is security researchers, and it abstracts
over many graph database implementation details that Gremlin
exposes, requiring knowledge of only the property graph
model and schema to use. It is also significantly terser than



other vulnerability description languages and is suitable for
use in an interactive, exploratory setting. This is essential for
researchers as a means of inspecting data for patterns.

TinkerPop 3 provides ways to create internal DSLs [13],
but we chose to go with an external DSL so we could remove
things from Gremlin (e.g. Turing-completeness), giving us
a simpler language grounded in existing theory (i.e. with
decidable containment) that would be easier to reason about.
For example, we are able to reason abstractly about operations
such as transitive closure without having to interpret imper-
ative Gremlin constructs to do so (see Figures 1 and 2, and
Section VI).

III. GREMLIN

In this section, we give a brief introduction to the Gremlin
graph query language before moving on to SGL; the interested
reader is referred to [24] for in-depth coverage, and to [16]
for examples of Gremlin queries.

Operationally, the Gremlin implementation may be viewed
as a virtual machine specialized for graph traversal. The
machine takes a list of instructions (collectively called the
traversal) and a property graph as inputs, changing its state as
it executes the instructions in order. The state of the machine
is a bag of pointers to objects, typically graph vertices; one
might compare it to the frontier of a graph traversal algorithm.
Once the list of instructions is exhausted, the final state of the
machine is taken to be the result.

The Gremlin language may be viewed as the instruction set
of the machine. Each instruction is called a step.

The semantics of Gremlin may be characterized more
abstractly as homomorphism-based, with bags of results [17].
It supports complex graph patterns with joins and is Turing-
complete: in addition to describing navigational paths and
aggregation, Gremlin steps may perform side effects and alter
control flow.

Gremlin operates on property graphs [17]: disjoint sets of
vertices and directed edges, where each vertex or edge carries
a label ` and is associated with a number of properties, or
key-value pairs. The property keys ρ are symbols from some
alphabet P , and the values may be any data from some domain
D. The alphabets of symbols L and P , given ` ∈ L and ρ ⊆ P ,
are disjoint.

The canonical implementation of Gremlin is for the Java
Virtual Machine (JVM), where L and P are sets of strings,
and D is the set of JVM primitives and objects.

The Gremlin language has no concrete syntax: it is an
internal DSL by design. The canonical implementation uses
Groovy method calls to create chains of steps.

Given a graph containing libraries, vulnerabilities, and
methods, consider this Gremlin query, which counts methods
of a version of Spring MVC associated with vulnerabilities:

g.V().hasLabel("library")
.has("group", "org.springframework")
.has("name", "spring-mvc")
.has("version", "4.0.0.RELEASE")
.out("has_method")

.where(in("has_vulnerable_method"))

.count()

g begins the query. The first step, V(), conceptually places
pointers at all vertices in the graph. The has steps then filter
the vertices pointed to just library vertices with the given
property keys and values.
out("has_method") then moves the pointers to method

vertices connected to the libraries by has_method outgoing
edges. The state of the machine is now a bag of methods
associated with Spring MVC.

We want to count methods which have an incoming edge
from a vulnerability, but not actually traverse to the vulnerabil-
ities. where(in("has_vulnerable_method")) does
this, filtering the result further but not moving the remaining
pointers.

Now that the pointers of the traversal are at all the vulner-
able method vertices, we can apply the count() step.

IV. SYNTAX AND SEMANTICS

SGL works much like Gremlin, in that its programs are
chains of steps, and it describes navigational queries [17] over
property graphs.

Unlike Gremlin, it is a typed language: together, a label and
property key set ` × ρ may be seen as defining the type of a
vertex or edge; this is further described in section V.

A. Syntax

SGL programs consist of a set of bindings naming se-
quences of steps, followed by a sequence of steps.

<sgl_prog> ::= [ <bindings> ] <steps>
<bindings> ::= <binding> <bindings> | <binding>
<binding> ::= ’let’ <ident> ’=’ <steps> ’in’

<ident> is a Java identifier. A step syntactically resembles
a C-family function call, and may either be a vertex or edge
traversal step – which ensure that the traversal passes through
the given vertex or edge – or a meta step: aggregations such
as count and select, or higher-order steps like union
and where. An identifer may also appear in place of a step,
standing for the subprogram it is bound to.

