HERMES: Using Commit-Issue Linking to Detect
Vulnerability-Fixing Commits

Abstract—Software projects today rely on many third-party
libraries, and therefore, are exposed to vulnerabilities in these
libraries. When a library vulnerability is fixed, users are notified
and advised to upgrade to a new version of the library. However,
not all vulnerabilities are publicly disclosed, and users may not
be aware of vulnerabilities that may affect their applications. Due
to the above challenges, there is a need for techniques which can
identify and alert users to silent fixes in libraries; commits that fix
bugs with security implications that are not officially disclosed.

We propose a machine learning approach to automatically
identify vulnerability-fixing commits. Existing techniques con-
sider only data within a commit, such as its commit message,
which does not always have sufficiently discriminative informa-
tion. To address this limitation, our approach incorporates the
rich source of information from issue trackers. When a commit
does not link to an issue, we use a commit-issue link recovery
technique to infer the potential missing link. Our experiments
are promising; incorporating information from issue trackers
boosts the performance of a vulnerability-fixing commit classifier,
improving over the strongest baseline by 11.1% on the entire
dataset, which includes commits that do not link to an issue. On
a subset of the data in which all commits explicitly link to an
issue, our approach improves over the baseline by 12.5%.

Index Terms—vulnerability curation, silent fixes, commit clas-
sification, commit-issue link recovery

I. INTRODUCTION

Modern software projects rely on a large number of third-
party libraries. As a result, there is a wider attack surface of
any software project as attackers may exploit vulnerabilities
in its library dependencies. For example, the Equifax data
breach was caused by a failure to updating a version of Apache
Struts with a known vulnerability [1]. As vulnerabilities are
discovered in these library dependencies, they are publicly
disclosed and assigned a CVE, and recorded in the National
Vulnerability Database (NVD). Users of the libraries are
notified and advised to update their dependencies to the latest
versions of the libraries [2], [3]. In practice, however, there
may be bugs with security-implications that are fixed without
public disclosure. In the literature, these vulnerability fixes
are referred to as silent fixes [2]. Silent fixes cause users
of the libraries to be unaware that their application contains
a vulnerability from its use of the library. It is, therefore,
valuable to users of the libraries that they are kept informed
of possible vulnerabilities that are not disclosed [2].

To address the problem of silent fixes, techniques have been
proposed to automatically detect vulnerability-fixing commits,
but these techniques often rely only on the information within
each commit. For example, some techniques use just the
commit message, and others use information from the patch.
However, there is often a rich context for each commit, starting

from a bug report on a JIRA or GitHub issue tracker or to
the ensuing discussions in the issue tracker. Developers may
discuss the appropriate solution to address a bug, provide
stacktraces, or describe the consequences of a bug [4]-[6].

In this paper, we suggest that using commit-issue links
may help in providing the necessary information to detect
vulnerability-fixing commits. Software developers may explic-
itly link the commit to an issue, by indicating an issue number
in the commit message. Instead of using just the commit to
make a judgment (as to whether it is vulnerability fixing),
we incorporate information from the issues linked from each
commit to enrich the information used by a classifier.

However, studies in the past have noted that developers do
not necessarily link their commits to issues [7]-[9]. Leveraging
these links, instead, while we empirically find a significant
percentage of commits with messages that directly link to
an issue, we find that over 60% of commits are unlinked,
motivating a need to automatically link a relevant issue to un-
linked commits. Using an existing commit-issue link recovery
technique [9], we infer links between each unlinked commit
and an issue that best matches it.

In this paper, we propose an approach, HERMES. The key
insight of our approach is that the commit has information
that enables traceability, allowing us to cross the boundary!
of a commit, linking it to issues in the issue tracker. HERMES
consists of three independent classifiers, each representing a
different data source. Similar to previous work, two of these
classifiers identify vulnerability-fixing commits based on their
commit message and by the code change. The third classifier is
an issue classifier which detects vulnerability-fixing commits
based on the issues that are linked from the commit, which was
either explicitly provided by the developer or inferred through
the use of a commit-issue link recovery technique. Finally,
we fuse the classifications from each model to make a final
classification based on an ensemble model [10].

Experimentally, we have evaluated HERMES and Sabetta
and Bezzi’s approach [2] on 1132 vulnerability-fixing commit
from SAP manually-curated dataset [11]. These commits come
from 205 distinct open-source Java projects. Using the same
procedure as Ponta et al. [11], we added 5995 commits from
these projects that are not security-relevant, with a manual
review aided by scripts and pattern-matching, filtering out out-
liers from the dataset. We find that considering only 37% of the
commits that are explicitly linked to issues, allows HERMES

"Much like how the Greek god, Hermes, can cross the boundaries between
different realms

public <T> T fromString(String content, Class<T> classOfT) {
try (StringReader reader = new StringReader(content)) {
JAXBContext jaxbContext = JAXBContext.newInstance(classOfT);

Unmarshaller jaxbUnmarshaller = jaxbContext.createUnmarshaller

return (T) jaxbUnmarshaller.unmarshal(reader);

} catch (JAXBException e) {
XMLInputFactory xmlInputFactory = XMLInputFactory.newFactory()
xmlInputFactory.setProperty(XMLInputFactory.IS_SUPPORTING_EXTEI
xmlInputFactory.setProperty(XMLInputFactory.SUPPORT_DTD, true)
XMLStreamReader xmlStreamReader = xmlInputFactory.createXMLStr

Unmarshaller unmarshaller = jaxbContext.createUnmarshaller();

return (T) unmarshaller.unmarshal(xmlStreamReader);
} catch (JAXBException | XMLStreamException e) {

Fig. 1: A motivating example; the commit has little discrimi-
native information. The commit message simply contains “Fix
#486”, and the code change does not indicate the purpose of
the change.

to achieve 12.5% improvement over a baseline tool [2]. On
the entire dataset, with the use of commit-issue link recovery
technique, HERMES outperforms existing tools by 11.1%,
demonstrating that tracing commits to their issues increases
the effectiveness of vulnerability-fixing commit classification.

In this paper, we make the following contributions:

o We show that enriching the commit data using issues that
are linked from the commit can boost the performance of
a vulnerability-fixing commit detector

o We demonstrate that when explicit links between commits
and issues are missing, the use of simple commit-issue
link recovery technique to infer potential links can still
result in improvement to HERMES — despite the introduc-
tion of falsely inferred links.

o We perform a comprehensive analysis of the evaluation
results and provide further insights about the relationship
between commit-issue link recovery and vulnerability-
fixing commit detection. Our replication package is pub-
licly available [12].

The rest of the paper is organized as follows. Section II
discusses a motivating example that motivates the use of
issue information for vulnerability-commit detection. Section
III highlights relevant background that this study builds upon.
Section IV describes HERMES. Section V compares HERMES
against other tools that detect vulnerability-fixing commits.
Section VI provides some discussion and analysis of our work,
as well as the threats to validity. Section VII discusses related
studies. Finally, Section VIII presents our conclusions and
future directions.

