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HETEROGENEOUS COMPUTATION GRID 
 

 (a peer-to-peer node-based resource virtualization system) 
 

ABSTRACT 
 
In this paper, we present Heterogeneous Computation Grid (HCG), a peer-to-peer node-based resource 
virtualization system. HCG is designed to provide a decentralized architecture for resource sharing in 
solving computationally intensive problem by use of idle time of client devices across multiple 
platforms. HCG also enables these peers to request individual services from the grid. Traditional grid 
computation requires a central grid server to dispatch work and get progress update from clients. The 
grid is used for a limited set of server-defined projects, often with no benefits to the client. The HCG 
model has no server-defined projects, with the resources of the entire grid at the disposal of peers. It is 
evident that creating a sustainable P2P model for resource virtualization is a mammoth task. HCG 
accomplishes these goals by maintaining a database of projects in the grid and a list of registered users. 
The client program on the peer device schedules idle time for the execution of jobs in the database, 
subject to choice and priority constraints. The client also doubles up as a job management unit, which 
submits jobs to the grid and collates the results, while securing the data and the internal working of the 
software from the peer. HCG also derives its computational power from numerous Applets and 
ActiveX controls that are distributed on websites. It can also use the computational power of mobiles 
and embedded devices that can connect to the grid. HCG will be most useful for academic institutions 
and corporate houses, which can pool up their resources for the most computationally intensive work, 
without any loss of confidentiality or data security. 
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INTRODUCTION 
 
The rapid proliferation of the Internet and the rise in computational power of machines has provided us 
the potential for harnessing vast numbers of computers, storage devices, and networks as a platform for 
computation. The computational power of a vast number of computers, in academic institutions, 
corporate houses and even homes lie unused due to the poor frameworks for grid resource utilization 
and absence of industry-standard interfaces [1]. The main challenges of such an interface would be to 
provide a secure, reliable, efficient and economically viable [2] model for grid computation. For 
distributed programming to make headway in the day-to-day computation, it is imperative that the grid 
model changes from a server-client model to a peer-to-peer (P2P) network-based model. The proposed 
model uses a P2P network to create a computational platform encompassing systems of varied 
architecture and capabilities. Any node in the network can effectively utilize the idle computational 
time and power of peer nodes and donate its own idle time for the computations of other nodes. 
 
Two major design goals of this project include peer-based modelling and heterogeneous peers with 
cross-platform compatibility and architecture-independent implementation. Important questions of 
scalability, reliability, security and confidentiality also needed to be addressed. 
 
Heterogeneous Computation Grid (HCG) is a large interconnection of smaller networks. Analogous to 
the system of Local Area Networks (LAN) and the Internet, there can be several HCG implementations 
at different levels. The internet-analogous HCG network will consist of a central repository which 
holds a record of registered global projects and participating users. In addition, smaller HCG networks 
will also exist in parallel and will cater to local requirements. Such HCG networks may dispense with 
the central server altogether in favour of a Distributed Hash Table (DHT) lookup or workgroup-share 



listing for enumeration of users and projects. Both these networks consist of several nodes which will 
communicate using UDP on fixed unassigned port numbers for smaller networks and XML data 
transfer on port 80 (HTTP) for larger networks. Such nodes can double up as program solvers (module 
called client) or problem posers (module called manager). The manager module consists of a 
Dispatcher, for dispatch of program and problem segment (or URI to the same) and an Acceptor, for 
collation of received data. The client module is responsible only for scheduling external projects during 
the idle time of the machine. Computationally less-intensive projects may be delegated to Java Applets 
and ActiveX controls which can perform the client machine with user permission, communicate with 
the server and return results to the corresponding manager’s acceptor module. The suggested 
framework also allows for the usage of heterogeneous systems as diverse as any embedded device 
which has the capability to connect to the internet. The wide degree of heterogeneity offered by the 
model and the absence of requirement of any server is expected to accelerate the pace of distributed 
computations. 
 

