
Exploiting Undefined Behaviors for
Efficient Symbolic Execution

Asankhaya Sharma
Department of Computer Science
National University of Singapore
asankhs@comp.nus.edu.sg

ABSTRACT
Symbolic execution is an important and popular technique used in
several software engineering tools for test case generation, debug-
ging and program analysis. As such improving the performance
of symbolic execution can have huge impact on the effectiveness
of such tools. On the other hand, optimizations based on undefined
behaviors are an essential part of current C and C++ compilers (like
GCC and LLVM). In this paper, we present a technique to system-
atically introduce undefined behaviors during compilation to speed
up the subsequent symbolic execution of the program. We have im-
plemented our technique inside LLVM and tested with an existing
symbolic execution engine (Pathgrind). Preliminary results on the
SIR repository benchmark are encouraging and show 48% speed
up in time and 30% reduction in the number of constraints.

1. MOTIVATION
Software engineering tools [6, 9] routinely employ symbolic ex-

ecution for various applications like automated test case generation
[20, 23], bug finding [7, 22], debugging [14, 8], performance anal-
ysis [16, 27] and verification [19, 15]. Symbolic execution (when
used as a dynamic analysis) is based on direct execution of the pro-
gram and can easily handle any calls to external libraries or OS
by concretizing arguments [25]. This enables such tools to an-
alyze many real-world programs and software. Moreover unlike
static analysis, dynamic symbolic execution does not use abstrac-
tion which eliminates spurious counter examples and false posi-
tives. When coupled with a path exploration based technique like
DART [13], dynamic symbolic execution can try to explore all the
paths within a program to provide a degree of completeness to the
analysis. Due to several practical applications, improving the per-
formance of symbolic execution can have a big impact. Two main
sources of bottlenecks for dynamic symbolic execution are path ex-
plosion due to unbounded number of paths in the program and the
time taken to solve path conditions (or formulas). Recent advances
in constraint solving have led to efficient SMT solvers like Z3 [10]
that have helped reduce time taken to solve individual path condi-
tion formulas. However, we argue that there is a yet another bottle-
neck for symbolic execution which is the program itself. Programs

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

routinely exhibit undefined behaviors [30] and from the point of
view of symbolic execution such behavior can also lead to bugs. C
and C++ compilers perform optimizations based on undefined be-
haviors that enable them to generate code which is faster although
sometimes unexpected [29]. Undefined behaviors have been a lead-
ing cause of integer overflow bugs [11] in compilers. Are unde-
fined behaviors always a bane or can they be a boon when it comes
to speeding up symbolic execution? The research problem we are
trying to address in this work is, can optimizations based on unde-
fined behaviors in existing C and C++ compilers be used to speed
up symbolic execution.

2. RELATED WORK
As symbolic execution is an active research area there are several

important work addressing the scalability and performance issues.
Existing symbolic execution engines like KLEE [6], EXE [7] and
Klover [20] use techniques based constraint subsumption, simpli-
fication and slicing to avoid making unnecessary calls to the SMT
solver. Domain-specific and contextual information about the pro-
gram can be used to optimize the performance of constraint solvers
as shown in [12]. In addition, concolic symbolic execution is based
on concretizing arguments that cannot be symbolically evaluated.
Concrete values also lead to simpler constraints in formulas that are
much easier to solve. Moreover, there has been work to address the
path explosion program in symbolic execution using efficient state
merging [17], multi path analysis [9] and symbolic program de-
composition [24]. As programs in general have unbounded number
of paths the problem of path explosion in some sense is unavoid-
able. But by focusing on a subset of paths (for bug finding and
debugging) within the program, symbolic execution can be made
to preferentially explore relevant portions of program. Caching,
reusing and memoizing [31] constraints based on path conditions
can improve the overall performance and effectiveness of symbolic
execution even across different runs, programs [28] and compilers
[26]. Above techniques focus mostly on the size and complexity
of formulas generated during path exploration and the number of
paths explored during symbolic execution. Another source ham-
pering the scalability of symbolic execution is the program itself.
A prior static analysis of the program can be used to compute useful
information to speed up subsequent dynamic symbolic execution.
The computed information can be used to transform the program
based on the relevancy of certain functions for symbolic execution
[21] or dependence of modules within the program [5]. However,
in these techniques the symbolic execution engine also needs to be
modified in order to take advantage of the information computed by
the prior static analysis. The combination of undefined behaviors
in C and C++ compilers and optimizations based on them to speed
up symbolic execution is missing in all these approaches.

