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Abstract - In this paper, we present a new way towards
ontology  matching.  Using  the  graph  representation  for
ontologies and schemas we proceed to rank the nodes of
the graph using the lexical similarity of the ancestors. With
the guiding intuition that, if the parent nodes match then
their  children  are  likely  to  match  as  well.  This  simple
observation helps on to build a fast and efficient algorithm
for matching different graphs (which represent ontology or
schema). Since the algorithm is very fast it can be used as
a  quickly  and  dirty  method  to  do  initial  matching  of  a
large dataset and then drill down to the exact match with
other algorithms. The algorithm is not dependent on the
method used for calculating the lexical  similarity so the
best lexical analysis can be used to derive the node ranks.
Once the  node ranks are in  place we can calculate  the
matching in just a single traversal of the graphs. No other
algorithm that  we know of can give such fast  response
time. 
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1 Introduction

An ontology is a specification of a conceptualization .
It provides a vocabulary that describes a domain of interest
and a  specification of the meaning of  terms used in the
vocabulary.  With  the  advent  of  the  semantic  web,
ontologies have been used to describe what is expressed in
computer format. They are viewed as the silver bullet for
many applications, such as information integration, peer-
to-peer  systems,  electronic  commerce,  semantic  web
services, social networks, and so on [1]. One of the major
problem with ontologies can be that anyone can make any
number  of  them,  although  efforts  are  being  made  to
standardize  them.  Even  with  standards  there  can  be
ontologies  for  similar  format  derived  from  different
sources.  Ontology  matching  is  one  of  the  hot  areas  of
concern  to  computer  scientists  all  around  the  world.
Several  methods  are  already  in  place  to  enable  the
integration and match making for different ontologies [2].
Ontologies are usually represented as graph like structures
(concept  hierarchies,  classifications,  schemas).  In  this
paper we present an algorithm based on ranking the nodes

in the graph representation of the ontologies. This method
as  we  shall  see  is  a  fast  and  efficient  way  to  match
ontologies.

The problem of ontology matching also pops up in a
related  field  of  schema  integration  from  different
heterogeneous databases. These schemas if represented in a
graph  form  can  also  be  matched  using  this  algorithm.
Several  of  well  known  algorithms  in  the  semantic
integration research have already been found beneficial for
the database community [3]. We shall see here that node
ranking  can  also  be  useful  for  schema  integration. The
schema can be conveniently represented as a graph with
nodes as the attributes and relations as edges. Here is an
example for a table 'Students'.

CREATE TABLE Students (sid CHAR (20),

name CHAR(20),

login CHAR(20),

age INTEGER,

gap REAL,

UNIQUE (name, age),

CONSTRAINT
StudentsKey PRIMARY KEY(sid))

This schema can be represented as a graph shown below.

Figure 1: Graph representation of the
schema



The attribute nodes can have further children if they
refer to a foreign table and so on. This kind of graph can be
used to match schemas using the given algorithm.

2 Node Ranking Algorithm

This algorithm makes  use  of  the  simple  fact  that  if
node A and A’ match in an ontology represented as a graph
then its likely that the nodes B and B’ (the children) will
also match.

First  of  all  we  match  the  nodes  with  some  lexical
measure.  Here  we  take  the  variation  of  the  longest
common  subsequence  algorithm  to  match  the  nodes
according to their lexical similarity; this value is called the
lex_sim of a node. The lex_sim of a node can have a value
from  0  to  1  depending  on  the  match.  The  following
illustrates  the algorithm followed to  find out  the  lexical
similarity.  The  strings  X  and  Y  are  obtained  from  the
nodes of the graph.

 2.1  Algorithm Node Ranking:

Input: Strings  X  and  Y  with  n  and  m  elements,
respectively

Output: For i=0,…,n-1,j=0,…,m-1,the  length  L[i,j]  of  a
longest common subsequence of X[0..i] and Y[0..j]

for (i=-1 to n-1) do

L [I,-1] = 0

for (j=0 to m-1) do

L [-1, j] = 0

for (i=0 to n-1) do

for(j=0 to m-1) do

if (X[i]==Y[j]) then

L[i, j] = L[i-1, j-1] + 1

else 

L[i, j] = max{L[i-1, j],L[i, j-1]}

return array L

L[i,j] gives the length of the longest common subsequence,
and from L[i, j] we can find out the lex_sim by dividing
the length of X and Y by L[i, j]. So we have,

lex_sim(node A) = m / L[i, j]

lex_sim(node A’) = n / L[i, j]

where m and n  are  the lengths of  the strings A and A’
respectively.

Now each node has a lex_sim measure with it, we take
this  lex_sim  measure  as  the  node’s  approval  that  its
children and grand children will match as well. Thus in a
way  the  lexical  similarity  of  node  is  propagated  to  the
children. Every node is associated with a node rank which
is calculated as follows.

node_rank(A) =   * lex_sim(A) +  * lex_sim(parent(A))α β
+  * lex_sim(grandparent(A))γ

The values of the parameters , ,  are such that theα β γ
node  rank  is  a  number  between  0  and  1.  The  above
equation  calculates  the  node  rank  for  a  two  generation
propagation i.e. upto the grandparent level. Extending it to
an ‘n’ ancestor node rank we get the following.

node_rank(A) =  nΣ i * lex_sim( ancestori (A))

The node_rank function is a normal distribution of the
lexical similarity of the ancestors of that node. After the
node ranks  have been  allotted the  ontology graph  looks
like the one below.

