Effective Identification of Vulnerabilities
using Machine Learning

Abstract—In this article we consider the problem of exposing
unidentified software vulnerabilities of open-source software. An
unidentified vulnerability is a vulnerability that is known, as
they have been reported or silently fixed, but is not publicly
identified as a vulnerability, such as by being assigned a Common
Vulnerabilities and Exposure (CVE) id. We use publicly-available
open-source issue reports and pull requests as well as commit
data to identify if a particular version of open-source software
contains an unidentified vulnerability using machine learning.
Similar approach has been considered before, however, we ex-
plore the utilization of these data sources further in the following
directions:

1) For identifying vulnerability-related commits, we addition-
ally include as features committer’s id, the paths of the
modified files, and code patches, which include lines added
and deleted.

2) To improve the precision of our results in identifying
vulnerability-related commits, we in addition apply self
training to use the initial model to significantly increase
the size of labeled data for generating another model that
is more precise.

3) For identifying vulnerability-related issues or pull requests,
we pair GitHub issues or pull requests with their commit
data, and extract features from both.

We show that our new approach, for the same recall, on average
improves the precision for vulnerability-related commits by 78 %
when using additional features like code patches and by 106 %
with self training. Moreover, for vulnerability-related issues we
improve the precision by 52% when compared with previous
work.

Index Terms—vulnerability identification, machine learning,
bug report, commit

I. INTRODUCTION

As any software, open-source software may contain vulner-
abilities. Identifying vulnerabilities in open-source software
has become critical as there is an increasing dependency of
the whole information infrastructure on open-source software.
During the software development process, it is important
to analyze the libraries used by an application to identify
those with lurking vulnerabilities. This belongs to the domain
of software composition analysis (SCA), with commercial
offerings from various companies [1]-[4].

Some of the open-source library vulnerabilities are given
Common Vulnerabilities and Exposure (CVE) ids in the Na-
tional Vulnerability Database (NVD), and therefore the corre-
sponding open-source software is easy to identify as vulner-
able, but more often than not, the vulnerabilities are reported
and/or fixed without being identified. In this paper, we consider
the problem of exposing unidentified vulnerabilities of open-
source software. An unidentified vulnerability is one that has
been reported and possibly fixed, but is not publicly identified

as a vulnerability, such as assigned a CVE id. According
to SourceClear [5] data, close to 50% of vulnerabilities in
open-source software are not disclosed publicly with a CVE.
The problem of exposing unidentified vulnerability is different
from discovering new vulnerabilities, as the former deals with
vulnerabilities that are known, whereas the latter deals with
vulnerabilities that are unknown. For the latter, well-known
approaches of static and dynamic program analysis exist, such
as taint analysis and fuzzing.

Recent years have also seen the rise of the machine learning
technology, which has been widely used for program analy-
sis [6]. Many of the works are for discovering new vulnerabil-
ities, either automatically [7], [8] or for help in auditing [9],
however, there are growing number of works that instead deal
with known but unidentified vulnerabilities. The work of Perl
et al. [10], for instance, classifies if commits are related to
a CVE or not using machine learning, but this requires prior
identification using CVE ids. Zhou and Sharma [11] explore
the identification of vulnerability-relatedness of two kinds of
artifacts: commit messages, and issue reports, which we define
here to be encompassing what are known as issues and bug
reports, as well as pull requests. The approach uses machine
learning techniques for natural languages. This work does not
require prior CVE identification and it exposes unidentified
vulnerabilities in more than 5,000 projects spanning over
six programming languages [11]. Although commit messages
have been considered by Zhou and Sharma [11], other parts
of the commit data including committer’s id, changed file
paths, and the source code change (patch) itself have not
been considered. Differently to Zhao and Sharma, Sabetta and
Bezzi [12] in addition to using commit messages, also explore
the usage of source code change (patch) data. Where Zhou and
Sharma demonstrated highest precision at 77% and highest
recall at 34% for commit messages, Sabetta and Bezzi show an
80% precision and 43% recall for commit patch, concluding
that commit patch can be useful in practice for identifying
vulnerable software.

