
Noname manuscript No.
(will be inserted by the editor)

Out of Sight, Out of Mind? How Vulnerable
Dependencies Affect Open-Source Projects

Gede Artha Azriadi Prana · Abhishek
Sharma · Lwin Khin Shar · Darius
Foo · Andrew E. Santosa · Asankhaya
Sharma · David Lo

Received: date / Accepted: date

Abstract

Context: Software developers often use open-source libraries in their project
to improve development speed. However, such libraries may contain security
vulnerabilities, and this has resulted in several high-profile incidents in re-
cent years. As usage of open-source libraries grows, understanding of these
dependency vulnerabilities becomes increasingly important.

Objective: In this work, we analyze vulnerabilities in open-source libraries
used by 450 software projects written in Java, Python, and Ruby. Our goal
is to examine types, distribution, severity, and persistence of the vulnerabili-
ties, along with relationships between their prevalence and project as well as
commit attributes.

Method: Our data is obtained by scanning versions of the sample projects
after each commit made between November 1, 2017 and October 31, 2018 using
an industrial software composition analysis tool, which provides information
such as library names and versions, dependency types (direct or transitive),
and known vulnerabilities.

Results: Among other findings, we found that project activity level, popu-
larity, and developer experience do not translate into better or worse han-
dling of dependency vulnerabilities. We also found “Denial of Service” and
“Information Disclosure” types of vulnerabilities being common across the
languages studied. Further, we found that most dependency vulnerabilities
persist throughout the observation period (mean of 78.4%, 97.7%, and 66.4%

Gede Artha Azriadi Prana · Abhishek Sharma · Lwin Khin Shar · David Lo
Singapore Management University
E-mail: arthaprana.2016@phdis.smu.edu.sg, abhisheksh.2014@phdis.smu.edu.sg, lk-
shar@smu.edu.sg, davidlo@smu.edu.sg

Darius Foo · Andrew E. Santosa · Asankhaya Sharma
Veracode
E-mail: dfoo@veracode.com, asantosa@veracode.com, asharma@veracode.com

2 Gede Artha Azriadi Prana et al.

for publicly-known vulnerabilities in our Java, Python, and Ruby datasets
respectively), and the resolved ones take 3-5 months to fix.
Conclusion: Our results highlight the importance of managing the number of
dependencies and performing timely updates, and indicate some areas that can
be prioritized to improve security in wide range of projects, such as prevention
and mitigation of Denial-of-Service attacks.

Keywords Empirical Study · Security · Software Composition Analysis

1 Introduction

Modern software is typically built using a large amount of third-party code
in the form of external libraries to save development time. Such third-party
components are often used as is [28], and even for trivial functions, developers
often choose to use an external library instead of writing their own code [1].
Centralized repositories (such as Maven Central and PyPI) and their associ-
ated dependency management tools make it easy for software developers to
download and include open-source libraries in their projects, further improving
the developers’ productivity.

However, such third-party libraries may contain varying amount of security
vulnerabilities. While developers may get their own code reviewed by peers or
checked for bugs or security issues by using static analysis tools [23], Kula et al.
found that developers often do not review the security of third-party libraries,
citing it as extra effort [25]. Since a software project may depend on a number
of open-source libraries, which may in turn depend on many other libraries in
a complex package dependency network, analysis on a software project’s entire
dependency tree can become very complex. Unchecked project dependencies
may introduce security vulnerabilities into the resulting software, which may
be hard to detect. An example of this is the buffer overread in OpenSSL
library that resulted in Heartbleed vulnerability [12], which was introduced
in 2012 but remained undetected until 2014. Another high-profile example is
the unpatched CVE-2017-5638 vulnerability in Apache Struts that resulted in
the 2017 Equifax data breach. More recently, CVE-2018-1000006 vulnerabil-
ity that was discovered in the popular Electron framework in January 2018
affected a number of Windows applications built using the framework, such as
Skype and Slack.

As the usage of open-source libraries grows, it becomes increasingly im-
portant to understand the risks associated with vulnerabilities in the libraries.
This motivates us to investigate the prevalence of vulnerabilities in open-source
libraries, the types and persistence of the vulnerabilities, along with relation-
ships between their prevalence and project as well as commit attributes. Such
an investigation can answer several open questions, for example: What are
common types of dependency vulnerabilities library users should be aware of?
Is it sufficient for a library developer to fix vulnerabilities in their library and
release a new version as soon as possible? How often are vulnerable dependen-
cies left unchanged due to actual lack of newer versions? How effectively can

Out of Sight, Out of Mind? 3

we reduce risk due to vulnerable dependencies by adding more personnel to the
project? We believe that the result of such an investigation would be help-
ful to library users, library developers, and security researchers in a number
of ways. Library developers can benefit from understanding the prevalence of
persistent vulnerabilities as well as the prevalence of outdated dependencies,
as they can signify the need to encourage updates and make updates easier.
Library users can benefit from understanding common types of vulnerabilities
since such knowledge can help them to anticipate and guard against these
common vulnerabilities. This is important as vulnerabilities in libraries may
not become publicly known immediately and there may also be latency before
library developers provide a fix. They can also benefit from understanding
whether factors such as number and experience of contributors translate into
better handling of vulnerable dependencies, since this can affect personnel al-
location decisions, among others. In addition, the result of such investigation
can also help researchers to identify directions of research that are more likely
to benefit the widest range of software projects.

There are several open-source tools such as OWASP Dependency Check1,
Bundler-audit2, and RetireJS3 that can assist development teams to check
for publicly-known security vulnerabilities in their open-source dependencies.
Since November 2017, GitHub has also provided a service4 that scans depen-
dencies of a given project in several supported languages for publicly known
vulnerabilities. Beyond this, several vendors, such as Sonatype, Synopsys, Ve-
racode, and WhiteSource, also offer software composition analysis (SCA) tools
that can identify open-source libraries used in a given software project, vul-
nerabilities associated with those libraries (including those not yet in public
vulnerability databases), associated licenses, and other metrics. Such SCA
tools enable development teams to identify vulnerable dependencies and other
potential issues such as outdated dependencies and license issues.

In this work, we use Veracode Software Composition Analysis (SCA) tool
to perform an empirical study on a sample of projects and their associated
commits on GitHub. We use Veracode SCA as it is available to us, includes a
database of open-source libraries maintained by Veracode security researchers
along with categorized list of associated vulnerabilities (as well as their severity
scores), and supports the three languages investigated in this study (Java,
Python, and Ruby). This enables systematic investigation and comparison of
detected vulnerabilities in sampled projects’ open-source dependencies. For
our dataset, we sampled 450 software projects on GitHub that are written
in Java, Python, and Ruby and have at least 5 commits during the 1-year
period between November 1, 2017 to October 31, 2018. Being larger and more
diverse than datasets of earlier works on vulnerability dependency usage [5,
27, 41]), our dataset enables better generalizability of analysis results. We

1 https://www.owasp.org/index.php/OWASP Dependency Check
2 https://github.com/rubysec/bundler-audit
3 http://retirejs.github.io/retire.js/
4 https://help.github.com/en/articles/about-security-alerts-for-vulnerable-dependencies

4 Gede Artha Azriadi Prana et al.

subsequently checked out all commits made to the sampled projects during the
1-year period, and used Veracode SCA to scan the complete project version
after each commit. Afterwards, we analyzed the scan results, which include
vulnerability details such as CVE identifier, type, and severity. We examined
a variety of aspects related to characteristics of the discovered vulnerabilities
in the sampled projects’ open-source dependencies, including common types,
frequency, persistence, as well as the relationship between the vulnerabilities
with project as well as commit attributes. In summary, we intend to answer
the following research questions:

– RQ1: What are the common types and prevalence of dependency vulnera-
bilities in open-source software, and how persistent are they?
Understanding common types, prevalence, and persistence of dependency
vulnerabilities would help us assess the severity of the problem as well as
shed light on ways to resolve or mitigate the vulnerabilities. This serves as
our motivation to answer this research question. Among others, we found
that such vulnerabilities are persistent and take months to fix. We also
found common vulnerability types across languages.

– RQ2: What are the relationships between vulnerabilities in a project’s open
source dependencies with the attributes of the project and its commits?
Many open-source developers and users hold the view that more reviewers
result in improved software quality. This view is phrased as “many eyes
make all bugs shallow” by Eric Raymond and is known as Linus’ Law [45]
and has been investigated in several studies (e.g. [30, 31]). The argument
is that larger size of community working on and using a particular soft-
ware will make it more likely for any quality issues to be discovered and
fixed. We are interested in examining whether this view holds true for de-
pendency vulnerability count. Further, there has also been various works
in vulnerability prediction (e.g. [37, 38, 61, 50, 58, 20]) that utilizes dif-
ferent types of metrics such as complexity, churn, and developer activity
to predict vulnerability in the project’s own code. Given this, we believe
that it is worthwhile to examine possible correlations between some of the
metrics with vulnerabilities resulting from the projects’ open-source depen-
dencies, in addition to comparing the correlation between vulnerabilities
and the counts of project’s direct and transitive dependencies. Direct de-
pendencies refer to dependencies that are referenced by the project’s code
directly, while transitive dependencies refer to libraries that are referred
to by other dependencies. We found that the vulnerability counts correlate
more strongly with the project’s total dependency counts compared to the
project activity level, popularity, scale of commit, and experience level of
the developer making a commit. This suggests, for example, that reducing
the total number of dependencies (which may lack tests and have many
dependencies on their own [1]) will be more effective in mitigating such
vulnerabilities than recruiting additional developers into the project.

There have been several works focusing on the usage of vulnerable de-
pendencies [5, 27, 41] as well as works that include discussion of vulnerable

Out of Sight, Out of Mind? 5

dependencies in context of library migration [10, 8, 25]. We expand on the ear-
lier set of works by analyzing larger and more diverse set of software projects.
In addition, the vulnerability details in the database of the Veracode SCA tool
that we use enables investigation into some aspects not covered in the above
works, such as prevalence of different vulnerability types. Finally, we perform
a scan on each commit made to the sampled projects within the 1-year ob-
servation period, enabling analyses related to persistence of the vulnerabilities
and the correlation between vulnerabilities with commit attributes.

The paper is structured as follows: Section 2 presents an overview of Ver-
acode SCA tool used in our study. Section 3 discusses the dataset collection
method, overview of the dataset, and our methodology. Section 4 presents the
results of our empirical study. Section 5 discusses the implications of our find-
ings to library users, developers, as well as researchers. Section 6 discusses
threats to validity of our study. Section 7 discusses works related to our study.
Section 8 concludes our work and presents future directions.