RELATED WORK 
 
Distributed computing was born in 1970 when computers were first linked by networks. The first major 
project was Creeper and Reaper, which ran on the Arpanet. In 1970, Shoch and Hupp created a 
“worm” that moved from machine to machine, utilizing idle CPU cycles. However, these models soon 
became obsolete with the maturation of the Internet in the 1990s. The first global project, called 
distributed.net (also called dnet) [3], used thousands of independently owned computer systems to 
crack encryption codes, taking distributed computation to a new level. The second, and the most 
successful and popular of distributed computing projects in history, is the SETI@home project [4]. 
Over two million people – the largest number of volunteers for any Internet distributed computing 
project to date – have installed the SETI@home software agent since the project started in May 1999. 
This project conclusively proved that distributed computing could accelerate computing project results 
while managing project costs, thus firmly establishing grid computation as is known today. The 
Berkeley Open Infrastructure for Network Computing (BOINC) [5] has been made use of for this 
project. While the BOINC defines most major communication protocols for use in distributed 
computation and is close to a de-facto standard for grid computation, most contemporary 
implementations use a model that make either of the following two implicit assumptions: 
 

1. The project is a large-scale project, with resources available to scale. For small scale projects, 
the server-client model in use by all current implementations is superfluous and can be replaced 
easily by an equal-configuration model wherein no special and specific system requirements 
may be made of a dedicated server. Models such as Beowulf [6] and Globus [7, 8, 9] limits the 
feasibility of the model in all but few very large projects, where it is viable to set up dedicated 
server with large storage capacities, processing power and network bandwidth. 

 
2. The system architectures of the grid nodes are limited by problem specifications. Most current 

implementations require nodes to have processing power of at least 266MHz. Dependence of 
the program to be executed (or the implementation itself) on system or network architecture is 
also a major limiting factor. Making the use of platform-independent languages, such as Java, 
compulsory for the implementation is not a solution, as Java™ [10] byte-codes (also any other 
interpreted language) run slower than native code due to the presence of the additional layer of 
a virtual machine, and creates a trade-off between execution speed and program portability. 

 
To resolve the first issue, the requirement of a server can be done away with the adoption of a peer-to-
peer model. This will bring the grid computation out of the realm of extremely large-scale worldwide 
internet projects and provide a computing paradigm similar to an electric power grid – a variety of 
resources contribute power onto a shared pool for all clients to access as and when needed. Work on 



the peer-to-peer grid computational model has not made much headway, and the ideal grid 
computational scenario mentioned above is still in the distance. While a peer-to-peer model may solve 
several of the problems faced by current grid networks, and remove the necessity of dedicated grid 
infrastructure plans for customers in their own facilities; it also introduces several of its own problems. 
Most of these problems have been listed and solutions have been proposed for them in this paper. 
 
The second problem can be solved for introducing more flexibility into the grid computational 
framework. Executables for several architectures and in different formats may be provided by the 
problem poser and the client program must decide which one to download and run based on a per-PC 
choice. Different systems may also be given different work. Higher-end servers may be given more 
computationally intensive work while lower-end embedded devices may be delegated work of 
verifying non-critical results. Work in this area is progressing rapidly, but the essential solution is a 
trade-off between support for more architectures and systems, and porting of programs. 
 

PROPOSED ARCHITECTURE 
 
Basic Design 
The basic grid design must support the following two operations: 
 

1. Every PC on the network must be known, so as to provide its idle time to the network. 
2. The problem to be distributed must exist on a computer (or set of computers) on the network. 

 
There are therefore two types of systems on the network in the proposed model – Problem Poser and 
Problem Solver (hereafter called client). Getting a list of problems and list of clients is a tricky issue to 
be considered here and is solved in the following ways. 
 

• On a local area network1 (LAN) configured as a domain, the list of clients can be the list of 
systems can be obtained as the list of computers logged on to the server. If the LAN is 
configured as a workgroup, the list of systems is again available. This is however, not true of 
wide area network (WAN) and metropolitan area networks (MAN). The list of projects can be 
implemented as shares on each PC on the network. 

 
• On large-scale networks such as WANs and the internet, two approaches may be used. A server 

may be used to house a database listing of users currently on the project and the number of 
active projects. This is a feasible solution if the number of computers is limited to a few 
thousands, but becomes unviable if project and user data require the database to be updated 
frequently or the size of the repository maintained becomes too large. In such a scenario, a peer-
to-peer (P2P) architecture can be used to maintain the database shared among users. Distributed 
Hash Table (DHT) lookup can be used to find out active users and check for current projects. 
Such a model is illustrated in Figure 1. It is important to note that the HCG model does not 
preclude a server; it only provides an alternative if a dedicated server of capacity is unavailable. 
The model therefore works as well with a server, which allows effective monitoring of the 
processes currently in progress (refer [11, 12, 13] for the server model). 