II. MOTIVATING EXAMPLE

Figure 1 shows an example of a vulnerability-fixing commit,
which consists of a code change (added and deleted code)
and a commit message. The purpose of the commit may
not be readily apparent by analyzing the code change itself.

xxe vulnerabilities #486
(F Closed e .
QiAnXinCodeSafe opened this issue on 11 Dec 2018 - 3 com...

Hello, | am a member of the 360 Code Guard team. In our open
source project code audit, we found that Pippo has xxE
vulnerabilities. Details are as follows.
pippo/pippo-content-type-parent/pippo-
jaxb/src/main/java/ro/pippo/jaxb/JaxbEngine.java

Because the XML parser does not disable dtd, xxE attacks can
occur when content parameters are controlled by malicious
attackers

®

Fig. 2: The textual content of the linked issue, issue #486,
of the commit from Figure 1. The issue description is highly
discriminative, describing the conditions of possible attacks
and their consequences.

Moreover, the commit message is uninformative, containing
only two words.

On the other hand, by considering issue #468 linked from
the commit, as shown in Figure 2, it is immediately evident
that the code change is related to a vulnerability (the word
“vulnerability” appears in the issue title). The issue description
includes the reporter of the bug (a security team that reports
vulnerabilities in various projects), the conditions under which
the vulnerability can be exploited (“when content parameters
are controlled by malicious attackers”), and the consequences
of the vulnerability (XXE attack). Without obtaining the issue
description based on the link from the commit message, a
vulnerability-fixing commit detector does not consider this rich
and discriminative information.

ITII. BACKGROUND
A. Vulnerability-fixing commit classification

To detect vulnerability-fixing commits, some existing tech-
niques take a machine learning approach for commit classifi-
cation, treating the problem as a binary classification problem.
Zhou and Sharma [3] convert commit messages into a vector
representation (using word2vec), and use a classifier to detect
vulnerability-fixing commits. Chen et al. [13] employ self-
training, a semi-supervised machine learning technique, and
use several features of various documents (e.g. commits) to
identify vulnerability-related documents, but considers each
document type in isolation.

Sabetta et al. [2] propose to use both the commit message
and the content of the code change using a bag-of-words
model, using two independent, base classifiers for the commit
message and the code change. The output of the two base
classifiers are combined using a simple mechanism: as long
as one classifier identified the commit as security-relevant, the
commit will be reported as security-relevant.

All of these existing techniques assume that the necessary
information to make a correct classification is already present

within the commit, in either the commit message, the code
change, or both. In this study, we propose that to detect a
vulnerability-fixing commit, information from other artifacts
beyond a commit, such as the textual content of a correspond-
ing issue from an issue tracker should be considered.

B. Commit-issue link recovery

While we suggest that using information from issue trackers
will help, in practice, we empirically find that many commits
are unlinked — this corroborates findings reported in prior
studies [7], [8]. The proportion of unlinked commits have
been reported to be about 35% to 40% [7], [8]. In the dataset
of commits that we collected, we find that the problem is
worse than what was reported in previous studies; nearly 63%
of commits are unlinked. For unlinked commits, we use a
technique from the literature of commit-issue link recovery to
identify an issue that has the best fit with the contents of the
commit, and link the issue and the commit.

In the literature of traceability research [9], [14]-[18], many
techniques have been proposed to recover links between differ-
ent software engineering artifacts, including between commits
and issues. These techniques vary in the methods that they rely
on, ranging from traditional heuristics [14]-[16], to learning-
based techniques [9], [17], [18]. Recently, some sophisticated
deep learning-based approaches have been proposed, including
the use of transformer-based models to infer missing links.

In our study, we claim that the use of recovering missing
commit-issue links improves our vulnerability-fixing commit
classifier by considering another linked data source. To support
this claim, we use a relatively simple link recovery technique,
FRLink [9], to recover missing links for the commits in the
dataset. We selected FRLink for its simplicity and ease of
implementation.

FRLink distinguishes between source code and non-source
code changes. FRLink models the commits and issues by
extracting code-related features (e.g. function names) and text
features. The similarity between the commit and issue is
determined by comparing the set of features associated with
them. The higher the similarity, the more likely they are linked.

For a commit, code-related features are extracted from the
commit message and from both source files and non-source
code files in the code change. For an issue, code-related
features are extracted from the title, description, and com-
ments. First, the text is tokenized and stop words (extremely
common words, e.g. ’the”, ”and”, “is”) are removed. Code-
related features are terms that appear in these texts, which
match a list of regular expressions [19].

Only relevant files with a code change are used in extracting
the code-related features. To determine the relevance of a
source file to an issue, they first checked that the code terms
in the issue appear in the file.

Next, text features are extracted. This is done through a
similar process as the extraction of the code-related features,
but without the use of regular expressions to match terms. For
a commit, text features are only extracted from the commit
message and non-source code documents.

To compute the similarity of a commit and an issue, Cosine
similarity is used with the popular Term Frequency - Inverse
Document Frequency (TF-IDF) weighted terms. TF-IDF is a
measure of the relevance of a term to a document (e.g. an
issue or commit), that considers a term to be less relevant if
it is commonly used in many documents, and more relevant
if it appears frequently in the given document.

Finally, FRLink [9] uses a similarity threshold, which is
tuned over a ground-truth dataset. This threshold is tuned for
Recall, such that FRLink infers enough correct links such that
a predetermined proportion of the dataset is correctly linked.

Unlike their work, our objective is not to uncover accurate
links, but to find related commits and issues in a big corpus of
issues. We later investigate if there is a relationship between
the accuracy of the link recovery process and the effectiveness
of the vulnerability-fixing commit detector. A link could be
inaccurate, but could allow HERMES to use information from
an issue with sufficiently similar context (e.g. an issue that
describe the same code location, or a similar type of bug)
such that the additional, although not necessarily accurate,
information can boost the effectiveness of the vulnerability-
fixing commit detector.

Later, we perform more detailed experiments on this
threshold to investigate the relationship between the accu-
racy of commit-issue link recovery and the performance of
vulnerability-fixing commit classification.

Despite the relative simplicity of FRLink, we later show
that it already substantially boosts the performance of HER-
MES, paving the way for future work that explores synergies
between these two types of research.

IV. APPROACH
A. Overview

Figure 3 presents a high-level design of our system. HER-
MES is a combination of independent modules: an issue linker,
three base classifiers (commit message classifier, code change
classifier, issue classifier), and a joint classifier. HERMES treats
the problem as a binary classification task. It takes a commit
as input, and provides a prediction of whether the commit is
a vulnerability-fixing commit.

We obtain the commit message and code change from the
input commit. Then, if the commit message references any
issue on GitHub or a JIRA issue tracker, we directly follow
the links and obtain the linked issues. For commits that are
unlinked and do not have an explicit link to an issue, we infer
a link to a single, most relevant issue from an issue corpus
using a commit-issue link recovery technique.