2 Overview of Veracode SCA

Veracode SCA5 is a software composition analysis (SCA) tool from Veracode.
SCA tools are typically used by developers and organizations to identify open-
source components used by their software projects as well as various infor-
mation associated with those components, including their respective licenses,
known vulnerabilities, and latest available versions. Such tools help their users
to prevent or mitigate security and legal issues, in addition to providing better
visibility into their software projects.

Veracode SCA supports analysis in several languages (Java, Python, .NET,
Ruby, JavaScript, PHP, Scala, Objective C, and Go), and works as follows:
given a project code base, if necessary, it builds the project with the build sys-
tem used by the project (e.g. Maven) and generates dependency graph from
the result. It subsequently analyzes the graph to identify the open-source li-
braries used in the project. Afterwards, it matches the identified open-source
libraries and their specific versions against a database containing information
of open-source libraries obtained from variety of sources (e.g. Maven Central,
Ruby Gems, public sources of vulnerability information, as well as in-house
research efforts). Based on this, Veracode SCA subsequently reports open-
source libraries used by the project, the specific versions of the detected li-
braries, their licenses, associated vulnerabilities, as well as usage of outdated
libraries, as shown in Figure 1. Veracode SCA includes static checking mech-
anism to aid library updates [15] as well as Security Graph Language [14], a
domain-specific language that is designed to describe and represent vulner-
abilities. The language supports efficient queries involving relations between
open-source libraries, their file contents (such as methods and classes), and
vulnerabilities.

5 https://www.veracode.com/products/software-composition-analysis

6 Gede Artha Azriadi Prana et al.

Veracode SCA is also able to detect publicly-known vulnerabilities in Com-
mon Vulnerabilties and Exposures (CVE) list6 in addition to a number of vul-
nerabilities that have not yet been assigned CVE identifiers. As of 27 June
2019, the Veracode SCA vulnerability database7 contains 2,027,092 libraries
from all supported languages (not counting different versions), and 11,364 dis-
tinct vulnerabilities. The library information are retrieved from various open
source package repositories. For the languages used in this work (Java, Python,
and Ruby), the Veracode SCA vulnerability database statistics are shown in
Table 1.

Table 1 Veracode SCA vulnerability database information for languages used in this work.
Note: Distinct vulnerability corresponds to a CVE for publicly-known vulnerabilities, or
Veracode SCA artifact ID for non-publicly-known vulnerabilities.

Language Libraries
Distinct

Vulnerability
Source of library information

Java 240,015 1,484
search.maven.org, repo1.maven.org
(for Maven)

Python 178,633 788 pypi.python.org
Ruby 138,082 648 rubygems.org

As source of vulnerability data, Veracode SCA makes use of both publicly-
known vulnerability information from National Vulnerability Database8, as
well as in-house research efforts to discover vulnerabilities that are not yet
publicly known. Figure 2 provides high-level overview of the workflow. Iden-
tification of new vulnerabilities for inclusion into the database is achieved
by Veracode security researchers through a variety of approaches, such as
application of natural language processing and machine learning model to
identify vulnerability-related commits and bug reports. The machine learning
model [59] achieved precision of 0.83 and recall of 0.74 during validation at
Veracode SCA production system in March 2017 - May 2017 and was able
to detect more actual vulnerabilities than the number reported in CVE in
the same period (349 vs 333). It outperformed the SVM-based classifier [42],
one of the state-of-the-art approaches for vulnerability detection from com-
mit messages as well as from bug reports. For instance, it achieved 54.55%
higher precision with the same recall for commit messages. Beyond this, prior
to publishing into the Veracode SCA database, each vulnerability is reviewed
and researched by at least two Veracode security analysts. In addition to this,
Veracode also keeps track of customer feedback regarding the vulnerability
database. These factors support our confidence in the tool’s detection capa-
bility. These factors support our confidence in the tool’s detection capability.

6 https://cve.mitre.org/
7 https://sca.analysiscenter.veracode.com/vulnerability-database/search
8 https://nvd.nist.gov/

Out of Sight, Out of Mind? 7

Fig. 1 Part of result of a Veracode SCA scan

Fig. 2 Overview of Veracode SCA workflow

By default, as part of its scan result, Veracode SCA reports Common
Vulnerability Scoring System security score of vulnerabilities along with the
following corresponding rating:

– 0.1 - 3.9 : Low
– 4.0 - 6.9 : Medium
– 7.0 - 8.9 : High
– 9.0 - 10.0 : Critical

Each detected vulnerability is also associated with at least one tag (such as
“Authentication” or “Cross-site Scripting (XSS)”). The complete list of tags
used in Veracode SCA database is shown in Table 2.

Overall, Veracode SCA’s scan features and details in its scan results fa-
cilitate our analysis for characterizing the vulnerabilities in the open-source

8 Gede Artha Azriadi Prana et al.

Table 2 List of vulnerability tags used by Veracode SCA

Authentication Mass-assignment
Authorization OS Command Injection
Buffer Overflows Phishing attack
Business Logic Flaws Race Conditions
Configuration Remote DOS
Cross Site Scripting (XSS) Remote Procedure Calls
Cryptography Session Management
Data at Rest Source code disclosure
Denial of Service SQL Injection
EL execution Transport Security
File I/O Trojan Horse
Information Disclosure XML Injection
Injection Vulnerabilities XPath Injection
Man-in-the-middle Other

dependencies of the projects that we sampled. As our study involves multi-
ple languages (Java, Python, and Ruby), Veracode SCA’s language support
also put it in an advantage compared to popular open-source alternatives such
as Bundler-audit (which only supports Ruby Gems) or OWASP Dependency
Check (which supports Java but has only experimental support for Ruby and
Python).

3 Dataset & Methodology

3.1 Dataset Collection

We use GitHub as the source of software projects for this study. Since many
GitHub repositories do not actually contain software projects [21], as starting
point we used the reaper dataset from Munaiah et al. [36] which provides a
list of repositories likely to contain software projects. We believe the benefit
of performing sampling on this pre-filtered list of repositories outweighs the
potential downside of missing newer repositories, and at the time the data
collection began (December 2018) we were not aware of newer dataset of similar
type. We set the following criteria for sampling the projects:

1. The project is written in Java, Python, or Ruby, based on information from
the reaper dataset.

2. The project repository commit log lists at least five commits between
November 1, 2017 and October 31, 2018.

3. The project satisfies the prerequisites to be scanned by the Veracode SCA
tool, i.e. its content indicates that it uses a build tool supported by Ve-
racode SCA, and it is actually buildable. For Java projects, we focused
on Maven projects to reduce the potential complexity of troubleshooting
build issues. For Python projects, we look for the existence of one of the
following files in the project’s root directory: setup.py, requirements.txt,
requirements-dev.txt, or dev-requirements.txt. For Ruby projects, we look
for the existence of Gemfile in the project root directory.

Out of Sight, Out of Mind? 9

The criteria are set to ensure that the resulting set of the sample projects
comprises actively-maintained software projects written in popular languages,
which should subsequently improve generalizability of our analysis results. In
addition, the choice of selecting projects from multiple programming languages
instead of collecting a larger set from a single language is meant to enable
investigation into potential differences in characteristics of vulnerabilities in
different languages.

After filtering for projects that match the criteria, we randomly sampled
450 software projects. This corresponds to 150 for each programming language
(out of 462,182 Java projects, 331,883 Python projects, and 363,801 Ruby
projects on reporeaper). Afterwards, we extracted the list of all commits made
between November 1, 2017 and October 31, 2018. We subsequently scan the
projects using Veracode SCA to identify its open-source dependencies as well
as the type of each dependency (i.e. direct, transitive, or both). The statistics
of the sampled projects are shown in Table 3. Table 3 shows that the number of
transitive dependencies of the sampled projects are generally much higher than
that of direct dependencies, consistent with observation of Decan et al. [9].

In addition to this, Figure 3 shows the relationship between commit au-
thor count and direct dependency count of the sample projects, while Figure 4
shows the relationship between commit author counts and transitive depen-
dency counts. Table 4 shows the correlation (computed using Spearman’s rank
correlation test [52]) between commit author count and commit count, as well
as between commit author count and dependency counts. Following scale of
interpretation of ρ used by Camilo et al. [6] (± 0.00 - 0.30: Negligible, ± 0.30
- 0.50: Low, ± 0.50 - 0.70: Moderate, ± 0.70 - 0.90: High, and ± 0.90 - 1.00:
Very high), we note that there is low to moderate correlation between com-
mit author count and commit count, but no statistically significant correlation
between commit author count and dependency count.

Fig. 3 Relationship between sample projects’ commit author count and direct dependency
count

10 Gede Artha Azriadi Prana et al.

Table 3 Statistics of the sampled projects at latest commit in the observation period.

Metric Java Python Ruby

Commits in target period

Min 5 5 5
Max 4579 2471 1802
Median 23.0 20.5 16.0
Mean 104.6 76.4 56.9
Std. dev. 371.4 196.7 165.9

Commit authors in target period

Min 1 1 1
Max 22 51 43
Median 2 3 2
Mean 3.9 4.7 4.1
Std. dev. 4.4 6.3 5.7

Direct open-source software (OSS)
dependency

Min 0 0 0
Max 81 29 99
Mean 8.8 3.5 15.7
Median 5 2 8
Std. dev. 12.0 4.5 20.4

Transitive OSS dependency
Min 0 0 0
Max 254 191 280
Mean 29.6 7.0 53.2
Median 9.5 1 43
Std. dev. 44.1 18.2 49.0

Projects with no detected OSS dependency 16 35 2

Fig. 4 Relationship between sample projects’ commit author count and transitive depen-
dency count

Table 4 Correlation between commit author count and commit count, as well as between
commit author count and dependency counts

Language
Number of Commits Dependency Count

Direct Transitive
ρ p ρ p ρ p

Java 0.484 0.000 0.072 0.378 0.062 0.449
Python 0.587 0.000 0.080 0.333 -0.054 0.512
Ruby 0.367 0.000 -0.075 0.364 -0.047 0.565

3.2 Methodology

After selecting the GitHub projects and downloading their commit history, we
checked out each commit and performed a scan on the full project versions
after each commit using Veracode SCA agent. The tool reports total counts of

Out of Sight, Out of Mind? 11

direct and transitive open-source dependencies in the specific project version
scanned, list of detected vulnerabilities (including description, severity score,
and specific libraries that contain them), as well as other information such as
license information of the libraries. We subsequently use the information on
vulnerable open-source dependencies and their associated vulnerabilities for
subsequent analyses.