Figure 3: Ontologies after assigning node
ranks

Figure 2: Representing ontologies



Once  we  have  the  node  ranks  of  each  node  the
matching problem can be tackled without any difficulty.
Just making a traversal of the two graphs we match nodes
with node ranks deferring in a small  value say ‘d’.  This
value may depend on the kind of ontology to be matched
or the schema to be integrated. This method is similar to
clustering the results by taking Manhattan distances. We
can take on different values of ‘d’ for experimental data
sets before deciding on the final value. Now we try to use
this node ranking algorithm on the following ontologies of
the departments.

Applying  the  lexical  matching  algorithm  for  the
various nodes we get the initial values by which w rank the
nodes. The result  of the initial lexical analysis is shown
below.

Table 1: Lexical matching of the two ontologies

CS Dept 1 (0.86) CS Dept 2 (0.86)
UG Courses (0.69) Courses (1.0)
Grad Courses (0.63) Courses (1.0)
Academic Staff (0.30) Staff (1.0)
Technical Staff (0.38) Staff (1.0)
Assistant Professor (0.5) Professor (1.0)
Associate Professor (0.5) Professor (1.0)
Professor (1.0) Professor (1.0)

The  lexical  matching  method  can  be  improved  on
further  by noticing the fact that  when one of  the words
form a part of the other (has a lexical similarity of 1.0) ,
there is even more chance that they actually represent the
same  thing.  Hence  the  values  of  several  nodes  like
academic staff (with staff) can be increased by a certain
level. Since the idea here is not to show the efficiency of
the lexical  analysis,  we leave them as it  is  for  the time
been. Applying node ranking algorithm for two ancestors

(i.e.  parent  and  grand  parent)  the  values  at  each  node
change to the following.

Table 2: After applying Node Ranking
CS Dept 1 (0.86) 
UG Courses (0.69) + 0.2*0.86 = (0.808)
Grad Courses (0.63) + 0.2*0.69 = (0.768)
People  0.2*0.86 = (0.172)
Faculty 0.1*0.86 = (0.086)
Staff  0.1*0.86  = (0.086)
Assistant Professor (0.5) + 0.2*0.38 = (0.576)
Associate Professor (0.5) + 0.2*0.5 = (0.6)
Professor (1.0)
CS Dept 2 (0.86)
Courses (1.0)
Staff (1.0)
Academic Staff (0.30) + 0.2*0.63 = (0.426)
Technical Staff (0.38) + 0.2*0.30 = (0.456)
Lecturer 0.2*0.3 + 0.1*1.0 = (0.16)
Senior Lecturer 0.2*0.3 + 0.1*1.0 = (0.16)
Professor (1.0)

Now moving down the table choosing a value of ‘d’ as
0.4 and traversing the graph in top to bottom left to right
we see that this algorithm matches perfectly the faculty and
academic staff and then matches Assistant Professor <--->
Lecturer  ,  Associate  Professor  <--->  Senior  Lecturer,
Professor  <--->  Professor  and  so  on.  These  matching
cannot be derived from the lexical analysis of the similarity
measure  along.  Thus  the  node  ranking  gives  a  way  of
doing  contextual  analysis  of  the  ontologies  given  the
lexical similarities.  In an exactly similar way we can go
about matching the graphs representing schemas.

2.2  Algorithm Complexity Analysis

The complexity of the algorithm can be analyzed with
respect  to  two  things.  One  is  the  lexical  matching
algorithm and other is the node ranking. Since the node
ranking algorithm is not dependent on the type of method
chosen to do the lexical matching we can safely assume we
have the lexical similarities with us. Then the next step is
to construct a table similar to the Table 2.  This requires
that we traverse the given ontology graphs at least once.
Several  of  the  current  known  algorithms  traverse  the
graphs many times to determine the proper matching [4],
[5], and [6]. Once we have the table we need to make one
more final traversal of the graph and cluster them as per
the chosen ‘d’ values. This cluster represents the matching
of the two graphs according to the ranks in their nodes.

Figure 4: CS department ontologies



3 Ontology Matching Results

This algorithm was tested on several ontologies taken
from  the  DAML  ontology  library  and  several  other
ontologies created from dummy data sets. The accuracy of
the algorithm was measured using the Longest Common
Substring  for  the  lexical  matching  and  then  using  node
ranking. The accuracy is defined with respect to the ability
of the algorithm to successfully match more then 50% of
the nodes in the given ontologies correctly. Here are the
results.

Table 3: Matching results
Ontology Matching
Publications 63%
Person 71%
Departments 83%
Courses 81%

The  values  in  the  matching  column  mean  that  the
algorithm matched more then half of the nodes correctly,
that many number of times for the given ontology. Say for
courses  the  given  ontologies  matched  81%  of  times
correctly (match is defined by matching more then 50% of
nodes).  The tests  conducted  involved  choosing different
values for ‘d’ and changing the number of ancestors up to
which to apply the algorithm.

4 Future Work

The tests for various values of ‘d’ and choosing the
right ancestor to apply the node raking are under way. And
the  results  till  now  are  promising.  The  tests  for
heterogeneous   schemas are also going on. The following
are the guidelines for future work.

• Testing the algorithm on a wider range of data sets.
• Testing  the  algorithm  in  conjunction  with  different

lexical matching methods to find the one best suited.
• To  use  this  algorithm  in  existing  applications  to

complement  and verify  the results,  those  are  already
obtained.

5 Conclusion

In this paper we analyzed the node raking algorithm
which gives a fast and time efficient way to match different
ontologies  and  schemas.  As  the  results  suggest,  this
algorithm  can  be  used  as  a  quick  and  dirty  method  to
match  two  ontologies.  Since  the  algorithm  fast  in
comparison  to  the  ones  used  in  current  matching
applications ([7], [8] and [9]) we can use it to do an initial
survey of the datasets and identify the graphs that can later
be analyzed in depth with other methods.
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