<steps> ::= <step> <steps> | <step>
<step> ::= <vertex> | <edge>

| <meta> | <ident>
<vertex> ::= <ident> ’(’ <args> ’)’
<edge> ::= <edge_label> [ ’*’ ]
<meta> ::= <meta_name> [ ’(’ <args> ’)’ ]

Steps are parameterized by predicates which range over lit-
erals. We show only the < predicate for brevity. <literal>
may be assumed to be either strings or integers for simplicity.

<predicate> ::= <literal> | ’<’ <literal>
<keyword> ::= <ident> ’:’
<arg> ::= [ <keyword> ] ( <predicate> | <steps> )
<args> ::= <arg> ’,’ <args> | <arg>

The following SGL program queries for the presence of a
CVE identifier for Apache NiFi.



let nifi = library(’java’,
’org.apache.nifi’,
’nifi-web-ui’, ’1.0.0’) in

nifi library_in_version_range
version_range_in_vulnerability
where(describes_cve cve(’2017-7665’))

We name a vertex representing the NiFi library. The
next line is a sequence of four steps. Composition of steps
is written in a postfix syntax reminiscent of Gremlin’s
method calls: library(...) count is the equivalent of
Gremlin’s V().hasLabel(’library’).count(), or
count(library(...)) in C-family syntax.

The first step starts the query, putting a pointer at the nifi
vertex. The second moves the pointer to the set of vertices
representing NiFi’s version ranges – CVEs often refer to
multiple vulnerable versions of libraries, and these are reified
as range vertices in SGL’s schema.

The third step moves from version ranges to the vulnerabil-
ities they appear in. The last filters away vulnerabilities which
do not pertain to CVE-2017-7665: those which do not have
an outgoing edge of type describes_cve, and those which
do but do not have the right CVE-ID. Concatenation of steps
here serves as a means of conjunction, as in Gremlin.

library(
coord1: ’org.springframework’,
coord2: within(’spring-web’, ’spring-mvc’),
version: < ’5.0.0.RELEASE’)
union(
identity, dependent_on*,
embedded_in*) dedup count

Vertex steps support keyword arguments, allowing the eli-
sion of irrelevant arguments; this is analogous to leaving out
has clauses in Gremlin. The < and within predicates are
demonstrated, as are the meta steps union – which allows a
traversal to branch depending on the given argument traversals
– and count and dedup, which are analogous to their SQL
counterparts. identity is the identity traversal.

Adding the Kleene star computes the transitive closure of an
edge traversal step with the same source and destination types.
Putting everything together, this query counts the implicit and
explicit transitive dependencies of Spring MVC.

B. Semantics

We describe the semantics of SGL programs via translation
to Gremlin. The translation begins by recursively expanding
bindings and removing keyword arguments.

Bindings may be seen as names for subprograms, rather
than for runtime values; as such, they do not allow the results
of queries to depend on the results of other queries.

Predicates map to Gremlin predicates. Vertex steps map to
Gremlin’s has and hasLabel steps, and edge traversal steps
map to out or in. Meta steps map to individual Gremlin
steps.

SGL inherits Gremlin’s homomorphism-based bag seman-
tics, but without joins. It is not Turing-complete, featuring only
transitive closure instead of unrestricted iteration, thus SGL

let spring = library(’java’,
’org.springframework’,
’spring-webmvc’,
’4.3.8.RELEASE’) in

spring depends_on*

Fig. 1. Transitive SGL query

g.V()
.hasLabel(’library’)
.has(’language’, ’java’)
.has(’group’, ’org.springframework’)
.has(’artifact’, ’spring-webmvc’)
.has(’version’, ’4.3.8.RELEASE’)
.repeat(out(’depends_on’).dedup())
.emit()
.dedup()

Fig. 2. Gremlin output for transitive query

steps describe only navigational paths and aggregation without
side effects. SGL may be seen as a declarative fragment of
Gremlin in the sense that every SGL expression is referentially
transparent.

Figures 1 and 2 shows an SGL query translated to Gremlin,
including the translation of the Kleene star to imperative
iteration.