3. APPROACH
The uniqueness of our approach is to define a technique that in-

troduces undefined behaviors in the program but does not change
the semantics of the program. Then, existing compiler optimiza-
tions based on undefined behaviors speed up the symbolic execu-
tion. The following figure illustrates the method.

The program under consideration for symbolic execution under-
goes a transformation using change value analysis (CVA) [26]. CVA
is a static analysis based on the output variables in the program. It
computes the set of variables whose values do not change with a
change in the value of the output variables. We perform a control
and data flow sensitive analysis to compute a fixed point over a lat-
tice of three points denoting the state of a variable, viz. Changed,
Unchanged and Undefined. Initially, all the program variables are
marked Undefined. At the beginning of the analysis the output
variables are marked Changed, then information about Changed
variables is propagated backwards using sound transfer functions
(computing a fixed point over the lattice) to mark all the dependent
variables as Changed. In the end we replace all the Unchanged and
Undefined variables with a compiler specific symbol (e.g. Undef

for LLVM) that takes a non-deterministic value. This gives us a
transformed program that can exhibit undefined behaviors (UB)
due to the presence of non-deterministic value in some variables.
Existing C and C++ compilers exploit the non-deterministic val-
ues for optimizations and generate a much smaller and simpler bi-
nary. Consider the following code snippet, CVA determines that
the value of variable z is unchanged and replaces it Undef. Later,
compiler optimizations eliminate 3 lines of code as shown below.
int x, y, z; //input
int a;
ac=zuc;
if(xc−yc>0)
ac=xc;

else ac=yc;
if(zuc>ac)
printf(“z is max”);

return ac;
(Before CVA)

int x, y, z; //input
int a;
if(x−y>0)
a=x;

else a=y;
return a;

(After CVA)
The benefits of tricking the compiler to do transformations based on
undefined values are fourfold, firstly it reuses the existing optimiza-
tions in compilers for undefined behaviors to do elimination of code
that is not relevant to symbolic execution of program, secondly it
enables one to use a simpler and faster static analysis (CVA), thirdly
it does not require any change in the symbolic execution engine to
use the results from the static analysis during dynamic path explo-
ration and finally it allows reduction in the size of the generated
binaries for the program even before applying the subsequent con-
straint solving and path exploration optimizations.

We also note the similarity of our approach to [2] which is ef-
fective in pruning redundant executions in compilers by introduc-
ing undefined behaviors based on data flow analysis. However,
to the best of our knowledge this is the first time, undefined be-
haviors are used for improving or optimizing a software engineer-

ing technique. Empirical studies on dynamic symbolic execution
across different programs [28] and different compilers [26] have
already shown potential for improving symbolic execution. When
compared to solvers that eliminate irrelevant constraints during dy-
namic symbolic execution, CVA works by removing portions of
program that do not affect the output and thus prevents irrelevant
constraints from getting generated in the first place.

4. RESULTS
We have implemented the approach as a new compiler pass (CVA)

inside LLVM [18]. The source code for entire development is avail-
able (under GNU GPL v3) at [1]. In order to evaluate our tech-
niques we used an existing symbolic execution engine Pathgrind
[3, 26] and tested it with programs from the SIR repository [4]. We
used Pathgrind as it does dynamic symbolic execution from bina-
ries and does not require instrumentation or access to source code.
In future we plan to do more experiments with other popular sym-
bolic execution engines (like KLEE, Klover etc.). For the experi-
ments, we built two set of binaries one without CVA and another
with CVA (which were on average 14% smaller). Then we used
Pathgrind to symbolically execute the two binaries up to a certain
fixed depth bound. This ensures that in both the binaries Pathgrind
executes the same number of paths symbolically. The following
table summarizes the preliminary results from the experiments.