 
The extension of HCG onto networks other than LAN and internet is also possible. However, as of this 
moment, no trails have been made on the extensibility of the proposed architecture to other networks. 
There is no experimental data available on the adaptation of HCG to other networks. 
                                                 
1 The idea of local area network, as mentioned in this document, is a subset of the concept of an Intranet, and can be 
extended to any network on which shared resources (in this case, projects) are enumerable. This is irrespective of the type of 
network connectivity used: Ethernet, wireless and so on. The term Intranet has been avoided due to its extensive domain. 
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Figure 1. General Model of a server-less P2P HCG 

 
Server Side 
 
The server (when present) maintains a database of the following data: 
 

• List of participating (or registered) and logged-on users. 
• List of current projects 
• List of tasks for each project. 
• List of associations of users and tasks and task-status. 

 
All this data may be maintained as tables on the server side. It is important to note that while HCG 
defines the data that can be stored on the server and the fields of the tables used, it does not mandate 
the presence of any of these tables. The data stored on the server must conform to the HCG standard in 
that it must contain the stipulated fields of the tables mentioned, if it does contain the table, but may 
also include extra fields and constraints in the table. A brief overview of the database schema to be 
used is included in Appendix A. 
 
Client Side 
 
The client is used here to refer to any system that does not act as a server. The client system supports 
both submission and execution of projects. The submission part is handled by a module called the 
Manager, and the execution of projects take place in a component that will hereafter be referred to as 
the Client. 
 
Manager 
 
The manager submits programs to the grid for computation. In any resource virtualization, there must 
be checks and balances to prevent hogging of the grid. This is effected in HCG by a priority system. 
Each user of a manager is assigned priority, which can be pre-assigned by the grid administrator, or set 
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to a default value in the absence of grid administrative rules. Priority decreases when a user’s program 
takes its share of the grid, and increases when the user makes his system available for computation on 
the grid. Programs are assigned priority by their submitter which may be no more than the priority of 
the schedules. Programs are distributed in proportion to their priorities. Any user, however reserves the 
right to change priorities of programs to be executed on his system. Special values of priority (above 9 
on a scale of 10) are provided to pre-empt execution of current programs on the grid and use the 
computational power of the grid for that computation solely. This feature can be made use of for 
mission-critical or real-time computations. 
 
The Manager has two major components – the dispatcher and the acceptor. The HCG specification 
does not require both these programs to exist on the same system. However, this is generally the 
preferred option on most systems for small-scale programs. As problem complexity rises, more than 
one dispatcher may be mentioned and similar is the case for acceptors. The maximum number of 
dispatchers and acceptors is 249 each. When multiple dispatchers are given, one may be chosen at 
random. 
 
Dispatcher 
 
The dispatcher(s) takes an input string containing machine type and returns the address to the most 
suitable resource to be transmitted. The resource may then be downloaded onto the target PC. The 
dispatcher is designed as a web server for internet and as a port listener for a pre-assigned port on LAN. 
Communications on LAN are generally using UDP, with call-back to inform message receipt for 
critical messages, or on demand. These messages may be encrypted using DES (with MD5 hashing) if 
required to maintain security. Symmetric encryption is not supported for messages. Common messages 
are pre-encoded and the message structure is extensible to include future message families. If there is a 
server that maintains project information, the dispatcher is expected to keep the server updated with 
project status.  
 
The dispatcher may maintain a list of tasks1 for a project (refer BOINC [5]). The resource-set for each 
task is dispatched on demand. Each task has two reference counts – DispatchCount and ResultCount. 
DispatchCount is incremented each time a task is dispatched. ResultCount is incremented only when a 
result becomes available. Tasks are dispatched in ascending order of DispatchCount. When 
ResultCount increases beyond 1 (i.e. more than one result become available), the two results are 
compared. If equivalent, the DispatchCount variable is doubled; if not, the DispatchCount variable is 
decremented by ResultCount and ResultCount is decremented by 2. This model is used to protect 
against malicious intent and computational errors. 
 
Acceptor 
 
The acceptor(s) gets the computational output in text format (in methods very similar to dispatcher 
messages). Each message contains a message mode, and the message is limited to 251 bytes, or the 
limit of the messaging medium, whichever is lesser. For larger output messages, files may be sent over 
the network, or a uniform resource locator may be sent pointing to the location of the file. There is also 
a query message which requires path and privileges of user to upload output files on the internet. The 
acceptor is expected to reply to every message received, even if it is only a message receipt 
confirmation. 