V. TYPE SYSTEM

A. Schema-based checking

A notable difference between SGL and Gremlin is that
the former is typed and requires an explicit schema. Schema
knowledge contributes to many of SGL’s functions, including
allowing elision of information that is implicit but unambigu-
ous, error-checking, type-checking, and query rewriting and
optimization. The schema we use for the domain of open-
source libraries and vulnerabilities is shown in Figure 3.

We define the type of a particular vertex or edge to be the
product of its label and property key set, ` × ρ. The type of
a query is the set of vertex or edge types which occur in its
result set.

An interesting subset of the typing rules for checking that
SGL queries conform to a given schema is shown in Figure 4.

Fig. 3. Schema for open-source domain



t1, ..., tn : Type

start : {t1, ..., tn}
[start]

start : {t, ...} v : {t, ...} → {t}
start v : {t}

[vertex]

v : {t, ...} e : {t, ...} → {u}
v e : {u}

[traversal]
v : {...} count : {...} → Int

v count : Int
[count]

v : {t, ...} e : {t, ...} → {u} where : {t, ...} → ({t, ...} → {u})→ {t, ...}
v where(e) : {t, ...}

[where]

v : {t, ...}
e1 : {t, ...} → {u1}, ..., en : {t, ...} → {un}

union : {t, ...} → [{t, ...} → {u1}, ..., {t, ...} → {un}]→ {u1, ..., un}
v union(e1, ..., en) : {u1, ..., un}

[union]

Fig. 4. Typing rules for a subset of SGL

vulnerability(cwe: 1)
has_version_range union(
version_range(from: ’1.0’, to: ’1.1’))

union(
has_library union(
library(’java’, ’web’, ’core’, ’1.0’),
library(’java’, ’web’, ’core’, ’1.1’)),

has_vulnerable_method union(
method(’com/example/Controller’,
’config’, ’()’)))

Fig. 5. Vulnerability query

Premises defining type variables like t and u are elided from
all rules after start. {t, ...} denotes an open set of types
containing at least t.

B. Canonical vulnerability representations

As mentioned earlier, vulnerabilities in SGL are represented
as queries, allowing them to be automatically checked by
executing them.

Queries are given a structural type which doubles as a nor-
mal form for vulnerabilities, allowing them to be automatically
deduplicated. This section describes these properties with an
extended example.

Automated verification: Consider a simple XML external
entity (XXE) vulnerability, where a web framework does not
properly whitelist allowed inputs. A particular version range
of that library is vulnerable, e.g. 1.0 to 1.1. We can describe
it more precisely by listing the specific function or method
responsible for not performing the desired validation, the sink;
we can then assume that all code paths which go through that
method trigger the vulnerability, modulo data flow. Having
additional information is useful (e.g. severity, or a human-
readable title), but this is the minimum required to identify
instances of the vulnerability.

Assuming the existence of all this information in a graph,
an SGL vulnerability is a subgraph containing the relevant
libraries, methods, and version ranges. Vulnerability sources,
such as a CVE-ID, are deliberately left out, as they do not
intrinsically identify the vulnerability – they may still be
present in the graph for queries, but do not contribute to the
vulnerability’s canonical representation.

We represent the vulnerability with the SGL query in
Figure 5. This may be seen as an extensional description
of the vulnerability. The cwe property contains its Common
Weaknesses Enumeration (CWE) identifier, a taxonomy of
software weaknesses and flaws.

While CWEs also come from a centralized source, the CWE
list is versioned and added to far less frequently than CVEs
are (with 31 versions in the past 8 years); it thus may be
assumed to be static with respect to a given version of SGL.
This ensures that changes to it do not bottleneck the addition
of vulnerabilities expressed in SGL.

Executing the query representing a vulnerability would then
be tantamount to verifying it – a non-empty result set indicat-
ing that the vulnerability and all its associated relationships are
present. This is valid as long as the graph is correct; to ensure
that, we build the graph in a reproducible way from publicly-
available data. Additionally, the full expressiveness of SGL is
available to perform further analysis on vulnerabilities once
they are determined to exist.

Automated deduplication: Representing a vulnerability as a
vertex with a single cwe property does not yet address the
second requirement of deduplication. Since vulnerabilities are
intrinsically defined by their surrounding subgraph of libraries
and methods, we need at least some representation of that in
the vertex in order to tell if it is different from another with
the same CWE.