Program LoC Constraints Time
(CVA) (CVA)

tcas 173 848 601 43.7 24.2
schedule2 374 960 821 78.4 34.6

replace 564 264 219 53.9 39.7
totinfo 565 256 210 24.7 11.8

print_tokens2 570 632 632 180.9 78.5
space 6199 100 91 82.6 52.5
grep 10068 512 56 55.3 19.3
flex 10459 576 340 180.5 101
sed 14427 144 17 13.9 7.5

Total 43399 4292 2987 714.02 369.06

For all the programs (except print_tokens2) there is reduction in
the number of constraints generated during symbolic execution.
Moreover, there is also reduction in the overall time taken for sym-
bolic execution of all the programs The print_tokens2 program
does printing and character manipulation of the input string. Thus it
does not present much opportunity to exploit unchanged variables.
For grep and sed programs, the first input (regular expression) is
kept constant while the second input (file) is changed to generate
different test cases. In this case parts of program that correspond to
the first input do not affect the output, thus many unchanged vari-
ables are eventually eliminated. One threat to the validity of this
study is that real-world code may not have the characteristics that
enable optimizations with undefined behaviors. We plan to exper-
iment our approach on a wider range of programs from different
domains in future. Nevertheless, even in this small set (9) of pro-
grams of moderate size (upto 10k Loc) we see a reduction of 48%
in time and 30% in number of constraints.

5. CONTRIBUTIONS
The main contribution of this research is to show that systemati-

cally introducing undefined behaviors can speed up symbolic exe-
cution. As C and C++ compilers get even better at exploiting unde-
fined behaviors this technique will enable corresponding symbolic
execution engines to get more efficient as well. Thus undefined be-
haviors in programs are not always a bad thing and can actually be
useful in certain contexts.

6. REFERENCES
[1] Change Value Analysis. http://github.com/

codelion/pa.llvm/tree/master/CVA. [Online;
accessed 21-Nov-2013].

[2] It’s Time to Get Serious About Exploiting Undefined
Behavior.
http://blog.regehr.org/archives/761.
[Online; accessed 21-Nov-2013].

[3] Pathgrind.
https://github.com/codelion/pathgrind.
[Online; accessed 21-Nov-2013].

[4] Software-artifact Infrastructure Repository.
http://sir.unl.edu. [Online; accessed
21-Nov-2013].

[5] Saswat Anand, Alessandro Orso, and Mary Jean Harrold.
Type-dependence analysis and program transformation for
symbolic execution. In Tools and Algorithms for the
Construction and Analysis of Systems, pages 117–133.
Springer, 2007.

[6] Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee:
unassisted and automatic generation of high-coverage tests
for complex systems programs. In Proceedings of the 8th
USENIX conference on Operating systems design and
implementation, pages 209–224. USENIX Association,
2008.

[7] Cristian Cadar, Vijay Ganesh, Peter M Pawlowski, David L
Dill, and Dawson R Engler. Exe: automatically generating
inputs of death. ACM Transactions on Information and
System Security (TISSEC), 12(2):10, 2008.

[8] Satish Chandra, Emina Torlak, Shaon Barman, and Rastislav
Bodik. Angelic debugging. In Software Engineering (ICSE),
2011 33rd International Conference on, pages 121–130.
IEEE, 2011.

[9] Vitaly Chipounov, Volodymyr Kuznetsov, and George
Candea. S2e: A platform for in-vivo multi-path analysis of
software systems. ACM SIGARCH Computer Architecture
News, 39(1):265–278, 2011.

[10] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An
Efficient SMT Solver. In TACAS, 2008.

[11] Will Dietz, Peng Li, John Regehr, and Vikram Adve.
Understanding integer overflow in c/c++. In Proceedings of
the 2012 International Conference on Software Engineering,
ICSE 2012, pages 760–770, Piscataway, NJ, USA, 2012.
IEEE Press.

[12] Ikpeme Erete and Alessandro Orso. Optimizing constraint
solving to better support symbolic execution. In Proceedings
of the 2011 IEEE Fourth International Conference on
Software Testing, Verification and Validation Workshops,
pages 310–315. IEEE Computer Society, 2011.

[13] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart:
directed automated random testing. In PLDI, pages 213–223,
2005.

[14] Reiner Hähnle, Marcus Baum, Richard Bubel, and Marcel
Rothe. A visual interactive debugger based on symbolic
execution. In Proceedings of the IEEE/ACM international
conference on Automated software engineering, pages
143–146. ACM, 2010.