In this article, we propose a new approach to vulnerability
identification. Our approach builds upon the approach of Zhou
and Sharma [11], where we similarly use the publicly-available
open-source bug and issue reports as well as commit data,
however, in addition, our approach differs in the following
respect:

1) We use more features from the commit data. Zhou and
Sharma only consider commit messages of the entire
commit data [11]. In this article, to improve the precision
of the model, in addition we consider the committer’s id,



changed file paths, and commit patch, which is further
divided into lines added and lines deleted. As reported
by Sabetta and Bezzi [12], considering commit patches
can be useful in practice.

2) We use self training to improve our results. Commit data
are easily obtained from public repositories, yet labelling
them as vulnerability-related involves significant manual
effort. We therefore have a large amount of commit data,
yet only a small portion is labeled. To use the whole
dataset for training, we apply self training. Self training
is a widely-used semi-supervised learning technique that
is useful when training data contains only a small subset
of labeled data and a large subset of unlabelled data. In
self training, an initial model is trained with labeled data
which is then used to label the unlabelled data, in order
to label the whole dataset. After labelling, the whole
dataset is then used to train a better performing model.

3) We consider the addition of of commit data into issues,
bug reports, or pull requests vulnerability identification.
Zhou and Sharma treat commits and issue reports inde-
pendently [11], where the identification of vulnerability-
relatedness of issue reports utilizes the features only
of the issue reports text themselves. Often, however,
an issue report (e.g., a pull request) has corresponding
code commits. In this article, we consider the use of
the commit data in order to improve the precision of
the identification of the corresponding issue report as
vulnerability-related. For this, we explore the possibility
of machine learning models generated using the features
extracted from the combination of issue reports with
their corresponding commit data.

In this article, we use a dataset of 20,000 labeled commits
from GitHub, and we demonstrate that adding extra commit
data to commit message, in particular committer’s id and
changed file paths, results in increasing effectiveness in iden-
tifying vulnerability-related commits, with higher precision
under the same recall, when compared to both Zhou and
Sharma [11] and Sabetta and Bezzi [12]. However, although
adding patch information does improve the precision and recall
when the recall is low, the improvement is insignificant with
higher recall. We use the generated model in a self training ap-
proach to further classify 45,701 more commits from GitHub,
resulting in total of 65,701 labeled commits, after which we
repeat our experiment. This approach significantly improves
the precision even further. Our new approach on average
improves the precision for vulnerability-related commits by
78% without self training and 106% with self training.

In using the corresponding commit data with GitHub issue
reports for identifying the vulnerability-relatedness of the
reports, we use close to 3,000 data items, each of which
is a commit and issue report pair, where each pair has a
unique issue report. This number is much less than the 20,000
labeled commit data we use before, since multiple commits
may correspond to only a single GitHub issue report. Even
s0, here also we discover a marked improvement to Zhao and

Sharma [11] in precision given the same recall, signifying the
effectiveness of our approach. For the same recall, our new
approach improves the identification of vulnerability-related
issue reports on average by 52% for the same recall.

In summary, using the approaches presented in this article,
we obtain significant improvements in model precision, for
both the identification of vulnerability-related commits and
issue reports. These improvements are expected to significantly
reduce manual work in identifying vulnerability-related com-
mits.

We start our article by providing a discussion of our
approach in Section II. We then present the evaluate our
approach by presenting our results in Section III. We provide
more discussions on our results in Section IV. We present
related work in Section V and conclude our article in Section
VL

II. APPROACH

A. Automated Identification of Security Issues from Commit
Messages and Bug Reports

We use two kinds of machine learning approaches:

o A supervised approach, where labeled data are used to
train the machine learning models. The labeled data were
manually triaged and labeled by security researchers.

o A semi-supervised approach, where we use self training
to increase the amount of labeled data for training, with
the expected result to increase the performance of our
model. In our self training approach, we use the model of
the supervised approach learned earlier to further label the
unlabelled commit data. We use this approach to improve
the precision of the identification of vulnerability-related
commits.