For the purposes of counting distinct vulnerabilities, there are two cases
to be considered: The first case is the vulnerabilities that have been assigned
Common Vulnerabilities and Exposures (CVE) identifier. The CVE identifier
points to a specific publicly-known vulnerability in the CVE list. The other
case relates to vulnerabilities that have not yet been assigned CVE identifier
after their discovery by Veracode security researchers. Since the Veracode SCA
vulnerability database assigns one artifact ID for each distinct vulnerability
(with or without CVE), we use this artifact ID instead of CVE identifier.
For subsequent analyses, we count a combination of software project, library
version, and artifact ID as individual vulnerability instance.

In this work, we use “first commit” or “earliest commit” as a shorthand for
first commit in the observation period (i.e. first commit in November 2017).
Similarly, “last commit” or “latest commit” refers to latest commit in the
observation period (i.e. latest commit in October 2018).

4 Empirical Study Results

In this section we discuss the results of our investigation into the characteristics
of vulnerabilities in the sampled projects’ open-source dependencies, as well
as the vulnerabilities’ relationship with project and commit attributes.

4.1 RQ1: What are the common types and prevalence of dependency
vulnerabilities in open-source software, and how persistent are they?

4.1.1 Dependency vulnerability counts

Table 5 shows the distribution of the total counts of detected vulnerabilities
in open-source dependencies of the sampled projects. The data shown is based
on scan result at the time of the latest commit in the observed period, and is
split into data on vulnerabilities with CVE (i.e. publicly-known vulnerabilities,
including those for which CVE ID has been reserved at the time of scan)
and vulnerabilities without CVE (i.e. non-publicly-known vulnerabilities). It
shows that the Java sample set has the largest overall range and variation of
vulnerability counts, followed by the Ruby sample set.

In addition to the total counts, we examine the breakdown of the vul-
nerabilities by dependency type. Specifically, we are interested in finding the
average percentages of vulnerabilities that are associated with a project’s di-
rect dependencies, transitive dependencies, and dependencies that are used

12 Gede Artha Azriadi Prana et al.

Table 5 Overview of sample projects’ vulnerability counts

Vulnerabilities with CVE
Language Min Max Mean Median Std.dev.
Java 0 98 9.0 1.0 15.6
Python 0 30 0.9 0.0 3.5
Ruby 0 42 4.4 1.0 7.2

Non-CVE Vulnerabilities
Language Min Max Mean Median Std.dev.
Java 0 19 1.9 0.0 3.3
Python 0 6 0.1 0.0 0.5
Ruby 0 31 3.0 1.0 5.2

Percentage of dependencies with vulnerability
Language Min Max Mean Median Std.dev.
Java 0.0 100.0 12.3 11.7 14.5
Python 0.0 100.0 7.8 0.0 18.4
Ruby 0.0 28.6 5.3 3.3 6.3

both directly and transitively. We perform this analysis at the latest commit
of each project for which at least one dependency vulnerability is found. This
gives us the most up-to-date information of the projects’ vulnerability char-
acteristics. The breakdown of vulnerability by dependency type is shown in
Table 6. It shows that distribution of vulnerability counts by dependency type
corresponds to relative proportion of dependency types. For Python projects,
most of the dependency vulnerabilities are in the projects’ direct dependen-
cies, which are more visible to the project developers and more easily updated
compared to transitive dependencies. On the other hand, given the higher per-
centage of vulnerabilities in Java and Ruby projects’ transitive dependencies,
developers using those languages will benefit more from careful scrutiny of
their projects’ transitive dependencies.

Finding 1: Proportion of vulnerability counts by dependency type varies
by programming language, corresponding to relative proportion of de-
pendency types

4.1.2 Most common dependency vulnerability types

To identify common types of dependency vulnerabilities in each language, we
combine scan results of latest commits of each language’s sample set and count
all the detected vulnerabilities. For this analysis, we count each combination
of library version, vulnerability, and project separately. That is, if a particular
library version with two vulnerabilities of “Denial of Service” type is used by
two projects, this is counted as four instances of “Denial of Service”. If a project
uses three libraries containing one “Denial of Service” type of vulnerability
each, this is counted as three instances of “Denial of Service” vulnerability.
We use tags associated with each vulnerability in the Veracode SCA database
for the categorization. The list of tags is shown in Table 2. Table 7 shows the
total instances.

Out of Sight, Out of Mind? 13

Table 6 Per-project vulnerability percentage distribution by dependency type. ’Both’ de-
notes dependencies that are used both directly and transitively. Includes only projects with
at least one vulnerability. Percentages of dependency by type (‘Dep.‘) included for compar-
ison.

Java Python Ruby

CVE
Non-
CVE

Dep. CVE
Non-
CVE

Dep. CVE
Non-
CVE

Dep.

D
ir

ec
t

Min 0.0 0.0 0.0 0.0 0.0 15.05 0.0 0.0 1.2
Max 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 41.9
Mean 30.3 36.7 29.2 85.0 50.0 51.4 10.0 16.3 18.2
Median 4.0 19.5 15.7 100.0 50.0 44.4 0.0 0.0 19.6
Std.dev 40.6 42.3 26.9 33.7 54.8 27.3 24.3 26.3 10.3

T
ra

n
si

ti
v
e Min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 54.6

Max 100.0 100.0 100.0 100.0 100.0 85.0 100.0 100.0 98.8
Mean 58.6 60.3 64.4 15.0 50.0 48.6 84.5 73.4 77.9
Median 76.3 69.7 69.2 0.0 50.0 55.6 100.0 82.6 76.5
Std.dev 42.8 41.6 23.4 33.7 54.8 27.3 27.1 31.8 11.7

B
o
th

Min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Max 100.0 75.0 100.0 0.0 0.0 0.0 100.0 100.0 23.5
Mean 11.1 3.1 6.5 0.0 0.0 0.0 5.5 10.3 3.9
Median 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.7
Std.dev 27.3 11.9 14.6 0.0 0.0 0.0 15.0 20.3 3.6

Table 7 Summarized count of dependency vulnerability instances at latest commit. Non-
CVE vulnerabilities are identified by Veracode SCA artifact ID

Java Python Ruby

Total vulnerability instances
CVE 1354 131 657
Non-CVE 282 12 455

Distinct vulnerabilities
(CVE / artifact ID)

CVE 212 51 80
Non-CVE 56 9 74

Afterwards, we identify the tags associated with each vulnerability in-
stance, count the total for each tag, and shortlist the ones with highest counts.
Table 8 shows the top five results for each language. The result indicates some
commonalities between the kinds of dependency vulnerabilities in each lan-
guage, with “Denial of Service” and “Information Disclosure” being two com-
mon top issues across the three languages. This suggests that improvement of
practices or tools to combat those vulnerability types (by both open-source
library developers and security researchers) would bring significant benefits to
a wide range of software projects.

Finding 2: “Denial of Service” and “Information Disclosure” are com-
mon across programming languages.

4.1.3 Distribution of severity scores

In addition to number of vulnerabilities, we are also interested in the severity
of the vulnerabilities detected in the sampled projects’ open-source dependen-
cies. Table 9 shows the distribution of severity according to the default rating

14 Gede Artha Azriadi Prana et al.

Table 8 Most common dependency vulnerability tags in each language. ”CVE” and ”non-
CVE” indicate publicly-known and non-publicly-known vulnerabilities, respectively. In-
stance count and percentage denote count and percentage across the sample set of the
programming language. Note that one vulnerability may have more than one tag.

Language Tag
Total

instances
% of all

instances

CVE
vuln.

instances

Non-CVE
vuln.

instances

Java

Other 749 46.0 665 84
Denial of Service 272 17.0 205 67
Information Disclosure 147 9.0 125 22
Cryptography 145 9.0 130 15
Remote Procedure Calls 133 8.0 105 28

Python

Other 70 49.0 69 1
Information Disclosure 24 17.0 21 3
Configuration 23 16.0 23 0
Denial of Service 21 15.0 17 4
Cross Site Scripting (XSS) 15 10.0 14 1

Ruby

Denial of Service 281 25.0 97 184
Other 280 25.0 105 175
Cross Site Scripting (XSS) 274 25.0 182 92
Information Disclosure 175 16.0 109 66
SQL Injection 122 11.0 122 0

scale, i.e. CVSS score of 0.1 - 3.9 : Low, 4.0 - 6.9 : Medium, 7.0 - 8.9 : High, 9.0
- 10.0 : Critical. Table 10 shows the distribution of the severity score for the
top vulnerability types. The distribution of severity shows that most of the
vulnerabilities in the sampled projects’ open-source dependencies are not crit-
ical. This is also the case for the two types of vulnerability that are common
across languages (“Denial of Service” and “Information Disclosure”), which is
reassuring. However, there are higher percentages of high-severity vulnerabili-
ties in the dependencies of the Java and Python projects. While it is possible
that the variance in sample projects’ code quality contributes to the differ-
ence in severity distribution, Ray et al. [44] reported that the effect size of the
association between programming language and code quality is small. This
implies that the difference in severity distributions cannot be fully explained
by potential code quality difference across the three languages. Overall, the
difference suggests that Java and Python developers will benefit more from
timely dependency updates.

Finding 3: Most detected dependency vulnerabilities are of medium
severity, however, there is noticeable variation in severity distribution
across programming languages.

4.1.4 Vulnerable libraries affecting largest number of sampled projects

To see whether the vulnerabilities in the sampled projects originate from a
few widely-used libraries, or many libraries that affect few projects each, we
investigate the number of projects affected by each vulnerable library. For this

Out of Sight, Out of Mind? 15

Table 9 Distribution of severity of vulnerability instances. Percentages are of all vulnera-
bility instances in the respective programming language group (both CVE and non-CVE).

Severity
Java Python Ruby

% instances % instances % instances

CVE

Low 0.8 13 1.4 2 4.5 50
Medium 46.3 757 63.0 90 46.6 518
High 34.9 571 23.8 34 8.0 89
Critical 0.8 13 3.5 5 0 0

Non-CVE

Low 1.3 21 0.7 1 0.8 9
Medium 15.2 249 6.29 9 33.9 377
High 0.7 12 1.4 1.4 1.6 18
Critical 0 0 0 0 4.59 51

Table 10 Distribution of severity of top vulnerability types. Percentages are of all vulner-
ability instances in the respective programming language group (both CVE and non-CVE).