The use of commit-issue link recovery enriches the dataset
by providing a single issue that is relevant to the unlinked
commit. When a relevant commit cannot be identified, we rely
on a standard data imputation technique [20] to construct a
placeholder value to input into the joint classifier. Hence, for
each commit, we have three classes of information: its commit
message, a code change, and the textual content of an issue
related to the commit. We obtain features from each class of
information, which have a different characteristic compared

~ (1)
N—‘

Commit message

Message classifier

k - >
<> i @)

. . Commit patch
Single commit

Commit-issue
! link recovery
EE——

3ok

Patch classifier

Joint classifier

Label prediction

7 (©) (4)

Issue corpus

Issue content

<3

Issue classifier

Fig. 3: Overview of HERMES

to the others. For each class of information, we train one
classifier that captures the information content of one facet
of the commit. Each classifier computes a probability that the
commit is a vulnerability-fixing commit, based on the class
of information considered. The outputs from the classifiers
are input into a joint classifier, which performs data fusion to
determine if the commit is vulnerability-fixing, considering all
three classes of information.

B. Message classifier and code change classifier

Existing studies [2], [21] using machine learning on code
commits consider the commit message and the code change of
a commit as different classes of information about the commit.
‘We build our work on the same view of a code comment, and
in HERMES, the message classifier and code change classifier
are two of the three independent classifiers.

The message classifier ((1) in Figure 3) and code change
classifier (2) in Figure 3 take the commit message and code
change of a commit as input, respectively. Adopting the same
feature extraction method as Sabetta et al. [2], the commit
message and code change in a commit are viewed as sequences
of tokens. We adopt the same preprocessing steps. First,
the raw documents are tokenized. Next, we normalized and
stem the tokens using Porter Stemmer [22]. Non-alphanumeric
characters are filtered to remove noise. We also use a minimal
TF-IDF threshold with its value is 0.05 to remove tokens
that occur too infrequently and tokens that contribute little
information to our classifier, retaining only informative tokens.
After preprocessing, the commit messages and code changes
are represented as two set of features, using two different bag-
of-words.

The two set of features are input into their corresponding
classifiers (commit message and code change) to train two
linear Support Vector Machine models. We use the two trained
models to compute two probabilities that a commit is a
vulnerability-fixing commit based on the commit message and
the code change. These probabilities, along with the output of

the issue classifier, are input for the joint classifier, which will
produce the output of HERMES.

C. Issue classifier

The main novelty of our approach is that we use issue
information linked to the commits. First, we consider only
issues explicitly linked to the commit message.

To leverage information contained in the linked issues, we
have to identify the relevant issues that are indicated by a
commit. To identify the right issue, we first manually identify
the relevant issue tracker for all the projects in our dataset.
Some of these projects use the GitHub issue tracker, while
other projects use JIRA issue tracker. To identify the issue, we
look for references to issue numbers in the commit message.
Table I shows the regular expressions that we use to match
references to GitHub issues and Jira issue references in the
commit messages. These regular expressions are based on
GitHub’s conventions for issue references [23], as well as a
regular expression provided by the JIRA support [24]. After
matching, we manually investigate the tokens that match the
regular expressions, removing matches that are not references
to issues, for example, “UTF-8”. and checked that each match
correctly corresponds to an issue on the project’s issue tracker.

Next, we extract the features for representing the issue. As
a commit can be linked to multiple issues, the text from every
linked issue are concatenated to form a single document, from
which the features for the issue classifier are extracted.

Similar to the preprocessing steps for the commit message
classifier and code change classifier, the content of each issue
are treated as a sequence of tokens. We performed tokeniza-
tion, stop-word removal, non-alphanumeric token removal, and
stemming. The issues are represented through a bag-of-words
representation, which is input to a Support Vector Machine,
which will produce a probability that the commit attached to
the issue is a vulnerability-fixing commit ((3) in Figure 3.

TABLE I: Regular expression for matching issue’s reference

Reference type Regular expression

Matching examples

GitHub issue #[0-9]1{1,20}

$#12347, "#552”

JIRA issue

((?! ([A-20-9a-2]{1,10})-29$) [A-Z] {1} [A-Z0-9]+-\d+)

"CAMEL-16527", "WW-4348”, ”STS-262”

TABLE II: Regular expressions for code terms matching

Type Example Pattern

C_Notation OPT_DRIVER [A-Za-z]+[0-9]x_.%*
Qualified name options.add [A-Za-z]+[0-9] [\.] o+
CamelCase Option Validator [A-Za-z]+.*x[A-Z]+
Uppercase XOR [A-Z0-9]+

System variable _cmdline /_+[A-Za-z0-9]+.+/
Reference expression | std::env la—zA-Z]+[:]1{2,}.+

D. Commit-issue link recovery

Only about a third of the commits in the dataset have an
explicit link to an issue. This is a challenge of using issues to
help commit classification. An approach that can work only on
commits with explicit links to issues will not be generalizable
— the majority of commits do not have explicit links. Therefore,
while the issue classifier can be used, we also recover missing
links using a commit-issue link recovery technique to provide
more information ((4) in Figure 3).

To infer links for the unlinked commits, we look for tools
from the literature of traceability research, which aims to
construct links between different types of software artifacts
including commits and issues. Among recent work, we find
the work of Sun et al. [9], who propose FRLink.

Next, we construct a corpus of issues. To allows for a more
realistic setting comparing commits and issues, we only obtain
issues that were created in the same period as the commits in
the dataset. We construct a corpus of over 290,000 issues from
multiple projects with commits in the dataset.

Using FRLink, we recover commit-issue links for every
unlinked commit. Each unlinked commit is linked to one issue
that best matches its commit content. While commits with
explicit links may reference multiple issues, we pick only one
issue with the best match to link to the commit when we use
FRLink. The reason for picking only one issue is that the
link-recovery approach does not have a high accuracy (later
discussed in detail in Section V), and we wish to avoid adding
too much noise to the dataset. In practice, most commits with
explicit links indicate only one corresponding issue.

We modified FRLink to allow commits to be linked to
issues from a different projects. While we experimented with
the default configuration of linking commits only to issues
from the same repository, we found that many commits would
be unlinked. About 55% of unlinked issues would remain
unlinked after the link recovery process. While this would
certainly lead to a drop in the accuracy of the commit-
issue link recovery process, we later show (in Section V)
that increased accuracy may not increase the effectiveness of
HERMES. By allowing links between commits and issues of

different projects, HERMES considers information from issues
that match a similar context (e.g. a similar bug) as the commit.

After linking every commit to the issue with the highest
similarity, we train the issue classifier using the complete set
of data, including the issues with links that were recovered and
the issues that were originally linked by the commit authors.
It may be possible that there is some natural proportion of
commits that correctly do not have any link to an issue (ad-hoc
commits that contain refactoring, upgrading library versions,
or preparing for new releases), therefore, FRLink can be con-
figured to leave a portion of commit without any linked issue.
This proportion is controlled by the configurable threshold in
FRLink. By default, we set the threshold to 100%, which will
cause all commits to be linked, if possible. We hypothesized
that tuning this threshold may help in reducing noise from
inaccurately recovered links. Later, in our experiments, we
analyse the effect of tuning the threshold.

For a small minority of unlinked commits, there are no
issues that are linked to them even after performing link
recovery. This is because these commits are not similar to
any issue at all. For these cases, we rely on the standard data
imputation technique [20] of passing the joint classifier the
mean value of the issue classifier’s output. We do not run the
issue classifier for these commits, and for the corresponding
input to the joint model, we use the mean value output by the
issue classifier for the other commits.