Our labeled commits dataset is imbalanced, as the
vulnerability-related data are much less than the non-
vulnerability-related ones. For this dataset, we have positive
data of only 20% of the total number of data for our manually-
labeled dataset, and this number is only 7% when labeled data
from self training are included. In building and validating the
models, we use the same approach as Zhou and Sharma [11]
called K-fold stacking model. In this approach, we use an
ensemble of classifiers, which is a known approach to build
models of imbalanced data (see a survey in [13]), and we use
K-fold cross validation to separate the dataset into training
and testing datasets. We illustrate the approach in Figure 1.

For the K-fold cross validation, the dataset is split into K
parts, where one part is used for testing and K — 1 parts
are used for training. Where Zhao and Sharma use 12-fold
stacking model, we use 10-fold stacking model instead. In
our preliminary experiments, we discover that with using 10-
fold, we can get better result compared with 12-fold. The K
parts are used to train six different kinds of classifiers. Logistic
regression is used to find optimal ensemble of these classifiers.
In our ensemble, we use the same ensemble of six classifiers as
Zhou and Sharma [11]. The set includes random forest (RF),
Gaussian Naive Bayes, K-nearest neighbours (/{-NN), linear
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Fig. 1: K-Fold Stacking Model

support vector machine (SVM), gradient boosting (GB), and
AdaBoost (Ada).

The models we generate decide on whether a commit
or an issue report corresponds to a vulnerability in terms
of confidence value from O to 1, called the probability of
vulnerability relatedness (PVR). This allows for an adjustment
of a threshold to distinguish vulnerable and non-vulnerable
items, i.e., given a threshold 7, if the PVR is strictly greater
than 7, the item can be decided to be vulnerability related
(reported as a positive), otherwise it is not vulnerability related
(reported as a negative).

B. Identifying Vulnerability-Related Commits

We show the sizes of our datasets in Table L. In identifying
vulnerability-related commits, we use a dataset consisting of
20,000 commits. For each record in the dataset, we consider
two types of data:

1) Natural language features. These include:

a) Commit message.
b) Committer’s id.
c) Changed file paths.
2) Program code features, which is the commit patch.
These features consist of the following two:
a) Lines added to the code.
b) Lines deleted from the code.

We generate two models based on features used:

1) Using all natural language features.

2) Using all natural language and program code features.

In combining natural language features and the commit
patch, we compute separate K -fold stacking models for natural
language artifacts and the commit patches, and we combine
the results using logistic regression. This is because of the lack
of obvious correlation between the text of the program code
artifacts and the natural language artifacts'. In our approach for
the commit patch, similar to Sabetta and Bezzi [12], we treat
the patch as natural language and use word2vec [15] to extract
feature vector from word2vec model, which is built separately
with natural language features. We use most of the textual
content in a patch except comment symbols and brackets.

In GitHub’s natural language semantic code search, such correlation even
needs to be modeled using machine learning [14].

Our approach results in two PVR values for each record: One
for the natural language features, and another for the commit
patch. We combine the results of the two models using logistic
regression. The overall approach with the combining of the
results is illustrated in Figure 2.

C. Enhancing Vulnerability-Related Commits Identification
Using Self Training

Our precision result for the approach presented in the
previous section is limited by the limited number of labeled
training data that we use (20,000 commits). One approach to
improve precision is by increasing the number of labeled data,
however, labelling the data, being resource-intensive manual
labor, is prohibitively expensive.

As mentioned, our approach described in the previous
section results in two models based on the set features used,
and as we shall see later (Section III), the inclusion of
program code features (commit patch) results in the model
with better precision on average. We use this model to label
more unlabelled data, and add them in our labeled dataset,
resulting in total 65,701 commit data (including the 20,000
manually-labeled commit data). In the labelling process, we
use PVR low and high thresholds to decide whether a par-
ticular commit with its PVR value should be considered a
positive commit (vulnerability-related) or a negative one (non-
vulnerability-related). For the low and high thresholds, we use
the values 0.22 and 0.88, respectively. Whenever a PVR less
than 0.22 is computed by our model, the commit is considered
definitely non-vulnerability-related, whereas for commits with
PVR more than 0.88, the commit is considered a definite
vulnerability-related. We do not include in our dataset commits
with PVR from 0.22 and 0.88.