Language Tag Type
Percentage of all instances

Low Medium High Critical

Java

Other
CVE 0.4 13.6 25.8 0.8
Non-CVE 0.2 4.5 0.4 0.0

Denial of Service
CVE 0.0 10.5 2.0 0.0
Non-CVE 0.4 3.5 0.2 0.0

Information Disclosure
CVE 0.1 7.2 0.3 0.0
Non-CVE 0.6 0.7 0.0 0.0

Cryptography
CVE 0.0 7.5 0.5 0.0
Non-CVE 0.1 0.9 0.0 0.0

Remote Procedure Calls
CVE 0.0 3.4 3.1 0.0
Non-CVE 0.0 1.7 0.0 0.0

Python

Other
CVE 0.0 23.8 21.7 2.8
Non-CVE 0.0 0.7 0.0 0.0

Information Disclosure
CVE 0.7 13.3 0.7 0.0
Non-CVE 0.7 1.4 0.0 0.0

Configuration
CVE 0.0 4.2 11.9 0.0
Non-CVE 0.0 0.0 0.0 0.0

Denial of Service
CVE 0.0 11.2 0.7 0.0
Non-CVE 0.0 2.8 0.0 0.0

Cross Site Scripting (XSS)
CVE 0.0 7.7 0.0 2.1
Non-CVE 0.0 0.7 0.0 0.0

Ruby

Denial of Service CVE 0.0 6.2 2.5 0.0
Non-CVE 0.5 10.2 1.3 4.6

Other
CVE 0.3 6.7 2.4 0.0
Non-CVE 0.0 9.7 1.4 0.0

Information Disclosure
CVE 0.2 7.8 1.8 0.0
Non-CVE 0.1 5.9 0.0 0.0

Cross Site Scripting (XSS)
CVE 3.8 12.6 0.0 0.0
Non-CVE 0.0 8.3 0.0 0.0

SQL Injection
CVE 0.0 9.7 1.3 0.0
Non-CVE 0.0 0.0 0.0 0.0

analysis we list vulnerabilities discovered at the latest commit of the sampled
projects, spanning both vulnerabilities with and without CVE identifier. Af-
terwards, we identify the library name associated with the vulnerability, and
counted the number of repositories affected by each library. For the purpose of
this analysis, we do not distinguish specific library version used, and we dis-
regard the specific number of vulnerabilities associated with the library. That

16 Gede Artha Azriadi Prana et al.

is, a library with five detected vulnerabilities and another library with two
detected vulnerabilities will both count as one if they are used by one project.
The top five result is shown in Table 11.

We note that a vulnerable library also affects the security of the entire
package ecosystem through other libraries that depend on it (see e.g. Zim-
merman et al.’s work on npm [60]). Therefore, for context, we also computed
the average number of libraries impacted by a library, measured as average
out-degree of the transitive closure in the dependency graph of the different
package ecosystems (Maven for Java, PyPI for Python, Gem for Ruby). The
counts at the time data collection begins (December 2018) is 81.9 for Java,
10.3 for PyPI, and 62.2 for Gem. This indicates that the higher number of
projects affected by the top vulnerable Java and Ruby libraries in the sam-
ple set is due to inherent wider impact of average library in Maven and Gem
ecosystems. This in turn indicates that improving security in these ecosystems
will benefit wider range of projects.

Table 11 Top vulnerable libraries by projects affected. Project count includes projects
using any version of the specified library.

Language Library Projects

Java

Guava: Google Core Libraries for Java 45
Apache Commons IO 33
Spring Web 30
jackson-databind 30
Apache Commons Collections 28

Python

numpy 23
PyYAML 9
Django 7
requests 4
Pillow 2

Ruby

rack 59
nokogiri 51
loofah 42
activejob 41
activerecord 30

Finding 4: Top vulnerable libraries in Java and Ruby affect relatively
larger number of projects, in line with wider average impact of libraries
in their package ecosystems.

4.1.5 Non-CVE dependency vulnerabilities as discovered by Veracode SCA

There are differing views regarding how soon vulnerabilities should be publicly
disclosed, taking into account factors such as potential vendor and attacker
responses [2]. As a result, there is often a lag between the discovery of a vul-
nerability by researchers and the inclusion of the vulnerability in the CVE

Out of Sight, Out of Mind? 17

list. Due to this lag, there is a risk that developers may miss some of vul-
nerabilities in their project dependencies even if they actively monitor and
respond to CVE updates. We investigate the extent of such risk by evaluating
the average percentage of dependency vulnerabilities in the latest commits of
sampled projects that have not been assigned CVE IDs at the time of scan.
Table 12 shows the average percentage breakdown of CVE and non-CVE de-
pendency vulnerabilities, along with top tags associated with the non-CVE
dependency vulnerabilities. It suggests that while most dependency vulnera-
bilities discovered in a project are CVE vulnerabilities, developers may still
miss a significant percentage of vulnerabilities in their projects’ dependencies
if they rely on CVE list alone.

Table 12 Percentage and top tags for non-CVE vulnerabilities

Language Percentage of Non-CVE Vulnerability Top non-CVE Tags

Java

Min 0.0
Other
Denial of Service
Cross Site Scripting (XSS)

Max 100.0
Mean 21.9

Median 18.2
Std.dev 24.1

Python

Min 0.0
Denial of Service
Information Disclosure
Buffer Overflows

Max 100.0
Mean 5.0

Median 0.0
Std.dev 17.3

Ruby

Min 0.0
Denial of Service
Other
Cross Site Scripting (XSS)

Max 100.0
Mean 41.5

Median 37.5
Std.dev 28.2

Finding 5: Relying solely on public vulnerability database may cause
developers to miss significant percentage of dependency vulnerabilities.

4.1.6 Overall persistence of dependency vulnerabilities

Persistence of dependency vulnerabilities is another aspect that we are inter-
ested in, and it is affected by two factors. One factor is how long it takes for
the library developers to fix the vulnerability. A number of CVEs affect more
than one version of a library, making them persistent despite library updates.
An example of this is CVE-2019-17267, which affects the jackson-databind
library from version 2.0.0 to 2.9.9.4. Another factor is how fast a vulnera-
ble dependency is updated to non-vulnerable version (or removed altogether),
since there is often latency in adopting the latest version of libraries [24, 25].

To obtain a general idea regarding the persistence of vulnerabilities across
the period of interest, we compute per-project percentage of distinct CVEs (or

18 Gede Artha Azriadi Prana et al.

Veracode SCA artifact IDs in case of non-CVE vulnerabilities) that exist at
both the time of the earliest commit and the time of the latest commit in the
observation period. Table 13 shows the percentage of persistent vulnerabilities
for each language grouped by CVSS rating, along with top libraries by the
count of persistent CVEs/artifact IDs. We found no clear relationship between
survival of vulnerabilities found at first commit and their risk rating. For
example, as a group, the vulnerabilities with Low rating are least persistent in
Java and Python sample projects, but most persistent in Ruby sample projects.
This suggests that the high overall persistence is not caused by project owners
prioritizing resolution of high-risk vulnerabilities while deferring updates to
resolve low-risk vulnerabilities.

Table 13 Per-project survival percentages of vulnerabilities present at first commit,
grouped by vulnerability risk rating.

Language
CVE Non-CVE

Crit. High Med. Low Crit. High Med. Low

Java

Projects 13 71 92 13 0 12 75 13
Min 0.0 0.0 0.0 0.0 N.A. 0.0 0.0 100.0
Max 100.0 100.0 100.0 100.0 N.A. 100.0 100.0 100.0
Mean 92.3 81.1 80.7 76.9 N.A. 83.3 85.1 100.0
Median 100.0 100.0 100.0 100.0 N.A. 100.0 100.0 100.0
Std.dev 27.7 33.6 34.7 43.9 N.A. 38.9 31.2 0.0
Top libraries
(overall)

jackson-databind, Data Mapper for Jackson, Spring Web,
Spring Web MVC, Bouncy Castle Provider

Python

Projects 3 29 20 3 0 3 7 2
Min 100.0 100.0 0.0 0.0 N.A. 0.0 0.0 0.0
Max 100.0 100.0 100.0 100.0 N.A. 100.0 100.0 100.0
Mean 100.0 100.0 84.2 66.7 N.A. 66.7 71.4 50.0
Median 100.0 100.0 100.0 100.0 N.A. 100.0 100.0 50.0
Std.dev 0.0 0.0 34.0 57.7 N.A. 57.7 48.8 70.7
Top libraries
(overall)

Django, numpy, Pillow, PyYAML, requests

Ruby

Projects 0 38 82 45 51 25 77 11
Min N.A. 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Max N.A. 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Mean N.A. 61.5 64.4 92.2 88.2 38.3 61.6 54.6
Median N.A. 100.0 67.4 100.0 100.0 0.0 66.7 100.0
Std.dev N.A. 45.9 36.7 23.7 32.5 47.9 40.0 52.2
Top libraries
(overall)

nokogiri, activerecord, loofah, rack, actionpack

For context, we also investigate the percentage of dependencies that are
not updated or removed since the first commit in the observation period, with
the result shown in Table 14. In addition, we also conducted survival analysis
using Kaplan-Meier method [22] on the library versions found at first commit.
As different projects may update their dependencies at different times, for the
survival analysis we treat each combination of project and library version as
one instance. The result of this analysis is shown in Figure 5. Both Table 14
and Figure 5 show that in many cases, libraries that exist at the beginning
of the observation period are not changed by project owners throughout the
period. To investigate whether this is due to lack of a newer version of said

Out of Sight, Out of Mind? 19

libraries, we examine per-project percentages of unchanged dependencies for
which newer versions already exist. As shown in Table 15, in most cases the
unchanged dependencies are outdated, yet not replaced. In addition to this, we
also investigated vulnerabilities that persist throughout the observation period
despite the update of the associated dependencies, with the result shown in
Table 16. We find that in most of the projects, such vulnerabilities form only
a small part of persistent vulnerabilities. Our findings indicate that the persis-
tence of vulnerabilities are caused more by project owners’ latency in updating
dependencies instead of the vulnerabilities themselves being persistent across
library versions.

Table 14 Per-project percentages of dependencies in first commit that remains unchanged
throughout the observation period. Median and mean commit counts are shown as indicators
of sample projects’ activity levels.

Min Max Mean Median Std.dev
Median
commit
count

Mean
commit
count

Java 4.8 100.0 79.6 96.9 27.8 23.0 104.6
Python 20.0 100.0 94.2 100.0 15.7 20.5 76.4
Ruby 2.7 100.0 79.5 100.0 30.8 16.0 56.9

Fig. 5 Kaplan-Meier curve of vulnerable and non-vulnerable libraries detected at first com-
mit.

Table 15 Per-project percentage of unchanged dependencies for which newer version al-
ready existed at latest commit. Percentages are of all unchanged dependencies in the same
project.

Min Max Mean Median Std.dev
Java 0.0 100.0 75.4 80.0 24.0
Python 0.0 100.0 77.6 80.0 21.0
Ruby 0.0 100.0 58.0 57.4 23.4

20 Gede Artha Azriadi Prana et al.

Table 16 Per-project percentage of vulnerabilities that persist despite update of associated
dependency. Percentages shown are that of all persistent vulnerabilities in the same project.