E. Joint classifier

By this point, we have three classifiers that each considers
one class of information about the commit. Individually, each
classifier may not have the necessary information to detect a
vulnerability-fixing, but capture information about one facet
of the commit. Similar to previous studies [2], we join the
outputs of the three classifiers by using another classifier to
make the final judgment for classification ((5) in Figure 3).

From the three classifiers, we obtain three probabilities that
a commit is vulnerability-fixing based on the commit message,
the code change, and the issue, respectively. To fuse these
probabilities into the final prediction made by HERMES, we
employ stacking, an ensemble machine learning technique that
uses another classifier that learns to combine the output of the
individual classifiers to produce the right prediction [10]. To
do that, we combine the probabilities output by the individual
classifiers with a logistic regression classifier, commonly used
for stacking.

The input to the logistic regression classifier is the probabil-
ities outputs by the three classifiers. The output of the logistic
regression classifier is a prediction indicating if the commit is
a vulnerability-fixing commit or not. This prediction is used
as the output of HERMES ((6) in Figure 3).

V. EVALUATION
Our experiments are driven by these research questions:

RQ1. How effective is HERMES for commits with explicit
links (provided by commit authors)?

HERMES relies on the information content of issues on
the issue tracker to improve the effectiveness of the com-
mit classifier. This research question is concerned with the
effectiveness of the commit classifier when using explicit
commit-issue links when indicated by the commit authors. We
investigate if the use of these links helped HERMES achieves
better performance.

RQ2. How effective is HERMES on all commits when
leveraging a commit-issue link recovery technique?

The goal of this research question is to assess the perfor-
mance of the HERMES when we use issues that are from links
recovered by FRLink.

RQ3. How much does noise in the inferred links between
commit-issue affect HERMES?

When commit-issue link recovery is used, the links re-
covered may be inaccurate. This introduces noise into the
vulnerability-fixing commit classification process. We inves-
tigate the effect of noise on the effectiveness of HERMES in
this research question.

A. Experimental Setting

We ran our experiment on SAP’s manually-curated
dataset [11] of fixes to vulnerabilities of open-source soft-
ware. At the time of our experiment, we use 1,132 instances
provided on the dataset. The dataset contains information
about GitHub repositories, commit IDs of vulnerability-fixing
commits, which are labeled as positive commits. To train
a machine learning classifier, both examples of positives
(vulnerability-fixing commits) and negative commits (non-
vulnerability-fixing commits) are needed.

To obtain negative commits, we use the same augmentation
process described by Sabetta et al. [2]. As vulnerability-fixing
commits are rare compared to other types of commits (such
as commits for developing new features or fixing other bugs),
we sampled five random commits (which do not appear in the
dataset) out of one positive commit, using manual analysis
aided by scripts and pattern matching to filter outliers. These
commits are obtained from the same repository and we treat
them as negative cases. Following Sabetta et al. [2], we use an
ad-hoc script to filter obvious outliers (extremely large, empty,
or otherwise invalid commits). This gives us an imbalanced
dataset, in which non-vulnerability-fixing commits outnum-
ber vulnerability-fixing commits by roughly 5:1. Finally, the
dataset contains 7,127 instances with 1,132 positive commits
and 5,995 negative commits.

To obtain issue information, we retrieved them from two
sources, which are issues trackers on GitHub and JIRA. For
Github issues, we obtained their titles, bodies, and comments
contents. For JIRA issues, we used their summaries, descrip-
tions, and comments contents.

We used 10-fold cross validation in our evaluation. In 10-
fold cross validation, HERMES is trained using 9 folds, or 90%
of the data, and then evaluated on the remaining one fold.
The evaluation metrics reported are the average of evaluation
metrics computed on each fold.

In our experiments, in we set a minimum document fre-
quency threshold of five, where terms that appear in fewer
than less than five documents are removed.

Our experiments have the focus of evaluating the addition of
issue information, therefore, as a baseline for our experiments,
we compare our work against the approach by Sabetta et
al. [2]. Our work builds on the work by Sabetta et al. [2],
sharing a similar implementation of the commit message and
code change classifier, with the key addition of the issue
classifier.

B. Evaluation Metrics

F1 is used to evaluated HERMES, similar to numerous
studies performing classification. A true positive (TP) is a
vulnerability-fixing commit that is correctly detected, a false
positive (FP) is a non-vulnerability-fixing commit that is in-
correctly detected as vulnerability-fixing, and a false negative
(FN) is a vulnerability-fixing commit that is not detected as
such. Precision (P) and Recall (R) are computed as follows:

_ _TP _ _TP
P = TP+FP R = TP+4-FN

These two metrics capture different desirable aspects of
a vulnerability-fixing commit detector. A high precision re-
duces the effort by security researchers in manually checking
the predicted vulnerability-fixing commits. A low precision
may hinder the adoption of Software Engineering tools as
more human effort is required to interpret their output [25],
[26]; in the context of detecting silent fixes, it is important
that vulnerability-fixing commit detectors should reduce the
number of commits that are manually analyzed by security
researchers, who have to assess a large volume of com-
mits from a growing number of open-source repositories. A
high recall ensures that few vulnerability-fixing commits are
missed. Finally, we report F1, known as the harmonic mean
of precision and recall to measure our classifier performance,
calculated as follows:

2
Fl— (P x R)
P+ R
where P and R indicate precision and recall respectively.

C. Experiment Results

1) Effectiveness of HERMES on explicitly linked subset
of the data: To test the premise that including information
from linked issues will help in vulnerability-fixing commit
classification, we run experiments on a subset of the original
dataset. In this subset, every commit is explicitly linked (by the
commit authors) to at least one GitHub or JIRA issue. This
subset contains 2,612 instances in which 433 instances are
labeled as a vulnerability-fixing commit, and the other 2,179
instances are not.

TABLE III: Evaluation results on the explicitly-linked subset
of data, i.e., the subset of the data with explicit links indicated
by the commit author.

Model Precision | Recall F1
Sabetta et al. [2] 0.54 0.82 0.64
HERMES 0.80 0.67 0.72

In this initial investigation, we investigate only explicitly-
linked commits in our dataset to train the issue classifier.
The commit-issue link recovery technique was not used.
This subset has 37% of the commits from the full dataset.
The ratio of vulnerability-fixing commits to non-vulnerability-
fixing commits is similar to the ratio in the original dataset.

The results of our experiments are shown in Table III.
Overall, in terms of F1, HERMES improves over the approach
of Sabetta et al. [2] by 12.5% ((0.72 - 0.64)/0.64). The
improvements come from the higher precision of HERMES,
improving over Sabetta et al. [2] from 0.54 to 0.80. Compared
to Sabetta et al. [2], the use of HERMES produces fewer false
alarms and leads to less human effort in inspecting commits,
which is an important goal in light of the growing number of
open-source libraries [27]. With explicitly-linked issues, we
expect that the linked issues accurately describe the purpose
of the commits. The strong experimental performance confirms
our intuition that there is information in accurately linked
issues that is not captured from the code change or commit
message, and that this additional information improves the
detection of vulnerability-fixing commits.