In deciding to use the values 0.22 and 0.88, we learn from
the the data we obtain for deciding vulnerability-relatedness
of commits in the previous section. 0.22 is the threshold such
that we can decide that a commit is non-vulnerability-related
with precision 0.93 and 0.88 is the threshold such that we
can decide that a commit is vulnerable with the precision of
0.91. Hence, both 0.22 and 0.88 are thresholds for which high
precision, which is > 90% is obtained. The notion of precision
is formalized later in Section III-B.

Using the larger 65,701 commit data, we repeat our ap-
proach in the previous section, which uses K-fold stacking
model to identify vulnerability-related commits using natural
language and program code features.

D. Enhancing Identification of Vulnerability-Related Issues
Reports Using Commit Data

In our second approach, we consider the usage of commit
data that are related to the issue reports. While Zhou and
Sharma [11] consider datasets form Jira and Bugzilla deploy-
ments and GitHub, here we only consider GitHub issues and
pull requests, since we only use commit data from GitHub.
For Jira or Bugzilla deployments, the corresponding commit
data are not identifiable as easily. Here we consider both issues
and pull requests to be of the same kind (called issue reports),
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Commit w/ (Issue Report,Commit)
Commit | Self Training Pairs
Positive 3,989 4,838 1,396
Negative 16,011 60,683 1,548
TABLE T

S1ZES OF OUR DATASETS

and we consider a dataset with 2944 records (see Table I).
This dataset is built in two ways, firstly we considered all
the commits that referenced a GitHub issue report, we found
2023 records this way. For the rest, we considered all the issue
reports in our dataset and looked for any commits that were
referenced in them. Thus, in total we ended up with 2944 pairs
of issue reports and commits.

Similar to our approach with identifying vulnerability-
related commits in Section II-B, here we also separate natural
language features and program code features, and combine
the results of two models using logistic regression (Figure
2). The difference here is that the natural language features
now include issue report texts. Here it is important to note
that an issue report may be related to multiple commits. For
each individual feature, e.g., commit message, we append such
feature from all of the commits into one contiguous text. We
then use word2vec [15] to compute the feature vector from the
text. For the code patch itself, we append all the lines added
in one contiguous text, and separately append all the lines
deleted into another contiguous text. We then apply word2vec
to compute a feature vector from each of these.

III. EVALUATION
A. Setup

The sizes of the dataset that we use are shown in Table I.
The second column shows the numbers of positive and neg-
ative data for our 20,000 manually-labelled commits dataset.
The third column shows the number of positive and negative
data when self-training data are included. Finally, the fourth
column shows the numbers of positive and negative data for
our issue report > and commit pairs. As shown in Table I,
our labeled dataset for the commits is an imbalanced one,
having positive data of only 20% of the total number of data
for the manually-labelled commit data, and only 7% of the
total number of data when data labelled using self training is

2Recall that in Section I we define this to be including issues, bug reports,
and pull requests.

included, hence we use K-fold stacking model (see Section
II-A). The K-fold stacking model is known to be effective
for imbalanced data. For generating the models we employ
algorithms provided by the scikit-learn [16] library. We use
logistic regression to combine the results across all the models.
The models we generate map a source data item (issue reports
or commits) to a PVR value from 0 to 1.

B. Metrics Based on PVR Threshold

For deciding whether a data item is vulnerability related
or not, we define threshold value on its PVR computed by a
model. As mentioned in Section II-A, given a threshold 7, if
the PVR is strictly greater than 7, the item can be decided
to be vulnerability related (reported as a positive), otherwise
it is not vulnerability related (reported as a negative). When
validating our results, we obtain the values for true and false
positives, and true and false negatives.

Similar to [11], to measure vulnerability prediction results,
we use two metrics: precision and recall. These properties can
be computed by fixing a PVR threshold. They are defined as
follows:

true positive
true positive + false positive

(D

precision =

true positive
true positive + false negative

2

recall =

The reasons that we target these two metrics are:

1) Precision reflects the ratio of true and false positives. In
imbalanced scenario like ours, it helps us focus on the
true vulnerabilities. The overall ratio of vulnerability-
related items in our manually-labeled dataset is less than
20%. That is, if manual effort is devoted to checking
the data, 80% of the time will be spent on false-
positive items. Therefore, a high precision would save
a lot of manual work in identifying false positives.
Other measure that is sometimes used in the area of
software bug checking is false positive rate (cf. [17]),
however, this rate does not correlate to the amount of
false positives that need to be dealt with by security
researchers or developers.