Min Max Mean Median Std.dev
Java 0.0 100.0 18.4 0 31.9
Python 0.0 100.0 7.4 0 25.8
Ruby 0.0 100.0 36.7 6 43.4

Finding 6: Dependencies are not frequently updated or changed by
project owners despite availability of updated libraries, and therefore
any vulnerabilities contained will persist.

4.1.7 Change of number of dependency vulnerabilities over the period of
observation

To examine whether the sampled projects generally become less vulnerable or
more over the observation period, we computed the dependency vulnerability
counts of each of the 450 projects at their first commits in the observation
period (i.e. first commit in November 2017) as well as the latest commits
in the period (i.e. latest commit in October 2018). We subsequently apply
Wilcoxon signed-rank test on the vulnerability counts at the first and the
latest commits to investigate whether they are significantly different. Since
the number of dependencies of a project may also change during the same
1-year period, we also performed the same analysis on dependency counts for
comparison. Table 17 shows that dependency vulnerability counts tends to
decrease despite increase in the number of dependencies in the 1-year period.

Finding 7: Dependency vulnerability counts do not increase over the
1-year study period, despite slight increase in number of dependencies.

4.1.8 Time required to resolve dependency vulnerabilities

To analyze the time to resolve dependency vulnerabilities, we listed the differ-
ent dependency vulnerabilities detected in a repository during the observation
period. Afterwards, we identify the commit C1 where the dependency vul-
nerability is first detected in the repository during the period, as well as the
commit C2 in which the dependency vulnerability is last detected in the same
repository. We subsequently identify commit C3 which is the first commit after
C2 in the repository. For dependency vulnerabilities that already exist at first
commit in the period of interest, we use the time of first commit as starting
time. We exclude dependency vulnerabilities that still exist at the latest com-
mits. We define the time to fix the dependency vulnerability (i.e. by updating

Out of Sight, Out of Mind? 21

Table 17 Vulnerability and dependency count changes during observation period. T de-
notes T statistic of Wilcoxon signed-rank test.

Java Python Ruby

CVE
Non-
CVE

CVE
Non-
CVE

CVE
Non-
CVE

Dependency
vulnerability
counts

T 162.0 25.0 12.0 0.0 0.0 36.0
p-value 0.000 0.001 0.389 0.046 0.000 0.000
Min at first commit 0 0 0 0 0 0
Min at last commit 0 0 0 0 0 0
Max at first commit 99 19 30 6 46 31
Max at last commit 98 19 30 6 42 31
Mean at first commit 9.8 2.1 0.9 0.1 6.6 5.1
Mean at last commit 9.0 1.9 0.9 0.1 4.4 3.0
Median at first commit 2.0 1.0 0.0 0.0 1.5 1.0
Median at last commit 1.0 0.0 0.0 0.0 1.0 1.0
Std.dev at first commit 15.8 3.5 3.6 0.6 9.9 7.7
Std.dev at last commit 15.6 3.3 3.6 0.5 7.2 5.2

Dependency
counts

T 450.0 124.0 388.0
p-value 0.011 0.005 0.000
Min at first commit 0 0 0
Min at last commit 0 0 0
Max at first commit 270 196 241
Max at last commit 287 196 356
Mean at first commit 35.8 9.6 63.2
Mean at last commit 36.0 10.4 66.2
Median at first commit 15.5 4 49.5
Median at last commit 17 4 50.5
Std.dev at first commit 47.6 19.6 54.2
Std.dev at last commit 47.5 20.3 61.9

the project’s dependency to non-vulnerable version or removing the depen-
dency altogether) as the difference between committer timestamp of C3 and
C1.

We compute the figure for each repository containing the dependency vul-
nerability, and subsequently compute the min, max, mean, median, as well
as standard deviation of the values. Table 18 show the result, broken down
into vulnerabilities with and without CVE. We find that on average, the fixed
vulnerabilities take 3-5 months to fix. Our finding suggests that dependency
vulnerabilities not only tend to be persistent, but even the ones that are re-
solved take a long time to fix.

Finding 8: On average, resolved dependency vulnerabilities take 3-5
months to fix. For vulnerabilities with CVE, average resolution times
are 145.3, 134.5, and 98.8 days for our Java, Python, and Ruby datasets
respectively. For vulnerabilities without CVE, the average times are
136.3 days for Java, 101.3 days for Python, and 94.1 days for Ruby.

22 Gede Artha Azriadi Prana et al.

Table 18 Time taken to fix vulnerabilities in days

Vulnerabilities with CVE
Min Max Mean Median Std.dev

Java 0.0 361.0 145.3 126.0 125.2
Python 0.1 238.7 134.5 174.5 80.7
Ruby 0.0 364.8 98.8 81.3 99.3

Non-CVE Vulnerabilities
Min Max Mean Median Std.dev

Java 0.0 361.0 136.3 150.2 104.3
Python 21.6 228.2 101.3 75.2 79.0
Ruby 0.0 364.8 94.1 69.2 102.1

4.2 RQ2: What are the relationships between dependency vulnerabilities in a
project’s open-source dependencies with the attributes of the project and its
commits?

4.2.1 Project attributes

A popular view regarding open-source software development is reflected in
Linus’ Law as formulated by Eric Raymond [45]: “Given enough eyeballs, all
bugs are shallow”. A larger community of developer and reviewers (official
testers as well as users) is often expected to improve ability to discover bugs
in a software project, including vulnerabilities. This is often used to argue that
open source software is more secure [18, 56]. On the other hand, some hold
the view that having too many developers can be detrimental (following the
notion that “too many cooks spoil the broth”), and there have been studies
by Meneely and Williams [30, 31] investigating these opposing views and the
extent at which larger number of developers starts to correlate with more
vulnerabilities.

Other than the two studies, a number of other works have investigated
relationship between the presence of vulnerabilities and various combination
of metrics related to software, developer activity, and execution complexity
(e.g. [61, 50, 48, 49]), typically with the overall objective of predicting location
of vulnerability in a software project’s source code. While the focus of our
study is different, considering the view regarding Linus’ Law, and another
view that higher project complexity and larger project size tend to result in
the project being more prone to bugs, we decide to examine whether OSS
dependency vulnerability correspond to some project-level metrics: project
popularity, complexity, and size. As a proxy for the project’s popularity, we use
number of commit authors as well as its GitHub stargazers count. As measure
of project complexity, we use counts of direct and transitive dependencies of
the project, since we are interested strictly in the vulnerabilities resulting from
the dependencies instead of the vulnerabilities in the project’s own code. Our
hypothesis is that larger network of project dependencies will make it more
difficult for project maintainers to track and update all dependencies to avoid
vulnerable versions.

Out of Sight, Out of Mind? 23

To investigate the relationship between project attributes and total count
of vulnerabilities in its open-source dependencies, we constructed a negative
binomial regression model [17]. We chose this regression model because it is
more suitable than standard linear regression for non-negative count data [16],
and it has also been used in several works in software engineering domain [3,
39, 54, 55]. For this analysis, we use the number of dependency vulnerabilities
at the time of latest commit in the observation period as well as the following
project attributes:

– Age: Project’s age, measured as difference between timestamps of project’s
last commit in the observation period and the first commit in the project
repository, in days.

– Commits: Total number of commits.
– Commit authors: Total number of distinct commit authors.
– Repository total LOC: Total LOC in repository excluding test code.

Tests are omitted for consistency as Veracode SCA scans ignore test de-
pendencies. Filtering is done by directory, i.e. for Java samples (which are
Maven projects), we exclude src/test/ which is the typical test location in
Maven project structure. For Python and Ruby, we exclude subdirectories
named test/ and tests/.

– Stargazers count: Number of stars the repository have, as a measure of
its popularity.

– Direct dependencies: Number of direct dependencies.
– Transitive dependencies: Number of transitive dependencies.

We use statsmodels [46] implementation of the negative binomial regression,
and the results are shown in Table 19.

Table 19 Negative binomial regression results on project attributes. Shaded cells indicate
attributes with statistically significant contribution to dependency vulnerability count.

Variable
Java Python Ruby

coef P > |z| coef P > |z| coef P > |z|
Age 0.000 0.218 0.000 0.596 -0.001 0.007
Commits 0.000 0.922 0.001 0.868 -0.001 0.220
Commit authors -0.015 0.668 0.072 0.191 -0.030 0.179
LOC 0.000 0.488 0.000 0.254 0.000 0.520
Stargazers 0.000 0.962 0.000 0.079 0.000 0.170
Direct dependencies 0.013 0.109 0.145 0.002 0.031 0.000
Transitive dependencies 0.016 0.000 -0.046 0.006 -0.005 0.103

The results show that the project’s age, number of commits, number of de-
velopers, popularity, and project size has negligible effect on the dependency
vulnerability counts. This suggests that frequent commits, involvement of more
developers in a project, and the project’s popularity do not translate into bet-
ter or worse handling of vulnerable dependencies. Possible reasons for the lack
of improved handling include lack of awareness regarding the vulnerabilities as
well as the presence of dependency constraints that hinder developers from up-
dating project dependencies or switching to a different library (even if there’s

24 Gede Artha Azriadi Prana et al.

known vulnerability in the currently-used versions). On the other hand, most
direct dependency counts have more statistically significant effects.

Overall, the results suggest that dependency vulnerabilities can likely be
managed more effectively through reduction of number of direct dependencies
than through recruitment of additional personnel. This reduction can for ex-
ample be achieved by replacing multiple small libraries with single library that
is known to have good security track record.

Finding 9: To mitigate risk from dependency vulnerabilities, managing
dependencies will be more effective compared to increasing number of
contributors, project activity level, or managing the project’s size.

4.2.2 Commit attributes

Beside works that focus on predicting vulnerability location using various met-
rics, a number of works in the field of vulnerability prediction focus on iden-
tifying vulnerability-contributing commits [32, 4, 42]. Among other findings,
larger changes and developer inexperience have been found to be associated
with higher likelihood of a commit introducing vulnerability. Given this, we
are also interested in investigating whether experience of developer making the
commit or the scale of change caused by a commit correspond with number
of dependency vulnerabilities detected after the particular commit. For this
analysis, we consider three types of commits:

1. Commits that increase vulnerability count (e.g. due to introduction of vul-
nerable dependency)

2. Commits that decrease vulnerability count (e.g. due to removal or update
of vulnerable dependency)

3. Commits that do not change vulnerability count

The breakdown of the three types of commits for the three programming
languages is shown in Table 20. As for the commit attributes, we examine the
following attributes in this analysis:

– Developer experience: We use the number of prior commits in the
project as a proxy, since it is not possible to objectively measure and com-
pare actual experience of commit authors directly.