                                                 
1 Task is defined as that part of the project that can execute independently. Every project to be solved in HCG must consist 
of several tasks, which execute concurrently on separate PCs. Tasks may be dynamically created, removed and evaluated, 
but cannot be changed once created. Tasks do not have priorities, but may be assigned by the dispatcher. Each task involves 
one resource set to be downloaded to the system. 



 
Client Program 
 
The client program schedules the grid work on the user’s system. On the client, the user has the choice 
of project to work on. Task scheduling is weighted by project priority, and the user need not mention 
his choices. In such a case, the choice of project to be worked upon is chosen on the weight of project 
priority. 
 
Since unknown code executes on a client machine, there is a need to maintain security on the user’s 
machine [14]. Technologies such as sandboxing and code signing [15] are supported for diverse 
platforms, and programs are expected to communicate with their manager (if required) only through the 
client program. By default, HCG does not provide scratch space [16, 17] to programs running in the 
sandbox. The format of executable programs supported may vary with the client and it is expected to 
provide a list of preferences to the manager, depending on operating system [18], when requesting a 
file. 
 
Device Hierarchy 
 
The heterogeneity of HCG is in its architecture which virtually places no bar on the type of device 
allowed to be used, except that the device is connectible to the network using either of the protocols 
defined. An illustration of the devices that are supported by HCG is given in Figure 2. 
 
 

 
Figure 2. Devices supported by HCG 
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The number of people who have access to broadband internet connection is steadily on the rise. A large 
section of people visit websites which offer e-books, novels, tutorials and other large sets of text. The 
user, in such a case visits a page for a long time. This time can be utilized (with the user’s consent) for 
the computations of the grid. Applets and ActiveX controls embedded into these pages can download to 
the user’s PC, initialize and run on the user’s machine, giving progress indications to the user. These 
will generally be fast jobs, taking not more than few tens of minutes. The outputs can then be sent back 
to the network. While not a part of the design specifications of HCG, this is an integral part of the 
internet HCG. The applet project is hard-coded (or given as a parameter) but the task is not – the applet 
must get the task-set from the dispatcher. The task may also be given as an applet parameter by a 
server-side script. Java applets have the additional property of platform independence and can be used 
to implement web-based client/scheduler. 
 
Use of Embedded Devices 
 
The popularity of embedded devices1 is increasing, despite the limited capabilities and computational 
power of these devices. Devices such as the mobile phone are kept switched on throughout the day. It is 
a known fact that which a mobile phone has very poor computational power, it uses merely a fraction 
of its capabilities. This is because the requirements of embedded devices peek at times and remain 
stable at low values at other times. Such a device is a good candidate for inclusion into the grid. Since 
embedded devices generally have poor computational capabilities, it is a recurring question on their 
contribution to the grid. Given below are some inherent advantages of embedded devices: 
 

1. Programs written in Java™ can be ported to the mobile platform2 [19]. 
 
2. Most embedded devices such as smart-phones need to (or are used to) communicate with the 

outside world, and thus have strong communication links. These communication links can be 
effectively utilized by the grid to communicate with the devices. The market is expected to 
drive the requirement for faster and higher-bandwidth connections. 

 
3. The processing power of these devices is increasing rapidly, and poor computational power of 

these devices is all set to become a thing of the past. It can also be argued that the low power of 
these devices is offset by faster communication links. 

 
HCG allows connection of embedded devices to the grid in three ways: 
 

1. Through Bluetooth™ [20] technology (or data cable), mobile devices can communicate with 
the Manager of a computer. Problem specifications may be transferred through to the 
intermediate computer system. The system’s HCG Manager adds a program entry and 
dispatches the program segments to the grid. During this period, the mobile device may be 
online or offline. Online refers to the condition wherein the mobile device receives constant 
intimation about the state of the computations and receives call-backs from the intermediate 
computer when computation results become available. The mobile device can then update the 
problem set or cancel the operation altogether. In offline mode, the intermediary collates the 
results and passes it on to the mobile on completion of work. Online mode can be used for real-
time processing when connection speeds are significantly large, while offline mode will be 

                                                 
1 The term embedded devices is used in this text synonymously with mobile devices. It should be noted that embedded 
devices are meant to represent all those devices with computational power less than 64MHz that are connectible to the 
outside world through Internet, either directly through GPRS or indirectly through Bluetooth, IEEE 802.11b or other 
technologies. 
2 The statement is supported by the fact that most embedded devices which allow third-party application programs provide a 
Java Virtual Machine – this is considered the norm here and exceptions are ignored. 



made use of primarily for routine tasks and background “batch” processing. In this mode, HCG 
defines the computer-mobile as a node with a single External Request Manager. The grid may 
consist only of the computer-mobile combination1, or may be connected to further computers on 
the network or internet. In the latter case, the computer is known as a gateway. 