2) Effectiveness of commit-issue link recovery on
vulnerability-fixing commit detection: Next, to assess
the performance of the HERMES when we use issues from
links recovered by FRLink, we automatically recovered
likely links between unlinked commits to an issue from over
290,000 JIRA issues of repositories. We limit ourselves to
issues that are collected from 2015. In our experiments, we
first attempt to recover links for all of the unlinked commits.
The dataset comprises 7,127 instances where each commit
either contains at least one explicit link to an issue or a
link recovered by our commit-issue link recovery technique,
FRLink. Under this experimental setting, a commit would
be linked to the most similar issue. As long as there is
some degree of similarity to an issue, each commit would be
linked to an issue. However, for 4 commits, the commit-issue
link recovery technique failed to recover links as they were
completely dissimilar to every issue in our issue corpus.

Table IV shows our experimental results, which is the
effectiveness of HERMES on the entire dataset when we
applied FRLink to connect unlinked commits with issues.
Overall, HERMES has higher precision and improves over the
baseline by 11.1% in terms of F1 ((0.70-0.63)/0.63).

This improvement was smaller than the improvement of
HERMES over the baseline approach when evaluated only on
explicitly-linked commits (from Section V-C1). This indicates
that HERMES was sensitive to the quality of links between

TABLE IV: Evaluation result on all commits in the dataset

Model Precision | Recall F1
Sabetta et al. [2] 0.52 0.81 0.63
HERMES 0.74 0.66 0.70

commits and issues. When there is a significant amount of
inaccurate links between commits to issues, the performance
of HERMES is negatively affected. Despite the decline in
performance due to noise, HERMES still outperforms the
baseline approach, which suggests that the use of commit-
issue link recovery can help if we limit the recovery of links
to only the commits and issues that are most similar.

Overall, our experimental results show that the use of
techniques that recover commit-issue links helps detect
vulnerability-fixing commits. This shows that even when de-
velopers do not explicitly link commits to issues, information
from issues improves vulnerability-fixing commit detection.

3) Analysis of the effect of noise on HERMES: Next, we
wish to investigate the relationship between the accuracy of the
commit-issue link recovery and the effectiveness of HERMES.

First, we investigate the accuracy of commit-issue link
recovery. To do so, we experiment on the subset of commits
and issues that are explicitly linked by the commit author
(e.g. the "Fix #438” commit message). Experimenting on the
explicitly-linked subset of data, we run FRLink to determine
if it is able to successfully recover the same link as the
explicit link indicated by the commit author. FRLink could
only recover 1,229 of the 2,250 explicit links, corresponding
to an accuracy of 54.6%. We use the accuracy of FRLink on
the explicitly-linked subset as an estimate of the accuracy of
FRLink on the entire dataset.

Effect of the similarity threshold on commit-issue link
recovery accuracy. When commit-issue link recovery is used,
the links recovered may be inaccurate. This introduces noise
into the vulnerability-fixing commit classification process. We
investigate the effect of noise on the effectiveness of HERMES.

We evaluate the effect of tuning the similarity threshold in
FRLink on its accuracy. Our goal is to determine if we can
control the accuracy of the commit-issue link recovery process
by varying the similarity threshold.

We adjust the value of the similarity threshold such that
the proportion of unlinked commits is above a given number.
Note that FRLink will first infer links for the most similar
commit-issue pairs, and infer links the least similar commit-
issue pairs last (i.e., setting the similarity threshold for FRLink
to infer links for 10% of the data indicates that 90% of the
unlinked commits with the lowest similarity to any issue would
remain unlinked). As earlier described, there may be a natural
proportion of commits that are developed without an issue in
mind (e.g. ad-hoc refactoring), and it would be inaccurate to
link these commits to an issue.

Our hypothesis is that the more precise the recovery of the
missing links, the more effective HERMES will be. By increas-
ing the similarity threshold, we hope to reduce the number of

TABLE V: FRLink’s commit-issue link accuracy computed on
the explicitly-linked subset of data, by varying its similarity
threshold. We vary its similarity threshold to control for the
proportion of unlinked commits that FRLink infer links for.

% unlinked commits linked by FRLink | Accuracy
10% 1.00
20% 0.98
30% 0.93
40% 0.87
50% 0.80
60% 0.74
70% 0.69
80% 0.64
90% 0.60
100% 0.55

inaccurate links, or noise, that is introduced by the process.
This would limit the commit-issue link recovery process only
to pairs of commit and issues with high similarity. Therefore,
we investigate the impact of modifying this threshold. Note
that in Table IV, the value of this threshold was set for FRLink
to infer links for 100% of unlinked data, i.e., FRLinks attempts
to link all unlinked commits even if the best matching issue
is a poor match for the commit.

Our experiments are summarized in Table V. As the thresh-
old increases, the accuracy of the commit-issue link recovery
process decreases. The higher the similarity threshold, the
more accurate the recovered links. From our experiments, we
conclude that it is unlikely that we can recover links for all
commits at a high level of accuracy; however, by limiting the
recovery of links using the similarity threshold, we can choose
to only recover accurate links.

Effect of inaccurate links. Next, we assess the impact of
inaccurate links on HERMES. On top of the explicitly-linked
subset of the data, we add commits with links inferred by
FRLink. We vary the similarity threshold and add the commits
with inferred links to issues with similarity higher than the
threshold. At low levels of the threshold, the added links are
expected to be more accurate, as we have seen earlier in Table
V. Our hypothesis is that HERMES is more effective when the
commit-issue links are more accurate.

Table VI shows the results of the experiment. On one hand,
HERMES performs best when only explicitly linked commit-
issue links are used. On the other hand, this limits the data
coverage of HERMES, as it cannot make accurate predictions
for unlinked data, which is the majority of the dataset. Indeed,
there is a tradeoff between accuracy and coverage. At its
most accurate, HERMES covers only 37% of the dataset (the
explicitly linked subset). To cover 68% of the dataset (by
inferring links for 50% of the unlinked commits), the F1 of
HERMES declines to 0.67. If we wish to use HERMES on as
many commits as possible, we should allow the inference of
commit-issue links for as many unlinked commits as possible.

To conclude, the performance of HERMES declines with
noise introduced by commit-issue link recovery. HERMES has
the best performance when using only explicitly-linked issues,

TABLE VI: Coverage and F1 of HERMES on the explicitly-
linked data and on commits with recovered links, when varying
FRLink’s similarity threshold to control for the percentage of
links inferred for unlinked commits

% unlinked commits linked Coverage (# commits) FI
0% unlinked commits linked 37% (2,612) 0.72
5% unlinked commits linked 40% (2,838) 0.70
10% unlinked commits linked 43% (3,064) 0.69
20% unlinked commits linked 49% (3,515) 0.68
30% unlinked commits linked 56% (3,967) 0.69
40% unlinked commits linked 62% (4,418) 0.68
50% unlinked commits linked 68% (4,870) 0.67

but this restricts its application to only a minority of the
dataset. Moreover, when increasing coverage by inferring links
for more of the dataset, HERMES only faces a slight decline
in performance but still has a high overall effectiveness.

