AT

/ 7 OPEN SOURCE

Sharma,

Rohan Sood,

Artists:

LARGE LANGUAGE

MODELS FOR CODE

s =
ai art will

+ CodeBERT replace us

+ AlphaCode programmers:
- CodeGen zZ=

- Codex i

- GPT-3.5/4

- PanGu-Coder ChatGPT will

finally.

- FauxPilot replace us

WHY OPEN-SOURCE MODELS?

- Data security, privacy and control for organizations. e

- Customization and optimization via fine-tuning/context embedding.
- Ability to train on a larger, ethically-sourced dataset.
- Greater transparency, avoids censorship and better alignment.

- Decentralization and reducing power concentration in Al development.

- Cost advantages and viability for non-commercial use-cases.

A WINDOW OF OPPORTUNITY

« Commercial models are leading when it - But open-source models are very
comes to left-right code generation competitive for fill-in-the-middle (FIM)

GPT-4 0.68 Codex 0.63

Codex 0.47 PLBART 0.42

CodeGen 0.29 InCoder 0.49

SantaCoder 0.18 SantaCoder 0.62

2022

~
3

11.0

59 ks)

WINDOW OF OPPORTUNIT

Do Users Write More Insecure Code with Al Assistants?

Neil Perry * Megha Srivastava *
Stanford University Stanford University

Abstract—We conduct the first large-scale user study examin-
ing how users interact with an Al Code assistant to solve a
variety of security related tasks across different programming
languages. Overall, we find that participants who had access
to an Al assistant based on OpenAl’s codex-davinci-002
model wrote significantly less secure code than those without

Deepak Kumar Dan Boneh
Stanford University Stanford University

« RQ1: Does the distribution of security vulnerabilities
users introduce differ based on usage of an Al assis-
tant?

« RQ2: Do users trust Al assistants to write secure code?

« RQ3: How do users’ language and behavior when
interacting with an Al assistant affect the degree of
security vulnerabilities in their code?

Code-generating Al can introduce security
vulnerabilities, study finds

Kyle Wiggers @kyle 30 PM GMT+8 « Decembe

AAL

(> access. Additionally, participants with access to an Al assistant ——
O were more likely to believe they wrote secure code than those We found that participants with access to an Al assis- -
) without access to the Al assistant. Furthermore, we find that tant often produced more security vulnerabilities than those —~
- participants who trusted the Al less and engaged more with without access, with particularly significant results for string - —
"O ihe language and format of their prompis (e.g. re-phrasing, encryption and SQL injection (Section 4). Surprisingly, we ~
djusti) provided code with fewer security also found that participants provided access to an Al assis- -,
~— vulnerabilities. Finally, in order to better inform the design tant were more likely to believe that they wrote secure code
(a4 of future Al-based Code assistants, we provide an in-depth than those without access to the Al assistant (Section 5). B osiect
&) analysis of participants’ and as Finally, we conducted an in-depth analysis of the different Wt scene . objects.active - modifier s
) well as release our user interface as an instrument to conduct ~ Ways participants interacted with the Al assistant, such as e
15 similar studies in the future. including helper functions in their input prompt or adjusting
—_— model parameters, and found that those who trusted the Al —
less (Section 5) and engaged more with the language and lect mmctly SO
q 1. Introduction format of their prompts (Section 6) were more likely to
(‘/I provide secure code. g)
N Al code assistants, like Github Copilot, have emerged as Ovenll, ot results suggest that while] Al code assis-
\O programming tools with the potential to lower the barrier of fants may; siguficantly lower the barier of eutry for;non=

entry for programming and increase developer productivity
22]. These tools are built on models, like OpenAI's Codex
and Facebook’s InCoder [4]. [10], that are pre-trained on
large datasets of publicly available code (e.g. from GitHub),
raising a variety of usage concerns ranging from copyright
implications to security vulnerabilities. While recent works
have studied these risks in smaller, synthetic scenarios, no
study has extensively measured the security risks of Al code
assistants in the context of how developers choose to use

programmers and increase developer productivity.
provide inexperienced users a false sense of s
releasing user data, we hope to inform future designers and
model builders to not only consider the types of vulnera-
bilities present in the outputs of models such as OpenAl’s
Codex, but also the variety of ways users may choose to
interact with an Al Code assistant. To encourage future repli-
cation efforts and generalizations of our work, we release
our Ul infrastructure and provide full reproducibility details
in Section 3.5.