 
2. When network bandwidth is high enough, with technologies such as Wi-Fi, WiMax [21] or 

WiBro2 [22], the embedded device may connect directly to the internet. In this case, the 
embedded device becomes a class III (Refer Figure 2) node connected to the internet with 
specifications such as “t.#3.32&osl.symbian68-java.13&nw.gp-9” or “t.#3.56&osl.wince2x-
vbce|java.12&nw.wf-64”. This model allows the embedded device to contribute to the grid as 
also derive resources from the grid. In this model, the embedded device becomes a node of the 
grid like any other system. This has vast advantages for the grid and the embedded device. 

 
3. The third method involves a supporting computer, called a client scheduler and is conceptually 

similar to method 1. The grid does not know about the inclusion of the embedded device, and 
only the supporting computer has information about the capabilities of the embedded device. 
The client scheduler divides the work equally between the host machine and the array of 
embedded devices, each of which has a unique registered Device Access Identifier. The work 
done is collated and transmitted to the grid as the total of the work done by the client scheduler. 
This has its advantages in that work can be done even when the client scheduler is switched off 
and the embedded device is idle, recharging its batteries. 

 
Communication Protocols to be used 
 
The HCG specifications are elucidated in the ‘Grid Network Protocol Usage Document’, the salient 
features of which are listed in Appendix B. Some of the major communication protocols used are given 
below. 
 
Table I. Communication Protocols used 
Protocol Network Port Data transfer 
UDP LAN above 1024 As messages: with callback for important messages. 

HTTP Internet 80 Input file and program as files to be downloaded. 
Result uploaded to location (or) sent as POST data. 

WAP Internet - Input file and program as applets/files to be downloaded. 
Result sent to file as form POST data. 

 
Additional Constraints 
 
The HCG specification defined several additional features, the most significant of which are given as 
follows: 

1. The database must be relational. Object oriented and object relational data models are not 
recommended. The hierarchical and network data models may also not be used. 

                                                 
1 A computer (or a set of computers) and an embedded device (or a set of embedded devices) can form a grid, in themselves, 
in which the embedded device is the problem poser and the grid resource consists only of the computational resources of the 
computer (or computers) connected to it. This is primarily implemented through Bluetooth or serial data cable. 
2 WiBro stands for Wireless Broadband, expected to provide up to 18Mbps download rate are all set to hit the South Korean 
markets by mid-2006. WiMax is based on the IEEE 802.16 working group recommendations. 



2. It is recommended that the database on the server be architecture independent. In the simplest 
case, the database may range from a comma-separated file to a Microsoft Access database, and 
the database may be as complex as an Oracle database. The database used should be 
standardized and can be from among the following databases1 – Microsoft SQL Server, 
Microsoft Access (97 and above), Microsoft FoxPro, Microsoft Excel worksheet (3.0, 4.0, 5.0 
and 7.0), dBase (III, IIIB, IV and 5.0), Paradox, Microsoft Oracle ODBC, Comma-separated 
values (CSV), Sybase® SQL Server and Oracle Server (7, 8, 8i, 9i, 10g). Only databases from 
the above list must be used. 

3. It is recommended that all integrity constraints as mentioned in Appendix A be enforced at 
schema level for all tables in the database. In case the underlying database driver does not 
support integrity constraints (such as a CSV or Excel driver), the constraints must be enforced 
at the middle-tier or the front-end itself. 

4. While it is recommended that the database be accessed only through ODBC or JDBC drivers, 
an exception may be made for monitoring authority and debugging, benchmarking and 
performance tools, which can be allowed to access the database natively. 

5. Requests from remote programs to read/write to the database must be authenticated by an 
additional layer of user code, before being passed on to the database. The database must not be 
required to authenticate change request through predefined roles. All changes to the database 
must pass through (and be verified and validated by) the server machine only. The remote user 
should not be given direct access to the database. 

IMPLEMENTATION 
 
Prototype Model 
 
During the later stages of design of the Heterogeneous Computation Grid (HCG) framework, work 
started on the proof-of-concept phase and implementation phase. During this period of continuous 
modifications to the design document of HCG for optimal performance, five major prototypes of the 
grid were built and tested, as described in further detail below. 
 