VI. DISCUSSION

A. Limiting link inference to projects developed under similar
development practices

While we have evaluated HERMES on a large number of
different projects, we also wish to investigate the performance
of HERMES if it is deployed on a set of projects that are
more likely to be homogeneous in their software engineering
practices. In an additional experiment, we investigate the
performance of HERMES when both the commits and issues
considered are limited to only projects that are under the
Apache organization.

In this experiment, commit-issue link recovery is limited to
be between commits and issues that are created under Apache
projects, which use similar software development practices.
This may aid the commit-issue link recovery process in cre-
ating more relevant links. We obtain 2,402 unlinked commits
that were made in projects under the Apache foundation. For
these commits, we inferred commit-issue links using FRLink,
producing 2,383 commit-issue links. The recovery process
failed to find a link to any issue for 19 commits, as they were
completely dissimilar to every issue in the Apache projects. In
total, this experimental setting uses 4,995 commits, of which
2,383 commits were initially unlinked and 2,616 commits had
a developer-indicated, explicit link to an issue.

In this experimental setting, HERMES achieves an F1 of
0.74. This strong evaluation result is better than the evaluation
results achieved on only commits with explicit links to issues
(F1 of 0.72). This suggests that HERMES’s performance may
be related to the homogeneity of the software development
practices.

B. Qualitative Analysis

In this section, we perform a qualitative analysis of the re-
sults of HERMES. Our objective is to understand the situations
under which commit-issue linking aids HERMES in detecting
vulnerability-fixing commits.

@Override

public RequestParameter isValid(String value) throws ValidationException {

try {

= DocumentBuilder parser = DocumentBuilderFactory.newInstance().newDocumentBuilder();

+ DocumentBuilder parser = createDocumentBuilderFactoryInstance().newDocumentBuilder();

Document document = parser.parse(value);

this.schemaValidator.validate(new DOMSource(document));

return RequestParameter.create(document);

Fig. 4: Short snippet of the code change from a commit of VertX with the commit message “Create safe xml parsers”

Description

Hi,

When I'm trying to parse XML document using :

DocumentBuilderFactory factory = DocumentBuilderFactory.newinstance();
DocumentBuilder builder = factory.newDocumentBuilder();

builder.parse(File)

The parsing is stuck in infinite loop:

Fig. 5: A snippet of the issue (XERCESJ-1702) description
that was most similar to the commit in Figure 4 during
commit-issue link recovery. The link from the commit to
XERCESJ-1702 allows HERMES to make the right classifi-
cation despite the inaccuracy of the link.

Figure 4 shows an example of a commit> which HERMES
only detected as a vulnerability-fixing commit after it was
linked to an issue in a different project. Figure 5 shows
the inaccurately linked issue (XERCESJ-2701%). While some
security-related tokens appeared in the commit, the code
change and message classifier did not detect that the commit
was vulnerability-fixing, since these terms may have appeared
just as frequently in non-vulnerability-fixing commits. The
commit in the VertX project matched an issue from the XercesJ
project describing a similar functionality (parsing XML files)
with the use of similar functions (i.e., the newDocument-
Builder function). The issue description described a possible
consequence (an infinite loop) of the code used in the commit,
which allowed the issue classifier to determine that the issue
was related to a vulnerability.

Although the issue did not directly match the commit and
they were inaccurately linked, they share a similar context.
Moreover, the issue provided useful information about the
functions used in the code, and described a possible conse-
quence of the code that was changed by the commit. For
HERMES to determine if the commit was vulnerability-related,
information from the issue was essential.

Tradeoff between linking accuracy and coverage of
commits. While modifying the threshold to only link a small

Zhttps://github.com/vert-x3/vertx- web/commit/
d814d22adel4bafecd7c4447a4ba9bff090f05e8
3https://issues.apache.org/jira/browse/XERCESJ-1702

number of commits leads to higher link accuracy, it also
causes HERMES to lack additional information when making
predictions for the rest of the unlinked commits. In other
words, the similarity threshold used in commit-issue link
recovery represents a trade-off in terms of the accuracy of
HERMES on the linked commits and the proportion of total
commits that HERMES can more accurately make predictions.
Our experimental results indicate that there is only a minor
decrease in F1 when we increase the coverage of HERMES by
inferring commit-issue links.

Implications on vulnerability disclosure practices. An
implication of our work is that library developers should con-
sider the possibility of attackers using automatic traceability
techniques to detect vulnerability fixes, even if developers
try to limit the dissemination of the vulnerability by limiting
discussion of the vulnerability and silently fixing it.

As such, our findings suggest that library developers should
not hope that a silent fix goes undetected, and take steps to
disclose the vulnerability to mitigate possible exploitation in
client projects using the library.

Implications for future research. For detecting silent fixes,
our findings indicate that information outside of a commit
should be considered. While many studies use sophisticated
machine learning techniques to classify commits, we find that
we obtained good results from the composition of relatively
simple techniques by considering more practical sources of
information. Our study suggests that other informative sources
of data may be overlooked.

C. Threats to Validity

To mitigate threats to internal validity, which are concerned
with mistakes in the implementation and analysis of HERMES,
we have double-checked our source code and data. We selected
a commit-issue link recovery technique that is simple to
understand and implement, which helps us to avoid mistakes
in our implementation. However, there may still be errors.
To validate our approach, we have conducted experiments to
understand the performance of HERMES in detail. Our source
code and data are available in our replication package [12],
which future work can analyze and build on.

Another threat to validity is our reliance on the assumption
that the commits are made to address an issue in the issue
tracker. In practice, ad-hoc commits may be made without
considering the issue tracker. This threat is mitigated as we
have evaluated the effect of the accuracy of commit-issue

link recovery on the effectiveness of HERMES in Section V.
Moreover, in Section VI, we have discussed that inaccurately
linked issues may still provide helpful information related to
the commit.

To minimize threats to construct validity, we used the
same standard evaluation metrics used in numerous studies in
software engineering. We constructed the dataset in the same
way as prior studies [2], and using the same process as prior
work [2], [3] to clean the dataset.

To reduce risk from threats to external validity, which
is concerned with the generalizability of our findings, the
dataset used in our experiments contains a large number of
commits from a range of different projects. While we do
not use the latest approaches proposed for commit-issue link
recovery, we expect our findings to generalize as we use a
representative tool that shares the main insight employed by
most link recovery techniques: the more similar two artifacts
are, the more likely that there is a link between them. In
this work, we aimed for simplicity to make our approach
interpretable to accurately identify and analyze the source of
our improvements (the use of issues) [28]. The use of the latest
approaches is likely to increase the performance of HERMES,
and we leave this for future work.

VII. RELATED WORK

Many studies have proposed various ways to analyze code
commits. Some studies [29]-[34] analyze code changes, but
do not classify commits. Yuan et al. [35] proposed to use
the machine learning framework, Learning from Positive and
Unlabelled examples [36], to detect bug fixing commits in
the Linux kernel. In this work, we classify vulnerability-fixing
commits in multiple projects.