– Number of affected files: Total count of files affected by the commit,
regardless of operation type (line addition, line deletion etc.).

– Churn: Total number of added and deleted lines in the commit.
– Total LOC of affected files: Sum of number of lines of code of files

affected by the commit, as a measure to distinguish commits affecting
small files versus commits affecting large ones.

– Total Complexity of affected files: Sum of cyclomatic complexity [29] of
files affected by the commit, as a measure to distinguish commits affecting
simple files versus commits affecting complex ones.

Out of Sight, Out of Mind? 25

With the exception of developer experience calculation, we use PyDriller [51]
to obtain the metrics. We constructed a logistic regression model using statsmod-
els [46] implementation, and examined the resulting coefficients for the differ-
ent attributes. The result, shown in Table 21, indicates that there is no clear
relationship between dependency vulnerabilities with all attributes being ex-
amined. A possible explanation is that the dependency changes often occur
together with a variety of other changes, such as addition of a large module, a
small fix, or deletion of deprecated code. These changes that involve addition
or removal of dependencies are diverse in size, for example, a library update
from vulnerable versions to non-vulnerable version may only involve chang-
ing one line. In addition, as vulnerabilities in dependencies are less visible to
developers than issues in their own code, developer experience do not neces-
sarily translate to better handling of security risk from dependencies. In view
of this, it seems discouraging large changes on each commit or assigning more
experienced developers will not be an effective way to manage security risk
from dependencies. It may be better, for example, for the development team
to instead maintain a list of “known-good” libraries that each developer can
use as they see fit.

Table 20 Counts of the three categories of commits for Java, Python, and Ruby samples

Java Python Ruby
Commits that decreases vulnerability count 69 12 231
Commits that increases vulnerability count 28 8 94
Commits that causes no count change 3936 6125 8901

Table 21 Logistic regression results on commit attributes. Shaded cells indicate attributes
with statistically significant contribution to dependency vulnerability count.

Attribute
Java Python Ruby

coef. P > |z| coef. P > |z| coef. P > |z|
Vulnerability-increasing commits
Affected files 0.0069 0.448 0.0291 0.590 -0.0040 0.643
Churn 0.0001 0.026 -0.0010 0.875 -3.004e-06 0.885
LOC -8.63e-05 0.694 -0.0038 0.177 1.803e-05 0.639
Complexity -0.0002 0.847 0.0010 0.487 0.0002 0.660
Author experience -0.0017 0.105 -0.0309 0.123 -0.0002 0.039
Vulnerability-decreasing commits
Affected files -0.0051 0.723 0.0237 0.353 0.0012 0.178
Churn 0.0002 0.087 -0.0019 0.644 -2.682e-05 0.042
LOC -2.865e-06 0.941 -0.0009 0.330 3.784e-05 0.040
Complexity -0.0010 0.242 0.0005 0.650 -4.729e-05 0.279
Author experience -0.0010 0.050 -0.0023 0.144 -9.916e-05 0.058

Finding 10: There is no clear relationship between dependency vulnera-
bility count with attributes of the commit including author experience.

26 Gede Artha Azriadi Prana et al.

5 Discussion and Implications

Our results indicate that dependency vulnerability issue affects a wide range
of projects, and that such vulnerabilities tend to be persistent, despite overall
tendency for the count to decrease.

5.1 Implications for library users

Examination of the dataset shows that most libraries used by sampled projects
are used transitively, and the number of transitive dependencies is typically
much larger than those of direct dependencies. Further, Finding 1 highlights
the importance for development teams to perform checks beyond their own
code and direct dependencies, and Finding 6 reinforces the need for develop-
ers to be vigilant of potential dependency vulnerability beyond those in public
database. Finding 7 suggests importance of monitoring and applying updates
to project dependencies. Overhead of such effort can be reduced by integrating
vulnerability scanning tools or comprehensive software composition analysis
tools into the development team’s Continuous Integration workflow. In view
of typical latency before vulnerabilities become publicly known and additional
latency before a fix is available, understanding of common vulnerability types
(Finding 2) enables library users to anticipate security risks from such vulner-
abilities when designing their software or production environment, for example
by applying relevant recommendations from organizations such as OWASP9.

Finding 9 suggests that there is value in attempting to simplify a project’s
dependency set to reduce vulnerabilities. Relating our finding to the findings
of Abdalkareem et al. [1] regarding prevalent usage of libraries that implement
simple tasks but lack tests and introduce many dependencies of their own, one
practical step library users can try is to reduce their projects’ dependency on
such libraries. This can be done, for example, by replacing a group of such
libraries with single library that covers the same set of functions and has a
good security track record. Beyond this, library users will likely also benefit by
selecting a set of libraries that share a common set of dependencies (including
the specific version numbers) for their projects.

5.2 Implications for library developers

The update latency related to vulnerable dependencies, which contributes to
dependency vulnerability persistence (as per Finding 6) and long resolution
time (as per Finding 8), suggests that it is important for library developers to
make library updates easier, as well as to encourage library users to perform
timely update of their projects’ dependencies. Given that library users’ be-
liefs regarding potential risks of updating will be strongly affected by personal

9 https://cheatsheetseries.owasp.org/index.html

Out of Sight, Out of Mind? 27

experience [11], it will be useful to allay library users’ concerns about poten-
tial risks of update by providing comprehensive tests and documentation, in
addition to maintaining good communication with library users.

5.3 Implications for researchers

The update latency related to vulnerable dependencies, which result in high
persistence of dependency vulnerabilities and long resolution time (Findings
6 and 8), suggests the need for better dependency monitoring and update
approaches. One line of work that needs to be explored further is automatic
program transformation to allow client code to catch up with the latest up-
dates [13, 26, 53]. Such technique will facilitate smoother dependency update,
however, accuracy of existing works is not perfect, and they tend to be lim-
ited to particular set of API (e.g. Android APIs). Related to this, our work
also demonstrates the value of research into automated techniques to detect
breaking changes in library updates, particularly those that are generalizable,
as existing works [19, 34, 35] focus on specific language and package ecosys-
tem (Veracode SCA itself supports detection of whether an update is likely to
break a build, but supported languages are currently limited to Java, Python,
and Ruby).

The findings also demonstrate the value in researching approaches to rec-
ommend libraries known to be secure to developers starting new projects, as
developers may not readily update or change their project’s dependency set
afterwards, even after the discovery of vulnerabilities. In addition, over lifetime
of a project, some of its dependencies may cease to be actively maintained,
and those dependencies may subsequently become less secure compared to
contemporary alternatives. Detection of such situation and recommendation
of alternatives may help project developers keep their work secure. Some tools
such as WhiteSource and Veracode SCA are able to detect outdated libraries
and automatically generate pull request for updates to newer version of the
same libraries10,11. However, to our knowledge, currently SCA tools do not
provide alternative library recommendations based on security track record
and update frequency.

Lastly, the prevalence of certain types of dependency vulnerabilities across
different languages (e.g. “Denial of Service” and “Information Disclosure”)
as per Finding 2 indicates potential widespread benefit from research into
the resolution or mitigation of such vulnerabilities. It will also be beneficial
to conduct future research into common root causes of frequently-discovered
vulnerability types, and methods to prevent or detect such issues in library
code.

10 https://help.veracode.com/reader/hHHR3gv0wYc2WbCclECf A/EDLOi6PYdFYDvenrK 0vCQ
11 https://help.github.com/en/github/managing-security-vulnerabilities/about-security-

alerts-for-vulnerable-dependencies

28 Gede Artha Azriadi Prana et al.

6 Threats to Validity

6.1 Threats to internal validity

Threat to internal validity stems from limitations related to data and analysis
capability of the Veracode SCA tool and its associated platform database. It
makes no claim of complete identification of libraries and associated informa-
tion, and is affected by information in the files it analyzes. We attempt to
mitigate this threat by focusing on software projects developed using popu-
lar programming languages. Another threat to validity, which affects analyses
related to correlation between vulnerability and project attributes, originates
from the time difference between the latest commit analyzed and the extrac-
tion time of the project metadata from GitHub, during which there may be
change in attribute’s values. Regarding the correlation between the vulner-
ability and the commit attributes, a threat to internal validity stems from
difficulty to accurately measure and compare the experience levels of the com-
mit authors. In this work we used the number of prior commits in the same
project as a proxy. The next threat to internal validity, which affects com-
putation of average time needed to fix dependency vulnerabilities, originate
from vulnerabilities that have already existed in sample projects since before
beginning of the observation period, as well as vulnerabilities that are not yet
fixed by the end of the observation period.

6.2 Threats to external validity

Generalizability of our findings may be affected by two factors. First, different
software projects may use different open-source libraries, which may in turn
have different kinds of vulnerabilities and licenses. We attempt to mitigate this
threat by performing random selection from reaper dataset without regard to
project type. Another external threat to validity comes from the fact that the
sampled repositories contain projects that have existed for a few years and
are still actively developed. While our results indicate no strong correlation
between the number of commits in the period of interest and the number of
vulnerabilities, there may still be differences between characteristics of the
sampled projects with, for example, those of recently started projects that are
more likely to use the latest library versions from the beginning.

7 Related Work

7.1 Characteristics of Vulnerabilities

Security vulnerabilities of software projects have been a subject of a number
of empirical studies. For example, Shahzad et al. [47] performed analysis on a
data set of software vulnerabilities from 1988 to 2011, focusing on seven as-
pects related to their life cycle. Among other findings, they noted that Denial

Out of Sight, Out of Mind? 29

of Service, Buffer Overflow, and remote code execution are the three most ex-
ploited forms of vulnerabilities, but SQL injection, cross-site scripting (XSS),
and PHP-specific vulnerabilities were also on the rise. Our findings indicate
that at the time of the writing, SQL injection, XSS, and Denial of Service
also rank highly among common vulnerability types, although with the ex-
ception of Denial of Service, this is not universal across languages. Camilo et
al. [6] performed statistical analyses on bugs and vulnerabilities mined over
five releases of Chromium project to examine the relationship between the two
groups, and discovered that bugs and vulnerabilities are empirically dissimi-
lar. Ozment and Schechter [40] performed a study on code base of OpenBSD
operating system and compiled a database of vulnerabilities identified within
a 7.5 year period, and discovered, among others, that 62% of vulnerabilities
identified during the period are foundational, i.e. the vulnerabilities are al-
ready present in the source code at the beginning of the study. Our analysis
regarding persistence of vulnerabilities in the sample projects’ OSS depen-
dencies found similar vulnerability persistence issues across languages. More
recently, Zahedi et al. [57] performed a study on security-related issues from
a sample of 200 repositories on GitHub, and discovered that most security is-
sues reported are related to identity management and cryptography, and that
security issues comprise only about 3% of all reported issues. We found that in
case of vulnerability in OSS dependencies, there is variation across languages.
For example, while cryptography-related vulnerabilities ranks among top five
in Java, it is not so in other languages. In contrast to the above-mentioned
works however, our work focuses on vulnerabilities in the sample projects’ OSS
dependencies instead of vulnerabilities in the sample projects’ source code.