Choice of features 
 

• Prototype I was a model for a peer-to-peer four-PC Windows 2000/XP-based systems from 
configurations ranging from Pentium III 500MHz to Pentium IV 2.8GHz HT over a 100Mbps 
LAN connection, with projects implemented as a shared folder “hcgprojects” on every PC, over 
a range of projects. The first prototype enabled the authors to make a comprehensive study on 
the feasibility of the projects and turned up several interesting results. Primary among them was 
the need felt for a central benchmarking utility, and the necessity of assigning priorities. 

 
• Prototype II was the first prototype in which PCs in different platforms reacted with each other, 

through Java. Unlike the previous stage, wherein each program was made in Visual Basic® 6.0, 
the new project switched over entirely to Java™. Several cross-platform issues were resolved in 
the process. 

 
Use of Server 
                                                 
1 The list of supported database may be increased at a later moment. All databases must be accessible via ODBC, JDBC or 
ISAM. 



 
• Prototype III was an experiment to use several executables for the same task. Clients and 

Managers were separately built in Visual Basic 6 for Windows and in Java for Linux. Programs 
to be executed were offered in C++, Visual Basic and Java. The project on sandboxing was 
taking up during this stage when the potential damage that could be caused by a malfunctioning 
(malicious intent has been discounted here) program was realised. The prototype was rebuilt 
with a server (a Pentium IV 2.4GHz machine) and the number of PCs was increased to 6. The 
server managed the database and the load on the server database (initially MS Access 2003 and 
later changed to Oracle 10g [23]) was measured for varying loads on the grid. Benchmarking 
was also done in this stage.  

 
Figure 3 shows a section of the server window with work in progress. The back-end database is Oracle 
10g Release 1 and a ActiveX Data Object (ADO) has been used to connect using ODBC to the data 
source name (DSN) representing the Oracle database. The front-end is Microsoft Visual Basic 6.0 
Enterprise Edition. 
 

• Prototype IV came up with an attempt to extend the project to the internet. On the internet, the 
failure of direct UDP and TCP approaches led the authors to move to the application level of 
abstraction – HTTP. The server communicated a list of projects to the PCs by means of a XML 
file on the server. The XML file (which, incidentally, could also double up as an RSS feed) 
contained information about the various projects and their usage. 14-31 PCs connected to the 
internet participated in the 11 trials, with varied internet loads and speeds and several projects 
of varied scales were run on the grid. The results surpassed all expectations. For the first time, 
the tasks in each project were classified into three categories based on computational power 
(C), input problem and result size (S), and priority (P). Problems with large S and small C were 
given to LAN nodes, with large C and small S were distributed among internet users and 
problems with small S, small C and lower P were reserved for embedded devices and devices 
on the lower end of the performance spectrum. 

 

 
Figure 3. Screenshot of HCG Advanced Server database viewer (Prototype III) 
 
Client Executable 
 

• Prototype V saw a major change in the structure of clients, with primary grids consisting of an 
array of grids, rather than an array of systems. Windows XP was chosen as the primary platform 
for the goal, being available on each of the 28 PCs used for the trial. Both LAN and Internet 
were used with the task categorization as described above. Java and Visual Basic code for the 
problems were given. Applets and ActiveX controls were used for the first time and were 
uploaded to a geocities server with large HTML files, primarily large novels. The results noted 
allowed several changes to the design specifications. Prototype V had completed 9 sets of trials, 
of maximum duration 26 hours, at the time of this paper. 

 



Projects Run 
 
The list of major projects solved or underway is given in Table II1. Some of these projects were used 
for testing purposes only and may not be completed. Some minor projects were used just for testing 
purposes. These included pattern searching, among other projects. 
 
Table II. List of projects run 

Prototype 
Number Language Project Comp-

leted? 
Time on the 

project 
I, II, III, V VB, Java Generating large prime number N/A Total 37 hours 
II, III, IV, V Java Factorizing product of two large primes Yes2 Total 22 hours 

IV, V VB Mutiple dummy pre-generated floating-
point operations. N/A Total 9 hours 

IV, V VB etc.3 Brute force for cracking 8-letter password. Yes Each 10-16 hours 

V C++ Solving dense system of linear equations 
by Gaussian elimination [24]. Yes 21 hours 

 
Expected Additions to the Grid 
 
More additions to prototype V may include a multi-platform trial and trial using embedded devices (a 
mobile phone was available for trials at the time of writing). Newer technologies such as sandboxing 
for non-java applications and code-signing are expected to be introduced by the time work for 
prototype VI is underway. 
 