2) Recall indicates the coverage of our approach wrt. exist-
ing vulnerabilities. Our aim in developing this approach
is to cover all of the vulnerability-related commits and
bug reports. The higher the recall value, the more actual
vulnerabilities are identified by our approach.

C. Results in Identifying Vulnerability-Related Commits

We first perform experiments in identifying vulnerability-
related commits by generating models using commit data
only (cf. Section II-B). We evaluate our results by providing
comparisons with approaches known in the literature, includ-
ing Zhou and Sharma’s [11] and Sabetta and Bezzi’s [12].
The comparison of the features used among the approaches
considered is shown in Table II.

Using our experimental results, we answer the following
research questions:
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[11] v

[12] v v

Ours w/o Patch v v v

Ours w/ Patch v v v v

Ours w/ Patch

& Self Training v v v v
TABLE 1T

COMMIT FEATURES USED IN THE COMPARED APPROACHES

e RQI. Can we effectively identify vulnerable software
using the commit data only? Here we use 20,000 commit
data manually triaged by security researchers. The same
question has been answered by Zhao and Sharma, and
by Sabetta and Bezzi [11], [12], however, here we take
a different approach by considering also the committer’s
id and changed file paths.

e RQ2. Does the use of commit patch as a feature im-
prove the identification quality of vulnerability-related
commits when compared to not using commit patch?
Sabetta and Bezzi [12] consider commit patch to identify
vulnerability-related commits. This motivates us to con-
sider commit patch as well. In our approach, we consider
both lines added and lines deleted as separate features.

e RQ3. When committer’s id and changed file path are
already included together with commit message as fea-
tures, how significant is the inclusion of commit patch
as a feature to improve the identification quality of
vulnerability-related commits? Sabetta and Bezzi [12]
consider commit patch to identify vulnerability-related
commits in addition to commit message. They show that
their approach significantly improves the results of Zhou
and Sharma, however, both approaches do not consider
committer’s id and changed file paths as features (cf.
Table II). From our own results, we can observe the effect
of code patch inclusion as a feature, when committer’s id
and changed file paths are already included.

o RQA4. Does self training improve the identification quality
of vulnerability-related commits? One approach to im-
prove precision is by increasing the number of labeled
data. When manual labelling is prohibitively expensive,
automated labelling using previously-computed model
can be used. In our setting, we can use a model previously
computed for deciding vulnerability-related commit using
manually-labelled dataset.

We have trained two models on our commit datasets, one
of which is using the natural language features only (commit
message, committer’s id, changed file paths). For the 20,000
manually-labelled commit data, we show the precision and
recall results for this model, with varying the PVR threshold
in Figure 3. Another is to train our model using all features,
including lines added and deleted in the commit patch. The
precision and recall, under various PVR thresholds for the
20,000 manually-labelled commit data for this model is shown
in Figure 4.

In Table III, we show the precision of our models given
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Fig. 3: Precision and Recall for the identification of
vulnerability-related commits without considering commit
patch

Probability of Vulnerability Relatedness (PVR) Threshold

Fig. 4: Precision and Recall for the identification of
vulnerability-related commits with considering commit patch

fixed recall values. The recall values are the values selected
by Sabetta and Bezzi in presenting their results in [12]. In
the same table we also show the precision results of Zhao
and Sharma (second column) and Sabetta and Bezzi (third
column) [11], [12]. For Sabetta and Bezzi’s precision results,
we display their best results, which are from using both
commit message and commit patch as features. As can be
seen from the table, our results outperform both Zhao and
Sharma’s and Sabetta and Bezzi’s models. The fourth and
fifth columns show our precision results with and without the
usage of commit patch, respectively (cf. Table II). This shows
that our approach is practical, and we can answer RQ1 in the
affirmative. Table IV shows the improvements when compared
to the results of Zhao and Sharma [11]. On average, including
more features of commit data does improve the identification
of vulnerability-related commits, improving upon the results
of [11] by at most 78% without self training, and 106% with
self training.