VCCFinder [37] and DeepCVA [38] aim to identify suspi-
cious commits. Our work is similar in that we assess commits
to understand security risks, but while VCCFinder and Deep-
CVA focus on detecting commits introducing vulnerabilities,
our work focuses on detecting vulnerability-fixing commits.

PatchNet [39] and DeepJIT [40] propose techniques to
use deep learning on code commit classification, including
detecting defect-introducing commits. CC2Vec [21] uses deep
learning to learn vector representation of code changes based
on the commit message each code change is associated with.
Subsequent studies [41]-[43] show that simpler approaches
can outperform Deep Learning in Just-in-Time defect pre-
diction. Other researchers classify commits into maintenance
and non-maintenance activities [44]. Researchers have also
proposed methods of generating commit messages from code
comments [30]-[34]. In these studies, the proposed techniques
do not consider information beyond the commit, while we
enrich the commit data using issues from issue trackers.

Apart from detecting vulnerabilities through the analysis of
commits, other studies have proposed methods of detecting
vulnerabilities from software development artifacts. Chen et
al. [13] and Ramsauer et al. [45] propose to identify vulnerabil-
ities from artifacts other than commits, including discussions
on mailing lists.

Our work builds on the literature on software artifact
traceability. This field of research is interested in studying
and establishing connections between various software engi-
neering artifacts, such as commits, documentation, and issue
descriptions. Many techniques to infer links between software
engineering artifacts have been proposed [9], [18], [46]-[49].
Recent work focuses on using powerful machine learning
models to generate links between artifacts [18], [47]. It has
been noted that existing techniques are not adopted in practice
due to their poor accuracy [47], a limitation that we also
faced in our work. As techniques on recovering links between
commits and issues become more effective, our proposed
approach will be able to leverage these new innovations to
become more effective. In this study, we build HERMES and
use a commit-issue link recovery technique, FRLink [9], to
boost the performance of HERMES.

VIII. CONCLUSION AND FUTURE WORK

We are the first to suggest that using data within a commit
may be insufficient to correctly classify it, and we show
that commit-issue links help in vulnerability-fixing commit
detection. We explore the use of a commit-issue link recovery
technique to enrich a dataset previously used for assessing
existing detectors of silent fixes. We find that, despite its inac-
curacy, it increases the effectiveness of the commit classifier.
Our approach, HERMES, substantially improves over the state-
of-the-art vulnerability-fixing commit classifier by over 15%
on commits that explicitly link to issues. When the use of
commit-issue link recovery is required, our technique improves
over the baseline by over 7%. We conducted a comprehensive
set of experiments to analyse and understand the performance
of HERMES, and highlight aspects that should be further
investigated in the future. Our code and data are available
in a replication package [12].

HERMES relies on lightweight machine learning techniques,
and builds on work from software traceability research. The
evaluation results we obtain from using a commit-issue link
recovery technique is promising — our evaluation of HERMES
opens up the possibility that new innovations in software
traceability research could help to enhance the detection of
vulnerability-fixing commits.

In the future, we will evaluate our technique with the use of
different commit-issue link recovery techniques. Furthermore,
our promising results suggest that incorporating information
from other software engineering artifacts will further improve
the effectiveness of vulnerability-fixing commit classification.
We will also explore using other software engineering artifacts,
such as discussions on mailing lists or links between issues
from different repositories, to further enrich our dataset.

REFERENCES

[1] “2017 Equifax data
Equifax_data_breach.

[2] A. Sabetta and M. Bezzi, “A practical approach to the automatic
classification of security-relevant commits,” in 2018 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE,
2018, pp. 579-582.

breach,” https://en.wikipedia.org/wiki/2017_

[3]

[4]

[5]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

Y. Zhou and A. Sharma, “Automated identification of security issues
from commit messages and bug reports,” in Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering (FSE), 2017, pp.
914-919.

J. Liao, G. Yang, D. Kavaler, V. Filkov, and P. Devanbu, “Status, identity,
and language: A study of issue discussions in github,” PloS one, vol. 14,
no. 6, p. 0215059, 2019.

J. Tsay, L. Dabbish, and J. Herbsleb, “Let’s talk about it: evaluating
contributions through discussion in github,” in Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 2014, pp. 144-154.

T. F. Bissyandé, D. Lo, L. Jiang, L. Réveillere, J. Klein, and Y. Le Traon,
“Got issues? who cares about it? a large scale investigation of issue
trackers from github,” in 2013 IEEE 24th International Symposium on
Software Reliability Engineering (ISSRE). 1EEE, 2013, pp. 188-197.

M. Rath, J. Rendall, J. L. Guo, J. Cleland-Huang, and P. Mider,
“Traceability in the wild: automatically augmenting incomplete trace
links,” in Proceedings of the 40th International Conference on Software
Engineering (ICSE), 2018, pp. 834-845.

G. Schermann, M. Brandtner, S. Panichella, P. Leitner, and H. Gall,
“Discovering loners and phantoms in commit and issue data,” in
2015 IEEE 23rd International Conference on Program Comprehension
(ICPC). IEEE, 2015, pp. 4-14.

Y. Sun, Q. Wang, and Y. Yang, “Frlink: Improving the recovery of
missing issue-commit links by revisiting file relevance,” Information and
Software Technology (IST), vol. 84, pp. 33-47, 2017.

D. H. Wolpert, “Stacked generalization,” Neural networks, vol. 5, no. 2,
pp. 241-259, 1992.

S. E. Ponta, H. Plate, A. Sabetta, M. Bezzi, and C. Dangremont,
“A manually-curated dataset of fixes to vulnerabilities of open-source
software,” in 2019 IEEE/ACM 16th International Conference on Mining
Software Repositories (MSR). 1EEE, 2019, pp. 383-387.

“Our replication package,” https://github.com/replicatepackage/hermes/
tree/master.

Y. Chen, A. E. Santosa, A. M. Yi, A. Sharma, A. Sharma, and D. Lo, “A
machine learning approach for vulnerability curation,” in Proceedings
of the 17th International Conference on Mining Software Repositories
(MSR), 2020, pp. 32-42.

M. Fischer, M. Pinzger, and H. Gall, “Populating a release history
database from version control and bug tracking systems,” in Interna-
tional Conference on Software Maintenance, 2003 (ICSM). 1EEE, 2003,
pp. 23-32.

J. Sliwerski, T. Zimmermann, and A. Zeller, “When do changes induce
fixes?” ACM SIGSOFT Software Engineering Notes, vol. 30, no. 4, pp.
1-5, 2005.

A. Schréter, T. Zimmermann, and A. Zeller, “Predicting component
failures at design time,” in Proceedings of the 2006 ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering, 2006, pp. 18-27.
T.-D. B. Le, M. Linares-Vésquez, D. Lo, and D. Poshyvanyk, “Rclinker:
Automated linking of issue reports and commits leveraging rich con-
textual information,” in 2015 IEEE 23rd International Conference on
Program Comprehension (ICPC). IEEE, 2015, pp. 36-47.