they may

) Image Credits: monsit; / Getty Images

Arecent study finds that software engineers who use code-generating Al systems are more likely to cause security

X1y

them [16]. Such work is important in order to attain a better
sense of the degree to which Al assistant tools eventually
cause users to write insecure code, and the ways in which

vulnerabilities in the apps they develop. The paper, co-authored by a team of researchers affiliated with Stanford, highlights the
2. BaCkgmund & Related Works potential pitfalls of code-generating systems as vendors like GitHub start marketing them in earnest.

<

i L g G g R
URVIEIBRI ORI)

3000 MBL0RE 10100 Giie

CAN OPEN- i
TINO TRAND Do PO MO0 2

1 00[(B AEHTERORIBAITIOA)

SOURCE LLMS FOR pévmRUO0) |

CODE FIX
VULNERABILITIES?

SANTACODER

BigCode About the project How to join? Search docs...

BigCode is an open scientific collaboration working on the
responsible development of large language models for code

Learn more...

Supported by:

servicenow. . Hugging Face

=)
. SANTACODER: DON’T REACH FOR THE STARS!

rl+ /

§ v

B The Stack

6 TB of permissive code data

Dataset Collection Licensing + Governance

GH Archive Raw dataset Raw dataset Permissive Opt-out: If users would like to

@ query el git clone exclude their code from the

—_— = — @ MIT corpus we have an opt-out

‘ mechanism. Visit:
Apache

20 ’ https://www.bigcode-project
Apache

near- license 2.0 BSD-3-Clause .org/docs/about/the-stack/
deduplication filtering

«— N e——

No license
220 M repo

names

selecting file MIT \
extensions

2.9 TB of data 6.4 TB of data Permissive license distribution of licenses used to filter the dataset:

MIT (67.7%) | Apache-2.0 (19.1%) | BSD-3-Clause (3.9%) | Unlicense (2.0%) |
_ _ _ _ CCO0-1.0 (1.5%) | BSD-2-Clause (1.2%) | CC-BY-4.0 (1.1%) | CC-BY-3.0 (0.7%) |
Find the filtered and deduplicated datasets at: www.hf.co/bigcode OBSD (0.4%) | RSA-MD (0.3%) | WTFPL (0.2%) | MIT-0 (0.2%) | Others (166) (2.2%)

Programming Languages Evaluation

We trained several GPT-2 models (350M parameters) on different parts of
the dataset both with and without near-deduplication. The models trained
on the Python subset of The Stack performed on par with CodeX and
CodeGen of similar size when using near-deduplication.

Dataset Filtering pass@1 pass@10 pass@100

Codex (300M) unknown 13.17 20.17 36.27

Number of files

CodeGen (350M) unknown 12.76 23.11 35.19

Size of files

Python all-license None 13.11 21.77 36.67

G

markdown

I
g
©
©

c#

typescript

Near-dedup

json

csv

text

svg

go

vue
restructuredtext

html

javascript
xml
IEVE]

c++
python
php
css
yaml
rust
gettext-catalog
ruby
sql
scala
swift
kotlin

jupyter-notebook
others

Python permissive-license None 10.99 15.94 27.21

Yy @BigCodeProject
@ https://www.bigcode-project.org/
DA contact@bigcode-project.org

unity3d-asset

Near-dedup 12.89 22.26 36.01

*results obtained with The Stack v1.0

SUPERVISED FINE TUNING

- GPT2 fine tuning for CLM (causal language modeling)

INFILLING AT INFERENCE WITH CLM

// some code <fim-prefix> <fim-prefix> // some code
<FIL | -HERE> //_Some Code //Isome ;ode // generated code
<fim-suffix> <fim-suffix> // some more code
// some more code // some more code // some more code
<fim-middle> <fim-middle>