To deal with this, we compute a structural type for the query,
serialize it, and store it as a property in the vulnerability vertex.
These types are different from those mentioned in Section V-A
(which classify queries by the kinds of results they produce)
in that they classify queries by structure. That is, two queries
have the same type iff their result sets are identical (and the
vulnerability subgraphs they represent are isomorphic). This
reduces the problem of deduplicating subgraphs in a graph
database to that of checking if two SGL queries have the same
structural type.

We compute the structural type of a vulnerability query
as follows. For purposes of vulnerability description, we
require that everything be specified explicitly, so we disallow
intensional queries and use a subset of SGL with only the
following constructs:



• Bindings
• vulnerability, version_range, method,
library, has_version_range, has_library,
has_vulnerable_method vertices and edges

• eq and within predicates
• Queries that begin at a vulnerability vertex
The query in Figure 5 satisfies these conditions.
We perform the same type and semantic checks as we do on

standard SGL queries. To arrive at the structural type from the
query, we expand certain syntactic elements and at the same
time preserve semantic equality.

In this particular case, rendering the type in SGL syntax
then gives us the same query in Figure 5. The type may also
be thought of as a syntactic normal form, or as a canonical
way to serialize the graph. It is rendered as a string and
stored in the vertex property query. This gives researchers a
decentralized representation and enables community-submitted
vulnerabilities to be verified and stored.

One weakness with this scheme is that vulnerabilities rep-
resented as queries are based on a snapshot of the state of the
ecosystem at a point in time. Library versions may generally be
assumed to be immutable, but new versions of libraries being
released would render existing version ranges incomplete.
This implies that vulnerabilities must be maintained, as CVEs
must, and may give rise to false negatives when automatically
checked.

To solve this, one must ensure that SGL-described vulner-
abilities are only taken to be complete when fixed versions of
libraries are released, i.e. when all version ranges are closed.
As all version ranges are listed explicitly, an SGL-described
vulnerability should also be taken to be out of date if, on use,
it does not contain a version of a library that one knows to
exist. That would be cause for a review by a researcher.

VI. QUERY ANALYSIS AND OPTIMIZATION

A. Rewriting queries

Being able to check if two queries are equivalent is essential
to applications such as query rewriting and optimization. In
this section, we describe a reduction of SGL to regular path
queries (RPQ) [25] that enables us to rewrite queries for
improved performance.

Preliminaries: We review the definitions of query con-
tainment and equivalence. The result set of a query q when
executed against a database instance I is denoted q(I).

Definition VI.1. Query q1 is contained in q2, denoted q1 ⊆ q2,
if ∀I. q1(I) ⊆ q2(I).

Query equivalence is formulated in terms of containment:

Definition VI.2. Two queries q1 and q2 are equivalent, de-
noted q1 ≡ q2, if ∀I. q1(I) ⊆ q2(I) ∧ q2(I) ⊆ q1(I).

Regular path queries: Regular path queries are considered
to be the basic querying mechanism for graph databases [17].
RQ is the set of regular path queries limited to the operations
of selection, projection, conjunction, disjunction, and transitive

closure. Query containment for RQ is 2EXPSPACE-complete
[25] but decidable.

We describe how a subset of SGL is reduced to a subset of
RQ, allowing the use of its containment algorithm.

The SGL subset we consider contains only vertex
steps, edge traversal steps, and the meta step where,
with vertex predicates. This is sufficient to express
the pattern we wish to show equivalence for:
queries with known starting and ending points, e.g.
library(...) dependent_on* has_method
calls* method(...), where the ellipses stand for
some nonempty set of properties with arbitrary predicates as
values. We chose this subset because the pattern of trying
to determine the path between sets of sources and sinks
arises commonly in practice and is a good starting point for
developing further optimizations.

This subset is exactly RQ without disjunction. where
allows us to remove vertices from the final result set. We
use the semantics of RQ (where a query’s result is the set
of vertices along the whole path traversed) for reasoning, but
can easily recover Gremlin’s semantics by selecting only the
ending bag of vertices and adding dedup.