H. Ruan, B. Chen, X. Peng, and W. Zhao, “DeepLink: Recovering issue-
commit links based on deep learning,” Journal of Systems and Software
(JSS), vol. 158, p. 110406, 2019.

A. T. Nguyen, T. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, “Multi-
layered approach for recovering links between bug reports and fixes,”
in Proceedings of the ACM SIGSOFT 20th International Symposium on
the Foundations of Software Engineering (FSE), 2012, pp. 1-11.

R. J. Little and D. B. Rubin, Statistical analysis with missing data. John
Wiley & Sons, 2019, vol. 793.

T. Hoang, H. J. Kang, D. Lo, and J. Lawall, “CC2Vec: Distributed
representations of code changes,” in Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering (ICSE), 2020, pp.
518-529.

C. J. Van Rijsbergen, S. E. Robertson, and M. F. Porter, New models
in probabilistic information retrieval. ~ British Library Research and
Development Department London, 1980, vol. 5587.

“Github docs: Autolinked references and urls,” https://docs.github.com/
en/github/writing-on- github/autolinked-references-and-urls, accessed
30 April 2021.

“Atlassian community: Regex pattern to match JIRA issue
key,” https://community.atlassian.com/t5/Bitbucket-questions/

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

(35]

[36]

[37]

[40]

[41]

[42]

[43]

[44]

Regex-pattern-to-match-JIRA-issue-key/qaq-p/233319, accessed
30 April 2021.

B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t
software developers use static analysis tools to find bugs?” in 2013 35th
International Conference on Software Engineering (ICSE). 1EEE, 2013,
pp. 672-681.

P. S. Kochhar, X. Xia, D. Lo, and S. Li, “Practitioners’ expectations on
automated fault localization,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis (ISSTA), 2016, pp. 165—
176.

G. A. A. Prana, A. Sharma, L. K. Shar, D. Foo, A. E. Santosa,
A. Sharma, and D. Lo, “Out of sight, out of mind? how vulnerable
dependencies affect open-source projects,” Empirical Software Engineer-
ing (EMSE), vol. 26, no. 4, pp. 1-34, 2021.

W. Fu and T. Menzies, “Easy over hard: A case study on deep learning,”
in Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering (FSE), 2017, pp. 49-60.

D. Jackson, D. A. Ladd et al., “Semantic diff: A tool for summarizing the
effects of modifications.” in Proceedings of the International Conference
on Software Maintenance (ICSM), vol. 94. Citeseer, 1994, pp. 243-252.
S. Jiang and C. McMillan, “Towards automatic generation of short sum-
maries of commits,” in 2017 IEEE/ACM 25th International Conference
on Program Comprehension (ICPC). IEEE, 2017, pp. 320-323.

Z. Liu, X. Xia, A. E. Hassan, D. Lo, Z. Xing, and X. Wang, “Neural-
machine-translation-based commit message generation: how far are we?”
in Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering (ASE), 2018, pp. 373-384.

S. Xu, Y. Yao, F. Xu, T. Gu, H. Tong, and J. Lu, “Commit message
generation for source code changes,” in IJCAI, 2019.

M. Linares-Vasquez, L. F. Cortés-Coy, J. Aponte, and D. Poshyvanyk,
“Changescribe: A tool for automatically generating commit messages,”
in 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering (ICSE), vol. 2. IEEE, 2015, pp. 709-712.

R. P. Buse and W. R. Weimer, “Automatically documenting program
changes,” in Proceedings of the IEEE/ACM International Conference
on Automated Software Engineering (ASE), 2010, pp. 33-42.

Y. Tian, J. Lawall, and D. Lo, “Identifying linux bug fixing patches,”
in 2012 34th International Conference on Software Engineering (ICSE).
IEEE, 2012, pp. 386-396.

F. Denis, R. Gilleron, and F. Letouzey, “Learning from positive and
unlabeled examples,” Theoretical Computer Science, vol. 348, no. 1,
pp. 70-83, 2005.

H. Perl, S. Dechand, M. Smith, D. Arp, F. Yamaguchi, K. Rieck, S. Fahl,
and Y. Acar, “VCCFinder: Finding potential vulnerabilities in open-
source projects to assist code audits,” in Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, 2015,
pp. 426-437.

T. H. Le, D. Hin, R. Croft, and M. A. Babar, “DeepCVA: Automated
commit-level vulnerability assessment with deep multi-task learning,”
arXiv preprint arXiv:2108.08041, 2021.

T. Hoang, J. Lawall, R. J. Oentaryo, Y. Tian, and D. Lo, “PatchNet: a
tool for deep patch classification,” in 2019 IEEE/ACM 41st International
Conference on Software Engineering: Companion Proceedings (ICSE-
Companion). 1EEE, 2019, pp. 83-86.

T. Hoang, H. K. Dam, Y. Kamei, D. Lo, and N. Ubayashi, “DeepJIT: an
end-to-end deep learning framework for just-in-time defect prediction,”
in 2019 IEEE/ACM 16th International Conference on Mining Software
Repositories (MSR). 1EEE, 2019, pp. 34-45.

C. Pornprasit and C. Tantithamthavorn, “JITLine: A simpler, better,
faster, finer-grained Just-In-Time Defect Prediction,” arXiv preprint
arXiv:2103.07068, 2021.

C. Tantithamthavorn, S. MclIntosh, A. E. Hassan, and K. Matsumoto,
“Automated parameter optimization of classification techniques for
defect prediction models,” in Proceedings of the 38th International
Conference on Software Engineering (ICSE), 2016, pp. 321-332.

Z. Zeng, Y. Zhang, H. Zhang, and L. Zhang, “Deep just-in-time defect
prediction: how far are we?” in Proceedings of the 30th ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA),
2021, pp. 427-438.

A. Hindle, D. M. German, M. W. Godfrey, and R. C. Holt, “Automatic
classication of large changes into maintenance categories,” in 2009 I[EEE
17th International Conference on Program Comprehension (ICPC).
IEEE, 2009, pp. 30-39.

[45]

[46]

[47]

R. Ramsauer, L. Bulwahn, D. Lohmann, and W. Mauerer, “The sound of
silence: Mining security vulnerabilities from secret integration channels
in open-source projects,” in Proceedings of the 2020 ACM SIGSAC
Conference on Cloud Computing Security Workshop, 2020, pp. 147-
157.

R. Wu, H. Zhang, S. Kim, and S.-C. Cheung, “Relink: recovering links
between bugs and changes,” in Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of
Software Engineering (FSE), 2011, pp. 15-25.

J. Lin, Y. Liu, Q. Zeng, M. Jiang, and J. Cleland-Huang, “Traceability
transformed: Generating more accurate links with pre-trained BERT

(48]

[49]

models,” in International Conference on Software Engineering (ICSE),
2021.

G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo,
“Recovering traceability links between code and documentation,” IEEE
Transactions on Software Engineering (TSE), vol. 28, no. 10, pp. 970-
983, 2002.

A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora, “Enhancing an
artefact management system with traceability recovery features,” in 20th
IEEE International Conference on Software Maintenance, 2004 (ICSM).
IEEE, 2004, pp. 306-315.