Beyond this, there have also been studies that focus on code and pro-
gramming practice descriptions in StackOverflow posts. For example, Meng et
al. [33] conducted an empirical study on 497 StackOverflow posts related to
Java security to understand challenges faced by Java developers in attempt-
ing to write secure code. They discovered issues that hinder secure coding
practices such as complexity of cryptography APIs and Spring security con-
figuration methods, as well as vulnerabilities in code blocks within accepted
answers. Rahman et al. [43] studied code blocks contained in 44,966 Python-
related answers on StackOverflow, and found 7.1% of them to contain one or
more insecure coding practice, with code injection being the most frequent
type of issue. They also found no relation between user reputation and pres-
ence of insecure coding practice in the answer provided by the user. While the
scope of our work does not include StackOverflow post, we believe all these
factors contribute to spread and persistence of vulnerabilities observed in our
study. If a language’s security features are difficult to use, and example code
in that language commonly contain vulnerabilities, library developers may not
be aware of the proper way to write secure code in that language.

30 Gede Artha Azriadi Prana et al.

7.2 Relationship between Software Metrics and Vulnerabilities

A number of work investigate the relationship between the presence of vulnera-
bilities and various software metrics. Many of those works also propose vulner-
ability prediction models based on software metrics. For example, Zimmerman
et al. [61] investigated whether software metrics that are commonly used in
defect prediction (such as code churn and complexity) are useful for predicting
vulnerabilities in Windows Vista. They found that using such metrics achieves
high precision but low recall. Meneely and Williams [30, 31] examined corre-
lations between vulnerabilities in several open-source software projects and
various developer activity metrics, such as number of commits made to a file
and number of developers who had changed a file. Among other findings, they
found that files that have been changed by six or more developers were four
times more likely to contain vulnerability compared to files changed by five
or fewer developers. Shin and Williams [48] examined potential usage of exe-
cution complexity metrics (such as frequency of function calls) collected from
common usage pattern, for predicting software components that may con-
tain vulnerability. They compared the performance between static complexity
metrics and the combination of both sets of metrics. They found that the effec-
tiveness of prediction of vulnerable code location using execution complexity
metrics vary between the software projects analyzed, with good result for one
of the projects (Firefox) but no significant discriminative ability and low recall
in the other (Wireshark).

Other than works focusing on relationship between software metrics and
vulnerable part of source code, a number of works use software metrics to
identify vulnerability-contributing commits. For example, Bosu et al. [4] ana-
lyzed code review requests from 10 open source projects to identify character-
istics of changes that are more likely to contain vulnerabilities. They found,
among others, that larger number of changed lines correspond to higher like-
lihood of vulnerability, and that new files are less likely to contain vulnera-
bilities compared to modified files. Another example is Perl et al.’s work [42]
in which they performed mapping between CVEs and GitHub commits of 66
open-source projects and subsequently experimented with using combination
of software repositories metadata and software metrics to train a classifier for
vulnerability-contributing commit identification. They found that the combi-
nation enabled significant reduction of false positives by 99% compared to the
then state-of-the-art approach, while maintaining level of recall.

Our work differs from the above-mentioned works since our focus is on
vulnerabilities in OSS dependencies of software projects, instead of vulnera-
bilities in the project code itself. In consequence, our metrics differ. We use
project-level metrics and metrics related to software dependencies, instead of
file-level metrics. Furthermore, our objective is not vulnerability prediction,
but rather investigation into characteristics of projects known to contain OSS
dependency vulnerabilities.

Out of Sight, Out of Mind? 31

7.3 Vulnerable Dependencies

There has been several works that discuss vulnerable dependencies in the con-
text of library updatability or migrations. Derr et al. [10] conducted a large-
scale library updatability analysis on Android applications along with a survey
with developers from Google Play, and reported that among the actively-used
libraries with known security vulnerability, 97.8% can actually be updated
without changing application code. They found that reasons for not updating
dependencies include lack of incentive to update (since existing versions work
as intended), concern regarding possible incompatibility and high integration
effort, as well as lack of awareness regarding available updates. Zimmerman et
al. [60] conducted a study on security risks in the npm ecosystem, and found
that single points of failure exists within the ecosystem due to the dependency
network structure. The main issues include possibility of vulnerability in sin-
gle libraries to impact large parts of npm ecosystem, and possibility of very
small number of package maintainers to introduce vulnerability to large part of
the ecosystem. Decan et al. [8] studied the evolution of vulnerabilities in npm
dependency network using 400 security reports from a 6-year period. Among
their findings, they reported that dependency constraints prevented more than
40% of package releases with vulnerable dependencies from being fixed auto-
matically by switching to newer version of the dependencies. Kula et al. [25]
conducted a study on impact of security advisories on library migration on
4,600 software projects on GitHub and discovered, among others, that many
developers of studied systems do not update vulnerable dependencies and are
not likely to respond to a security advisory. Our finding related to persis-
tence of vulnerabilities (Findings 7 and 9) confirms their findings regarding
prevalence of significant delay in updating vulnerable dependencies.

Related to the usage of vulnerable dependencies, Cadariu et al. [5] investi-
gated the prevalence of usage of dependencies with known security vulnerabil-
ities in 75 proprietary Java projects built with Maven. They found that 54 of
the projects use at least 1 (and up to 7) vulnerable libraries. Lauinger et al. [27]
analyzed the usage of Javascript libraries by websites in top Alexa domains
as well as random sample of .com websites, and found that around 37% of
them include at least one library known to contain vulnerability. Paschenko et
al. [41] performed a study on instances of 200 Java libraries that are most often
used in SAP software, and found that about 20% of affected dependencies are
not actually deployed, and 81% of vulnerable dependencies can be fixed by
simply updating the library version. Dashevskyi et. al. [7] identified three dif-
ferent cost models to estimate the amount of security maintenance effort (e.g.
vulnerability fixes) required when using open-source components in propri-
etary software products. They analyzed usage of 166 open-source components
in SAP products and found that open-source component size (measured as
lines of code) and age are the main factors influencing security maintenance
effort.

Our study uses a larger and more diverse dataset compared to the exist-
ing works on vulnerable dependency usage. Our dataset comprises software

32 Gede Artha Azriadi Prana et al.

projects with different characteristics (type, language, authors, organization,
etc.), which improves generalizability of our findings. In addition, the software
composition analysis tool we use includes a database which includes details
on vulnerabilities such as type labels, enabling more systematic grouping and
analyses of vulnerability by their characteristics. This allows us to derive in-
sights related to the popularity of different vulnerability types, which has not
been analyzed in [5, 27, 41]. Further, the database also includes a number of
non-CVE vulnerabilities in addition to publicly-known vulnerabilities in CVE
list, which improves comprehensiveness of the scan results. In addition, we
scan the dependency graphs of the projects’ code bases directly to obtain in-
formation on its open-source dependencies and associated vulnerabilities. This
approach enables higher accuracy compared to reliance on proxies such as text
content of reported issues. Finally, the commit-level granularity of our analysis
enables the identification of general changes in the one-year observation period
as well as the relationship between vulnerabilities and commit attributes.

8 Conclusions and Future Work

In this work we conducted an empirical study on open-source dependencies
of 450 GitHub projects written in three popular programming languages. We
scanned the commits made to those projects between November 1, 2017 and
October 31, 2018, and identified common vulnerability types, as well as vul-
nerable libraries that affect the most projects. We also found evidence that
number of vulnerabilities associated with open-source dependencies tend to
be higher in Java and Ruby projects, indicating opportunity to improve soft-
ware security by improving open-source libraries, notification of vulnerability
discovery, and ease of library update in those languages. Our results indicate
that significant percentage of vulnerable dependency issues are persistent, and
among the issues that are fixed, the average time taken is about 4-5 months.
Related to project and commit attributes, we found that number and experi-
ence of contributors, project activity level, and size do not appear to correlate
with better handling of vulnerable dependencies. Rather, vulnerability counts
correlate more strongly with the number of direct and transitive dependen-
cies. This highlights to library users the importance of managing the number
of their projects’ dependencies carefully, in addition to performing timely up-
dates.

A potential direction of future work is expansion of the scale of the study to
cover projects written in other programming languages supported by Veracode
SCA, as well as investigation of commits from longer time period. Beyond this,
our future work lies in investigation into associations between dependency vul-
nerability types as well as the factors that promote or mitigate them. Another
element of potential future work related to our study is the identification of
characteristics of projects with track record of resolving dependency vulnera-
bilities quickly and how the characteristics can be emulated in other projects.

Out of Sight, Out of Mind? 33

In addition, we are also interested in investigating the techniques to automat-
ically identify and update vulnerable dependencies in project codebase.

References

1. Abdalkareem R, Nourry O, Wehaibi S, Mujahid S, Shihab E (2017) Why
do developers use trivial packages? an empirical case study on npm. In:
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, ACM, pp 385–395

2. Arora A, Telang R (2005) Economics of software vulnerability disclosure.
IEEE security & privacy 3(1):20–25

3. Bell RM, Ostrand TJ, Weyuker EJ (2013) The limited impact of indi-
vidual developer data on software defect prediction. Empirical Software
Engineering 18(3):478505, DOI 10.1007/s10664-011-9178-4

4. Bosu A, Carver JC, Hafiz M, Hilley P, Janni D (2014) Identifying the char-
acteristics of vulnerable code changes: An empirical study. In: Proceedings
of the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pp 257–268

5. Cadariu M, Bouwers E, Visser J, van Deursen A (2015) Tracking known se-
curity vulnerabilities in proprietary software systems. In: 2015 IEEE 22nd
International Conference on Software Analysis, Evolution, and Reengi-
neering (SANER), IEEE, pp 516–519

6. Camilo F, Meneely A, Nagappan M (2015) Do bugs foreshadow vulner-
abilities?: a study of the chromium project. In: Proceedings of the 12th
Working Conference on Mining Software Repositories, IEEE Press, pp
269–279

7. Dashevskyi S, Brucker AD, Massacci F (2016) On the security cost of
using a free and open source component in a proprietary product. In:
International Symposium on Engineering Secure Software and Systems,
Springer, pp 190–206

8. Decan A, Mens T, Constantinou E (2018) On the impact of security vul-
nerabilities in the npm package dependency network. In: 2018 IEEE/ACM
15th International Conference on Mining Software Repositories (MSR),
IEEE, pp 181–191