Consider a directed graph with vertices V , and two sets
of vertices vs, ve ⊆ V . Suppose there exists some path of
alternating edges and vertices e1v1e2v2...en−1vn−1en between
every vertex in vs × ve. No matter the direction of the
intermediate edges e, the intermediate vertices v remain the
same along the path. Otherwise, vs and ve are unconnected,
and the set v is empty. In either case, the set of vertices
selected by a regular path query from vs to ve remains the
same no matter the direction of the edges along the way. This
implies that the result of a query is unchanged under reversal
if the starting and ending points are known.

We now prove that a query is contained in its reversal. We
do not consider the more general case of folded queries –
queries for which edges followed by their inverse may be
collapsed into identity edges – assuming that they do not occur
in handwritten queries. Thus, we can make use of the RPQ
containment algorithm from Section 3.2 of [25].

Proof. A regular path query q is isomorphic to a regular
expression rq over an alphabet of edge symbols. Since the
starting and ending points of q are known, there is a function
fe mapping the strings generated by rq to some set of concrete
paths in the actual graph. This may be seen as a means of
relating q to its result set q(I).

Regular languages are closed under reversal, so reverse(rq)
is also a regular expression, isomorphic to reverse(q). Given
that the edges of q are unchanged under reversal, fe remains
the same. Thus q and reverse(q) have the same result set.

Corollary VI.1. Given queries q1 and q2 for which q1’s ending
set q1e agrees with q2’s starting set q2s, the result set of their
concatenation is the union of vertices in paths in q1(I) and
q2(I) which pass through q1e∪q2s. Thus the set of queries for
which starting and ending points are known is closed under
concatenation.



Edge Avg out-degree Avg in-degree
depends on 4.0 4.1

has file 43.5 1.0
has method 1508.2 8.9

calls 27.2 30.6
embeds 54.9 22.0
defines 14.4 1.8

has library hash 1.0 2.6
has method hash 4.9 18.6

has library 16.4 1.9
has vulnerable method 1.8 2.1

has version range 2.9 1.2
has class 217.0 11.1
extends 1.0 1.0

TABLE I
DEGREE CENTRALITY

We use these properties to rewrite queries for improved
performance.

Definition VI.3. The redundancy of a query with known
starting and ending sets vs and ve is the number of vertices
reachable from vs that do not eventually have a path to ve
without going back along an edge already traversed.

Intuitively, redundancy measures the number of dead-ended
paths. Given a query and its reversal, we would prefer the
query with the lower redundancy as it would execute faster
and with lower memory usage.

To estimate redundancy, we consider different edge multi-
plicities:

• One-to-one edges: there are no examples of this in our
schema, as one-to-one relationships between two vertices
may be collapsed into a single vertex.

• Many-to-one edges: e.g. has_file, connecting
library and file vertices. These may be seen as
parent-child relationships. Traversing from a child to its
parent has a redundancy of 0 and is always preferable to
going in the other direction. Cardinality in the reverse
direction may be up to 2 orders of magnitude higher, as
observed in our Java dataset.

• Many-to-many edges: e.g. depends_on, connecting
library vertices. For these edges, we approximate the
redundancy in both directions using degree centrality. The
direction with the lower cardinality will have lower re-
dundancy, assuming that the same percentage of vertices
traversed are redundant. In- and out-degree figures from
our dataset are shown in Table I.

Thus, in cases where a query can be reversed and only
contains the calls edge, calls is always preferable to
called_by as the former has lower redundancy.

The total estimated redundancy is the product of the cardi-
nalities of all the edges along the way. We use this to rewrite
queries into their reverse if it would improve the estimate. This
is a schema-specific optimization only doable with runtime
profiling in Gremlin. We evaluate the performance improve-
ments in Section VII-A.