EVALUATION AND BENCHMARKING 
 
The goal of this evaluation phase was to assess the performance of the grid under various scales of 
programs and conditions of network stress. The tests were done in local area network and internet 
environments. The results of the tests are summarized in Table III. 
 
Table III. Test Results - Maximum Flops clocked 

Project Grid Characteristics Max. Flops 
clocked Remarks 

4 LAN PCs average 2.5 MHz 721M 2.4GHz – 2.8GHz range 
6 LAN PCs average 2.1 MHz 986M 500MHz – 2.8GHz range 

6 LAN PCs, 14 internet PCs 1014M Internet speed maximum 
of 115Mbps over 6 PCs 

6 LAN PCs, 21 internet PCs 984M  
4 LAN PCs, 28 internet PCs 833M  
6 LAN PCs, 26-31 internet PCs4 991M Small scale disconnections 
6 LAN PCs, 21-30 internet PCs 924M Verifications compulsory 

Brute force for 
cracking 
password. 

4-6 LAN PCs, 8-22 internet PCs1 801M Large scale disconnections 

                                                 
1 It should be mentioned that the projects given here are not written with the most efficient algorithms as is generally the 
case in comprehensive testing situations. The goal of the testing was not to set benchmarks or solve critical problems but to 
root out potential flaws and areas for improvement in the design and implementation of the grid. 
2 The project was run 7 times, 2 of which gave the results and 5 of which were cancelled. 
3 Components used included Visual Basic 6 executables, Visual C++ 6 executables, Visual Basic 6 ActiveX controls, Java 
Applets and Swing applications, being the most comprehensive test case as of the time of writing of the paper. 
4 PCs on the internet are allowed to disconnect without informing the result or progress of the calculations. 



Project Grid Characteristics Max. Flops 
clocked Remarks 

6 LAN PCs, 31 internet PCs, 16 Applets 1071M Highest clocked 
6 LAN PCs, 18-29 internet PCs, 4-9 
Applets, 1-3 ActiveX controls2 1008M Assumes LAN PCs are 

always available. 
6 LAN PCs, 30 internet PCs, 8 ActiveX 
controls 1044M  

26 Internet PCs, 6 Applets, 11 Applets 621M No PCs available on LAN 
6-28 Internet PCs3 540M  
4 ActiveX controls, 3 Applets 320M  

Solving linear 
equations 6 LAN PCs, 31 internet PCs 1013M  

 
The test results in Table III have the following implications: 
 

• For the password-cracking problem with small S and moderate C, the presence of large number 
of internet PCs does not significantly increase the computational power of the grid. The grid 
works best when there each task has small problem definition, an easily verifiable answer, and 
requires lots of computations for solving the problem. 

 
• Test results show that a single Pentium IV 2.4GHz PC gives a computational power of over 

200MFlops for native code on Windows. Allowing for losses, 6 PCs should easily gross 
1100MFlops. The balance represents the loss due to network transmission, which can be 
minimised by reducing S and increasing C. 

 
• A Windows GUI executable compiled to native code, optimized for speed, in Visual Basic 6.0 

running on Windows XP, with SP2 installed grossed 228MFlops on a lightly-loaded Pentium 
IV 2.4GHz machine. Under the same conditions, a Java CLI application clocked 146MFlops 
maximum when run with Sun Microsystems’ JRE 1.5. This is a speed loss amounting to nearly 
35 percent. Therefore, as far as possible, it is best to avoid interpreted languages such as Java, 
when native executables for other platforms are available. The programmer workload has be 
balanced with faster execution speeds and this decision can be taken best only by the distributed 
problem developer. 

 
CONCLUSIONS 

 
The paper has described a simple, economical and heterogeneous grid system that has been developed, 
tried and tested for large-scale simulation studies with computing resources distributed over a large set 
of networks – the LAN an the Internet. Heterogeneous Computation Grid makes use of existing 
hardware to connect all possible devices and create a shared pool of enormous computing power. The 
grid is self-administering and works on an equal-priority basis. The grid does not make any restrictions, 
on basis of architecture, operating system, network connectivity and so on. Unlike major grid solution 
companies, the independence between the grid and the user program running on it has been maintained. 
The system has displayed excellent performance in terms of robustness, and throughput and new 
features are to be added, further improving the grid and enhancing its security. Further, the simplicity 