// generated code

BUG FIXING

« Prepare the data for fine-tuning

// some code

// buggy line
// some more code

// some code
// BUG: CWE ID: DESC

// buggy line
// FIXED:
// fixed line

// some more code

<fim-prefix>
// some code
// BUG: CWE ID: DESC

// buggy line

// FIXED:
<fim-middle>

// fixed line
<fim-suffix>

// some more code
<lendoftext|>

EXAMPLE

String output = Launcher.RESOURCES.getString("WinstoneResponse.ErrorPage",
// BUG: CWE-79 Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

// new String[] { sc + "", (msg == null ? "" : msg), sw.toString(),
// FIXED:
new String[] { sc + "", URIUtil.htmlEscape(msg == null ? "" : msgqg),

URIUtil.htmlEscape(sw.toString()),Launcher.RESOURCES.getString("ServerVersion"),"" + new Date() });

response.setContentLength(output.getBytes(response.getCharacterEncoding()).length);
Writer out = response.getWriter();

RAINING
[195/195 20:49, Epoch 2/3]

Step Training Loss

- Add special tokens

kxkkk train metrics skkeksksk

0.422
3.9011

eval_steps_per_second
perplexity

epoch = 2.98
g - total_flos = 4551418GF
FIM_PREFIX = "<fim-prefix> e e _ 0.6764
FIM_MIDDLE = "<fim-middle>" train_runtime = 0:20:57.13
FIM_SUFFIX = "<fim-suffix>" SuaTiCsanpl s = 262
-) rain_samples_per_second = 0.625
FIM_PAD = "<fim-pad> train_steps_per_second = 0.155
FOD = "<|endoftext|>" [2/2 00:01]
tokenizer.add_special_tokens({ o il IS
"additional_special_tokens": [EOD, :sg%hacc e = . 352573
FIM_PREFIX, FIM_MIDDLE, FIM_SUFFIX, cval loss I e
FIM_PAD], eval_runtime = 0:00:04.74
! " eval_samples = 12
pad_tokerw.[EO[)}) eval_samples_per_second = 2.532

SANTAFIXER

- Trained on a dataset of single line CVE fixes

Dataset is available at https://hugaingface.co/datasets/lambdasec/cve-single-line-fixes

CVEfixes Dataset: Automatically Collected
Vulnerabilities and Their Fixes from Open-
Source Software

Bhandari, Guru; @®» Naseer, Amara; & Moonen, Leon

CVEfixes is a comprehensive vulnerability dataset that is automatically collected and curated from Common Vulnerabilities
and Exposures (CVE) records in the public U.S. National Vulnerability Database (NVD). The goal is to support data-driven
security research based on source code and source code metrics related to fixes for CVEs in the NVD by providing detailed
information at different interlinked levels of abstraction, such as the commit-, file-, and method level, as well as the
repository- and CVE level.

SantaFixer : https://huggingface.co/lambdasec/santafixer

https://huggingface.co/datasets/lambdasec/cve-single-line-fixes
https://huggingface.co/lambdasec/santafixer

STATIC ANALYZER + LLM = AUTO FIX

found CWE
scan Input.py input_fixed.py

. A
e - O
fixed input.py) input_prompt.py

fix input_prompt.py

Static Analyzer : Semgrep
AutoFix : https://github.com/lambdasec/autofix LLM : SantaFixer

https://github.com/lambdasec/autofix

RESULTS

- Evaluated on a dataset of CVEs from top 1000 projects on GitHub, scanned using Semgrep

. Dataset is available at https://huggingface.co/datasets/lambdasec/gh-top-1000-projects-vulns

Java 0.26 0.48
Python 0.31 0.56
JavaScript 0.36 0.62

https://huggingface.co/datasets/lambdasec/gh-top-1000-projects-vulns

HANKS

« Questions?
- Hugging Face
. https://huggingface.co/lambdasec

- GitHub

. https://github.com/lambdasec/autofix

https://huggingface.co/lambdasec
https://github.com/lambdasec/autofix