[15] Joxan Jaffar, Jorge A Navas, and Andrew E Santosa.
Unbounded symbolic execution for program verification. In
Runtime Verification, pages 396–411. Springer, 2012.

[16] D Kebbal. Automatic flow analysis using symbolic execution
and path enumeration. In Parallel Processing Workshops,

2006. ICPP 2006 Workshops. 2006 International Conference
on, pages 8–pp. IEEE.

[17] Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur, and
George Candea. Efficient state merging in symbolic
execution. ACM SIGPLAN Notices, 47(6):193–204, 2012.

[18] Chris Lattner and Vikram Adve. Llvm: A compilation
framework for lifelong program analysis & transformation.
In Code Generation and Optimization, 2004. CGO 2004.
International Symposium on, pages 75–86. IEEE, 2004.

[19] Quang Loc Le, Asankhaya Sharma, Florin Craciun, and
Wei-Ngan Chin. Towards complete specifications with an
error calculus. In NASA Formal Methods, 2013.

[20] Guodong Li, Indradeep Ghosh, and Sreeranga P Rajan.
Klover: A symbolic execution and automatic test generation
tool for c++ programs. In Computer Aided Verification,
pages 609–615. Springer, 2011.

[21] Xin Li, Daryl Shannon, Indradeep Ghosh, Mizuhito Ogawa,
Sreeranga P Rajan, and Sarfraz Khurshid. Context-sensitive
relevancy analysis for efficient symbolic execution. In
Programming Languages and Systems, pages 36–52.
Springer, 2008.

[22] Kin-Keung Ma, Khoo Yit Phang, Jeffrey S Foster, and
Michael Hicks. Directed symbolic execution. In Static
Analysis, pages 95–111. Springer, 2011.

[23] Mike Papadakis and Nicos Malevris. Automatic mutation
test case generation via dynamic symbolic execution. In
Software reliability engineering (ISSRE), 2010 IEEE 21st
international symposium on, pages 121–130. IEEE, 2010.

[24] Raul Santelices and Mary Jean Harrold. Exploiting program
dependencies for scalable multiple-path symbolic execution.
In Proceedings of the 19th international symposium on
Software testing and analysis, pages 195–206. ACM, 2010.

[25] Asankhaya Sharma. A critical review of dynamic taint
analysis and forward symbolic execution. Technical report,
2012.

[26] Asankhaya Sharma. An empirical study of path feasibility
queries. CoRR, abs/1302.4798, 2013.

[27] Junaid Haroon Siddiqui and Sarfraz Khurshid. Scaling
symbolic execution using ranged analysis. In ACM SIGPLAN
Notices, volume 47, pages 523–536. ACM, 2012.

[28] Willem Visser, Jaco Geldenhuys, and Matthew B Dwyer.
Green: reducing, reusing and recycling constraints in
program analysis. In Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software
Engineering, page 58. ACM, 2012.

[29] Xi Wang, Haogang Chen, Alvin Cheung, Zhihao Jia,
Nickolai Zeldovich, and M. Frans Kaashoek. Undefined
behavior: What happened to my code? In Proceedings of the
Asia-Pacific Workshop on Systems, APSYS ’12, pages
9:1–9:7, New York, NY, USA, 2012. ACM.

[30] Xi Wang, Nickolai Zeldovich, M. Frans Kaashoek, and
Armando Solar-Lezama. Towards optimization-safe systems:
Analyzing the impact of undefined behavior. In Proceedings
of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, SOSP ’13, pages 260–275, New York, NY, USA,
2013. ACM.

[31] Guowei Yang, Corina S Păsăreanu, and Sarfraz Khurshid.
Memoized symbolic execution. In Proceedings of the 2012
International Symposium on Software Testing and Analysis,
pages 144–154. ACM, 2012.

http://github.com/codelion/pa.llvm/tree/master/CVA
http://github.com/codelion/pa.llvm/tree/master/CVA
http://blog.regehr.org/archives/761
https://github.com/codelion/pathgrind
http://sir.unl.edu

	Motivation
	Related Work
	Approach
	Results
	Contributions
	References