Query estimateo estimater runtimeo runtimer
GlassFish 391.2 55.7 105.8 0.6readPath

HTTP Redirect 831.7 831.7 1.3 3.8
Spring-Jackson 4.1 4.0 4.6 0.3dependent on*

BeanUtils 41015.8 271.8 > 575.4 0.3injection sink

TABLE II
REWRITING BENCHMARKS

VII. EVALUATION

A. Query-rewriting benchmarks

Consider the following query, which checks if there is a
path from a GlassFish class to the File getPath method.

let glassfish_class =
class(regex ’org.glassfish.*’) in

let read_object =
method(method_name:’readObject’) in

let get_path = method(
class_name:’java/io/File’,
method_name:’getPath’) in

glassfish_class defines
read_object where(calls get_path)

This query has the key property which makes it amenable
to optimization: it is the conjunction of two reversible queries,
which means it is also reversible. The reverse of the query is
as follows.

get_path called_by read_object
where(defined_by glassfish_class)

From Table I, the estimated redundancies of the query
in both directions are 55.7 and 391.2. This indicates that
its reverse should execute faster. In fact, the original query
executes in 105.8s on average, while its reverse executes in
0.6s.

Other queries we benchmarked are shown in Table II.
The subscripts o and r stand for “original” and “reversed”.
Rewriting queries in this way can reduce running time by
up to 3 orders of magnitude. The biggest savings come
from eliminating many-to-one edges. When estimated redun-
dancies are close, however, the rewrites are not nearly as
effective. The redundancy estimate also does not contain
meaningful information when a query is equal to its reversal.
The HTTP Redirect example illustrates this, its edges being
calls called_by.

B. Case study: GlassFish zero-days

Much of SGL’s utility comes from being able to find new,
zero-day vulnerabilities. In this section, we present 2 specific
findings from analysis of the open-source edition of Oracle
GlassFish Server. We verified and disclosed a total of 23 issues
to Oracle, which have since been patched.

Security Manager Bypass: CVE-2016-0763 is a vulnerabil-
ity reported on the Apache Tomcat Application Server. An
SGL query that finds similar issues in other servers is as
follows.



let set_global_context = method(
class_name:’org/apache/naming/factory/
ResourceLinkFactory’,

method_name:’setGlobalContext’) in
let get_security_manager = method(
class_name:’java/lang/System’,
method_name:’getSecurityManager’) in

let check_permission = method(
class_name:’java/lang/SecurityManager’,
method_name:’checkPermission’) in

set_global_context called_by
not(union(
calls get_security_manager,
calls check_permission))

method_in_library

Executing this query returns all affected libraries, which
included GlassFish Open Source Edition versions 3.0-4.1.2,
and Oracle GlassFish Server 3.0.1-3.1.2.2 before Critical Patch
Update (CPU) - October 2017 [15]. Following our disclosure,
Oracle issued a new CVE for Oracle GlassFish Server, CVE-
2017-10385.

Denial of Service (DoS) via File Upload Requests: CVE-
2016-3092 is a vulnerability reported on the Apache Com-
mons FileUpload library. The following is an SGL query that
looks for usages of MultipartStream which do not throw
IllegalArgumentException.

let multipartstream_init = method(
class_name:’org/apache/catalina/
fileupload/MultipartStream’,

method_name:’<init>’,
descriptor:’(Ljava/io/InputStream;
[BILorg/apache/catalina/
fileupload/MultipartStream$
ProgressNotifier;)’) in

let illegal_argument_exception = method(
class_name:
’java/lang/IllegalArgumentException’,

method_name:’<init>’,
descriptor:’(Ljava/lang/String;)’ in

multipartstream_init
not(calls illegal_argument_exception)

We verified that GlassFish Open Source Edition 3.0-4.1.2
was affected by this issue. It was fixed in 5.0 and no CVE
was issued.

VIII. CONCLUSION

We presented SGL, a graph query language specialized for
large-scale program analysis. SGL doubles as an vulnerabil-
ity description language, supporting automated checking and
deduplication of vulnerabilities represented in it. We gave an
overview of its syntax and semantics, then covered its type
system and how that contributes to canonical representations
for vulnerabilities. We also explained optimizations on re-
versible SGL queries, allowing queries to execute up to three
orders of magnitude faster. Finally, we described the zero-day
vulnerabilities in the open-source edition of Oracle GlassFish
Server that we found with it.

In future, we intend to work on broadening the space of
graph queries and aggregations expressible in SGL, as well

as on improvements to its facilities for program analysis.
There is also room for additional query optimization and
rewrites: in particular, indexing strategies for fast reachability
queries [11] and optimizations to the underlying TinkerPop
implementation.
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