                                                                                                                                                                        
1 Both local networked PCs and internet PCs are allowed to disconnect, requiring work to be re-assigned and resolved. The 
limits given are the minimum and maximum number of systems on at any moment, and not the total count of systems. 
2 The most realistic close-to-practical expectations test case. 
3 Only internet PCs were used and problems with large C and small S were given. 



of recommendations made in the specification make the grid highly scalable and extendible, which will 
be an contributing factor in its acceptance by the distributed computing community. 
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APPENDICES 
 

APPENDIX A 
Database Schema for Server – Summary 

 
The compulsory fields required by HCG are given in Tables IV and V, while describe the tables 
defined by HCG, and may be used if required. 
  
Table IV. Schema of Table “users” 
Field Name Data type Constraints More Information 

userid VARCHAR2 PRIMARY KEY User / Machine Identification 
priority NUMBER(1,2) NOT NULL Range 1 (lowest) to 9.99 (highest); default is 3 
loggedon 
(optional) 

DATE  Last log on date/time. User logged on if date/time 
within session expiry time, say, 20min. 

pctype - NOT NULL  
 
Table V. Schema of Table “projects” 
Field Name Data type Constraints More Information 

projectid LONG PRIMARY KEY Project ID Number (auto-generated) 
pname VARCHAR2 UNIQUE Project descriptive name 
dispatchers VARCHAR2 NOT NULL List of dispatchers addresses 
acceptors VARCHAR2 NOT NULL List of acceptor addresses 
author (REF) VARCHAR2 NOT NULL Must exist in the users table in “userid” 
priority NUMBER(1,2) NOT NULL Always less than user’s priority, the default. 
 
 

APPENDIX B 
Grid Network Protocol Usage Document – Summary 

 
The salient features of the Heterogeneous Computation Grid Network Protocol Usage Document are 
listed below: 
 

1. Communications between PCs on a LAN takes place through User Datagram Protocol on any 
pre-registered port greater than 1024. A system can be a part of two independent HCG and use 
different ports for both of them. The port cannot be negotiated, but must be specified at the time 
of setting up the grid. Port numbers have to be specified manually 

 
2. Since UDP communication carries little overhead, and is fast but unreliable, all messages to be 

passed with a time indication of seconds since previous hour and a hash of the current day/hour 
pair. All UDP message must contain a two-byte repeated message type identification (MTID) 
which is 1 for “Call-back Required”, 4 for “Encrypted Message”, 8 for “Critical Message” and 



so on; and a 4-byte hash value. Messages with odd MTID must be replied back with 
acknowledgement. Additionally, for encrypted messages, the reply must be encrypted as well. 

 
3. On larger networks such as a WAN or the internet, UDP is so unreliable that it cannot be used. 

Here, application layer TCP/IP protocol Hyper-Text Transfer Protocol (HTTP) is the protocol 
of choice for transferring data. Program and task-data locations are dispatched by eXtended 
Markup Language (XML) files. Programs that must be transferred to the client PC are 
downloaded over port 80. Results are sent to the acceptor as form POST submissions. The 
acceptor, as a simple server script, accepts/results the results and returns an XML file, format of 
which is predefined. 

 
4. Files transferred over the internet may be digitally signed. Client policies can dictate the 

download and execution of unsigned code. Execution may also be limited to a sandbox 
environment, if available for the target executable format. The client is free to enforce such 
policies for code over the internet. 

 
5. The client when sending back results must encrypt it with the public key of the author, if 

available. 
 

6. It is recommended that all communications for the LAN and the internet use these protocols 
only. This will enable grid developers to use servers and clients made by the authors, and enable 
the use of parallelizing grid-access code used to program the grid, also provided by the author. 
However, if specific working conditions of the grid mandate it to deviate from the above 
specification for optimum performance, the grid developers can still do so while remaining 
within the Heterogeneous Computation Grid framework. However, client and server design 
may need to be changed to work with the new grid. 

 
7. Embedded devices may communicate with the grid in more than one ways. A clear definition of 

or limitation on the protocols in use by embedded devices is not available. Since Heterogeneous 
Computation Grid uses primarily existing standards and frameworks for establishment of a low-
cost high-performance grid and no current single standard exists for embedded device 
communication with a computer (or a computer network), the embedded device communication 
protocols have not been defined in the document. 

 
8. The above rules are to be interpreted as advisory guidelines for the design and development of 

any peer-to-peer heterogeneous grid. 
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