9. Decan A, Mens T, Grosjean P (2019) An empirical comparison of depen-
dency network evolution in seven software packaging ecosystems. Empiri-
cal Software Engineering 24(1):381–416

10. Derr E, Bugiel S, Fahl S, Acar Y, Backes M (2017) Keep me updated: An
empirical study of third-party library updatability on android. In: Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security, ACM, pp 2187–2200

11. Devanbu P, Zimmermann T, Bird C (2016) Belief & evidence in empirical
software engineering. In: 2016 IEEE/ACM 38th International Conference
on Software Engineering (ICSE), IEEE, pp 108–119

34 Gede Artha Azriadi Prana et al.

12. Durumeric Z, Li F, Kasten J, Amann J, Beekman J, Payer M, Weaver N,
Adrian D, Paxson V, Bailey M, et al (2014) The matter of heartbleed. In:
Proceedings of the 2014 conference on internet measurement conference,
ACM, pp 475–488

13. Fazzini M, Xin Q, Orso A (2019) Automated api-usage update for android
apps. In: Proceedings of the 28th ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis, pp 204–215

14. Foo D, Ang MY, Yeo J, Sharma A (2018) Sgl: A domain-specific language
for large-scale analysis of open-source code. In: 2018 IEEE Cybersecurity
Development (SecDev), IEEE, pp 61–68

15. Foo D, Chua H, Yeo J, Ang MY, Sharma A (2018) Efficient static checking
of library updates. In: Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ACM, pp 791–796

16. Gardner W, Mulvey EP, Shaw EC (1995) Regression analyses of counts
and rates: Poisson, overdispersed poisson, and negative binomial models.
Psychological bulletin 118(3):392

17. Hilbe JM (2011) Negative binomial regression. Cambridge University Press
18. Hoepman JH, Jacobs B (2007) Increased security through open source.

Communications of the ACM 50(1):79–83
19. Jezek K, Dietrich J (2017) Api evolution and compatibility: A data corpus

and tool evaluation. Journal of Object Technology 16(4):2–1
20. Jimenez M, Papadakis M, Le Traon Y (2016) Vulnerability prediction

models: A case study on the linux kernel. In: 2016 IEEE 16th International
Working Conference on Source Code Analysis and Manipulation (SCAM),
IEEE, pp 1–10

21. Kalliamvakou E, Gousios G, Blincoe K, Singer L, German DM, Damian
D (2014) The promises and perils of mining github. In: Proceedings of the
11th working conference on mining software repositories, ACM, pp 92–101

22. Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete
observations. Journal of the American statistical association 53(282):457–
481

23. Kononenko O, Baysal O, Godfrey MW (2016) Code review quality: how
developers see it. In: Proceedings of the 38th International Conference on
Software Engineering, pp 1028–1038

24. Kula RG, German DM, Ishio T, Inoue K (2015) Trusting a library: A study
of the latency to adopt the latest maven release. In: 2015 IEEE 22nd In-
ternational Conference on Software Analysis, Evolution, and Reengineer-
ing (SANER), IEEE, p 520524, DOI 10.1109/SANER.2015.7081869, URL
http://ieeexplore.ieee.org/document/7081869/

25. Kula RG, German DM, Ouni A, Ishio T, Inoue K (2018) Do develop-
ers update their library dependencies? Empirical Software Engineering
23(1):384–417

26. Lamothe M, Shang W, Chen TH (2018) A4: Automatically assisting an-
droid api migrations using code examples. arXiv preprint arXiv:181204894

Out of Sight, Out of Mind? 35

27. Lauinger T, Chaabane A, Wilson CB (2018) Thou shalt not de-
pend on me. Commun ACM 61(6):41–47, DOI 10.1145/3190562, URL
http://doi.acm.org.libproxy.smu.edu.sg/10.1145/3190562

28. Li J, Conradi R, Bunse C, Torchiano M, Slyngstad OPN, Morisio M
(2009) Development with off-the-shelf components: 10 facts. IEEE soft-
ware 26(2):80–87

29. McCabe TJ (1976) A complexity measure. IEEE Transactions on software
Engineering (4):308–320

30. Meneely A, Williams L (2009) Secure open source collaboration: an em-
pirical study of linus’ law. In: Proceedings of the 16th ACM conference on
Computer and communications security, pp 453–462

31. Meneely A, Williams L (2010) Strengthening the empirical analysis of
the relationship between linus’ law and software security. In: Proceedings
of the 2010 ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement, pp 1–10

32. Meneely A, Srinivasan H, Musa A, Tejeda AR, Mokary M, Spates B
(2013) When a patch goes bad: Exploring the properties of vulnerability-
contributing commits. In: 2013 ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, IEEE, pp 65–74

33. Meng N, Nagy S, Yao D, Zhuang W, Arango-Argoty G (2018) Secure cod-
ing practices in java: Challenges and vulnerabilities. In: 2018 IEEE/ACM
40th International Conference on Software Engineering (ICSE), IEEE, pp
372–383

34. Mezzetti G, Møller A, Torp MT (2018) Type regression testing to detect
breaking changes in node. js libraries. In: 32nd European Conference on
Object-Oriented Programming (ECOOP 2018), Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik

35. Møller A, Torp MT (2019) Model-based testing of breaking changes in
node. js libraries. In: Proceedings of the 2019 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pp 409–419

36. Munaiah N, Kroh S, Cabrey C, Nagappan M (2017) Curating github for
engineered software projects. Empirical Software Engineering 22(6):3219–
3253

37. Nagappan N, Ball T (2005) Use of relative code churn measures to predict
system defect density. In: Proceedings of the 27th international conference
on Software engineering, ACM, pp 284–292

38. Neuhaus S, Zimmermann T, Holler C, Zeller A (2007) Predicting vulnera-
ble software components. In: ACM Conference on computer and commu-
nications security, Citeseer, pp 529–540

39. Ostrand TJ, Weyuker EJ, Bell RM (2010) Programmer-based
fault prediction. In: Proceedings of the 6th International Confer-
ence on Predictive Models in Software Engineering - PROMISE
10, ACM Press, p 1, DOI 10.1145/1868328.1868357, URL
http://portal.acm.org/citation.cfm?doid=1868328.1868357

36 Gede Artha Azriadi Prana et al.

40. Ozment A, Schechter SE (2006) Milk or wine: does software security im-
prove with age? In: USENIX Security Symposium, pp 93–104

41. Pashchenko I, Plate H, Ponta SE, Sabetta A, Massacci F (2018) Vulnerable
open source dependencies: counting those that matter. In: Proceedings
of the 12th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, ACM, p 42

42. Perl H, Dechand S, Smith M, Arp D, Yamaguchi F, Rieck K, Fahl S,
Acar Y (2015) Vccfinder: Finding potential vulnerabilities in open-source
projects to assist code audits. In: Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, pp 426–437

43. Rahman A, Farhana E, Imtiaz N (2019) Snakes in paradise?: insecure
python-related coding practices in stack overflow. In: Proceedings of the
16th International Conference on Mining Software Repositories, IEEE
Press, pp 200–204

44. Ray B, Posnett D, Filkov V, Devanbu P (2014) A large scale study of
programming languages and code quality in github. In: Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pp 155–165

45. Raymond E (1999) The cathedral and the bazaar. Knowledge, Technology
& Policy 12(3):23–49

46. Seabold S, Perktold J (2010) statsmodels: Econometric and statistical
modeling with python. In: 9th Python in Science Conference

47. Shahzad M, Shafiq MZ, Liu AX (2012) A large scale exploratory analysis
of software vulnerability life cycles. In: 2012 34th International Conference
on Software Engineering (ICSE), IEEE, pp 771–781

48. Shin Y, Williams L (2011) An initial study on the use of execution com-
plexity metrics as indicators of software vulnerabilities. In: Proceedings
of the 7th International Workshop on Software Engineering for Secure
Systems, pp 1–7

49. Shin Y, Williams L (2013) Can traditional fault prediction models be used
for vulnerability prediction? Empirical Software Engineering 18(1):25–59

50. Shin Y, Meneely A, Williams L, Osborne JA (2010) Evaluating complex-
ity, code churn, and developer activity metrics as indicators of software
vulnerabilities. IEEE transactions on software engineering 37(6):772–787

51. Spadini D, Aniche M, Bacchelli A (2018) Pydriller: Python framework for
mining software repositories. In: Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ACM, pp 908–911

52. Spearman C (1904) The proof and measurement of association between
two things. American journal of Psychology 15(1):72–101

53. Thung F, Haryono SA, Serrano L, Muller G, Lawall J, Lo D, Jiang L
(2020) Automated deprecated-api usage update for android apps: How far
are we? In: 2020 IEEE 27th International Conference on Software Analysis,
Evolution and Reengineering (SANER), IEEE, pp 602–611

54. Trockman A (2018) Adding sparkle to social coding: an empirical
study of repository badges in the npm ecosystem. In: Proceedings of

Out of Sight, Out of Mind? 37

the 40th International Conference on Software Engineering: Compan-
ion Proceeedings, ACM, p 524526, DOI 10.1145/3183440.3190335, URL
https://dl.acm.org/doi/10.1145/3183440.3190335

55. Weyuker EJ, Ostrand TJ, Bell RM (2007) Using developer informa-
tion as a factor for fault prediction. In: Third International Work-
shop on Predictor Models in Software Engineering (PROMISE07: ICSE
Workshops 2007), IEEE, p 88, DOI 10.1109/PROMISE.2007.14, URL
http://ieeexplore.ieee.org/document/4273264/

56. Witten B, Landwehr C, Caloyannides M (2001) Does open source improve
system security? IEEE Software 18(5):57–61

57. Zahedi M, Ali Babar M, Treude C (2018) An empirical study of security
issues posted in open source projects. In: Proceedings of the 51st Hawaii
International Conference on System Sciences

58. Zhang Y, Lo D, Xia X, Xu B, Sun J, Li S (2015) Combining software
metrics and text features for vulnerable file prediction. In: 2015 20th
International Conference on Engineering of Complex Computer Systems
(ICECCS), IEEE, pp 40–49

59. Zhou Y, Sharma A (2017) Automated identification of security issues from
commit messages and bug reports. In: Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, ACM, pp 914–919

60. Zimmermann M, Staicu CA, Tenny C, Pradel M (2019) Small world with
high risks: A study of security threats in the npm ecosystem. In: 28th
{USENIX} Security Symposium ({USENIX} Security 19), pp 995–1010

61. Zimmermann T, Nagappan N, Williams L (2010) Searching for a needle
in a haystack: Predicting security vulnerabilities for windows vista. In:
2010 Third International Conference on Software Testing, Verification and
Validation, IEEE, pp 421–428

