
Machine Learning for 
Software Security

Asankhaya Sharma
Veracode



Who?

Asankhaya Sharma
Director of Incubation Research
Veracode Singapore

TCS is a Veracode Strategic partner since 2017, including the use of Veracode for TCS Digitate 
since 2018. If you have any questions about Veracode the TCS partnership, or the Veracode 
platform, please contact Global Alliance lead Mike Henroid (mhenroid@Veracode.com)

User



Proliferation of open-
source libraries and 
components

• Large number of software 
components
• On average, a JavaScript 

application uses 377 external 
components

• Extreme cases see more than 
1400 external components 
used

• Large number of dependents
• "inherits" used by over 90% of 

JavaScript applications analyzed
• Others worth mentioning: 

"lodash", "ms", "debug"
• Software is assembled with reusable 

components, so the attack surface is 
shifting



Examples of attacks on software supply chain

Security Vulnerabilities

• Eg. Cross-site 
Scripting (XSS), 
Prototype Pollution

• Possibilities of "zero-
days" found in every 
layer of 
dependencies

Distribution of 
Malicious components 

• Eg. Remote Access 
Trojans, Information 
Exfiltration

• Delivered through 
means like 
Typosquatting, 
"Brandjacking"

Direct supply chain 
attacks

• Eg. Dependency 
Confusion

• Publishing public 
libraries under 
private libraries 
names causes a 
confusion in 
dependency 
resolution





Impact of leaving these issues out of sight

79% of the time, developers 
do not update third-party 
libraries

When left out of sight, 50% 
of the libraries with 
vulnerabilities takes about 
414 days long to update

With security flaw 
notifications, 50% of the 
vulnerabilities are fixed only 
after 89 days

46.5% of a survey 
respondents find it difficult 
to address the 
security issues

Source: State of Software Security: Open-Source Edition
https://info.veracode.com/report-state-of-software-security-open-source-edition.html

https://info.veracode.com/report-state-of-software-security-open-source-edition.html


Vulnerability 
Discovery
• Manual curation process is not scalable

• More than 4.2 million open-source 
libraries supported

• Track an ever-increasing list of sources 
including:
• NVD
• Code Repositories
• Mailing lists
• Websites
• Etc..

• Inelastic resources – Security Researchers

• Requires an efficient solution to scale



Machine Learning 
Approach
• Initial approach based on Git commits, and 

Issue tracker systems
• 0.83 Precision, 0.74 Recall
• Causes highly imbalanced ratio per 

source, as low as 5.88% are labeled a 
vulnerability

• Current approach utilizes Self-Training
• Utilize unlabeled data
• Automatically generate improved, 

evaluated, models resilient to changes



Self-Training Model deployment

Production Model: Trained 
on human labeled data 

only

Trained a new model with 
the self-training, for 
evaluation against 
production model

PR AUC increase across 
most data sources

For both Bugzilla, Emails, 
Reserved CVE 

improvement/change are 
negligible as it already has 

very high performance



• Details are in the paper "A 
Machine Learning Approach for 
Vulnerability Curation"

• ACM SIGSOFT Distinguished Paper 
Award 2020

• Talk: https://www.youtube.com/w
atch?v=hZcxtgwNvIE

• PDF: http://asankhaya.github.io/p
df/A-Machine-Learning-Approach-
for-Vulnerability-Curation.pdf

https://www.youtube.com/watch?v=hZcxtgwNvIE
http://asankhaya.github.io/pdf/A-Machine-Learning-Approach-for-Vulnerability-Curation.pdf


Examples of 
Discovered 
Vulnerabilities
• Denial of Service (DoS)
• axios
• ~13m weekly downloads
• >44k dependents



Examples of 
Discovered 
Vulnerabilities
• Regular Expression Denial 

of Service (ReDoS)
• trim
• >3.4m weekly downloads
• Used in >371k repositories



Examples of 
Discovered 
Vulnerabilities
• Persistent Cross-site 

Scripting (XSS)
• xxl-job
• >16k Stars
• Used by >2000
• 50 Contributors



Examples of 
Discovered 
Vulnerabilities
• Directory Traversal
• GitHub Description ”patch”



Examples of 
Discovered 
Vulnerabilities
• Arbitrary Code Execution
• Unsafe eval during JSON 

deserialization
• blazar_dashboard



Can we learn from how 
developers fix vulnerabilities 
in open-source software?



Auto 
Remediation
• Suggest pre-defined 

templated fixes for common 
security issues

• Create a Pull Request with 
the fix applied directly on the 
developer’s code



Templated 
Fixes
• Handwritten/inferred fix 

templates

• Deterministic
• Method-local (Fast)

• Could be Conservative or 
best-effort

• Not always applicable



Goal of Auto Remediation

• Templated fixes are time consuming and challenged by the similar 
resource constraints as Vulnerability Discovery
• Over time, increase the pool of suggested fixes through Machine 

Learning based approach by understanding
• Open-source projects
• Common Organizational fixes

Templated Fixes

Applying recommended 
template fixes based on 
fixed-pattern recognition 
of specific CWEs

ML from Single Org and OSS

Fixes learned from closed system 
(Single Organization) and OSS, 
match by CWE ID and attack 
vector, useful for repetitive flaws

Cross-Org ML

Learning history from OSS 
and across organizations 
using anonymized datasets

Now Next Later



Machine 
Learning 
approach 
for Auto 
Remediation

Increase amount of fix suggestions

Security fixes can be categorized into various types

Flaws and fixes are usually similar across the same 
type

Data mine suggested fixes to 
generalize into templates

From Open Source
From Organization specific 
code

Identify repetitive flaws that are fixed in the same 
manner



Learn fixes using Machine Learning

• Scanning open-source projects
• Using SCA Vulnerability database fix commits
• Using org’s flaw and fix information

Inputs Flaws and fixes collected by:

• Train models for similar flaws using their fixes
• Predict fixes by matching vulnerable code with the context information 

in fix patterns to suggest candidate fixes operations

Approach:



Model Training

Token Embedding

• Train Word2Vec 
model

• Generate token 
vector 
representation

• Save Word2Vec 
model for 
prediction

Feature Learning

• Train a Convolutional 
Neural Network

• Extract features
• Save CNN model for 

prediction

Clustering

•X-Means 
clustering

•Save clustering 
model for 
prediction

Inputs

• VC static scan results 
and related source 
files

• Scan reports about 
open source 
projects, org's 
projects and SCA 
vulnerability fix 
commits

AST (Diff) Tokenization

• AST Parsing with 
Gumtree

• Transform AST
• Generate tokens 

representation







Machine Learning for Software Security

Faster Vulnerability Discovery allows 
quicker call to action for security fixes

Auto Remediation helps speed up the 
flaw fixing process



Thank You!

• Questions?

• Contact
• Twitter: @asankhaya

https://twitter.com/asankhaya