Table III also provides an answer to RQ2. To answer this
question, we compare the fourth and the fifth columns of
Table III. The commit patch does improve the identification
quality of the vulnerability-related commits when the recall
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Fig. 5: Precision and Recall for the identification of
vulnerability-related commits with considering commit patch
and using Self Training

Precision
Ours Ours Ours w/ Patch
Recall [11] [12] w/o Patch | w/ Patch | & Self Training
0.50 0.50 | 0.74 0.76 0.81 0.91
0.72 0.34 | 0.57 0.63 0.63 0.74
0.76 0.31 | 0.56 0.59 0.58 0.68
TABLE 1IT

PRECISION WRT. RECALL FOR THE IDENTIFICATION OF
VULNERABILITY-RELATED COMMITS

is low, but improvement is insignificant when recall increases.
When comparing Figures 3 and 4, the precision and recall have
similar curves for the cases without and with commit patch.

To answer RQ3, we note that when comparing to the results
of Sabetta and Bezzi [12] (third column of Table III), which
uses as features only commit messages and commit patches
(cf. Table II), our results indicates that the advantage of using
commit patch as feature becomes less when committer’s id
and changed file paths are also used as features. Table V
displays the improvements to Sabetta and Bezzi’s precision
results, when the recall values are fixed.

Finally Table III also shows that we can answer RQ4 in
the affirmative. The effectiveness of self training is even more
significant than the use of commit patch alone. Figure 5 shows
significantly different curves to that of Figures 3 and 4, where
for Figure 5 both precision and recall are generally higher than
that of Figures 3 and 4.

D. Results in Enhancing Identification of Vulnerability-
Related Issue Reports Using Commit Data

Here we answer the following two research questions:

e RQ5. Does the addition of commit data improve the
quality of the vulnerability identification for the related
issue reports? The identification of issues as vulnerability
related using machine learning was first shown by Zhou
and Sharma [11]. Here we attempt to improve their results
by incorporating commit data into the feature set. Where
Zhou and Sharma use data from GitHub as well as Jira
and Bugzilla deployments, we use the data from GitHub
alone. This is because the related commits, being from

Improvements as compared to [11]

Ours w/o Ours w/ Ours w/ Patch &

Recall Patch (%) | Patch (%) | Self Training (%)
0.50 52 62 82
0.72 85 85 117
0.76 90 87 119

[ Average | 76 | 78 106 |
TABLE TV

PRECISION IMPROVEMENTS AS COMPARED TO [11] WRT. RECALL FOR
THE IDENTIFICATION OF VULNERABILITY-RELATED COMMITS

Improvements as compared to [12]

Ours w/o Ours w/ Ours w/ Patch &

Recall Patch (%) | Patch (%) | Self Training (%)
0.50 3 9 23
0.72 11 11 30
0.76 5 4 21

[ Average | 6 8 [ 25 ]
TABLE V

PRECISION IMPROVEMENTS AS COMPARED TO [12] WRT. RECALL FOR
THE IDENTIFICATION OF VULNERABILITY-RELATED COMMITS

the same GitHub repository as the issue reports, are easier
to identify.

e RQ6. Does the use of commit patch improve the identifi-
cation quality of vulnerability-related issues? We con-
sider the identification of vulnerability-related issues,
by adding more text from all of the related commits.
In one experiment, we add commit messages, as well
as committer’s ids and changed file paths. In another
experiment, we furthermore in addition use lines added
and lines deleted from the patch. We compare the models
generated in the two experiments.

Figure 6 shows the comparison of precision and recall of
the identification of vulnerability-related issue reports when
using the commit data but without using commit patch.
Figure 7 shows the comparison of precision and recall of the
identification of vulnerability-related issue reports when using
the commit data and the commit patch. The precision in both
figures drop from 1 to O quickly when the PVR threshold is
at a very high value of 0.96. The reason is that no PVR is
higher than the threshold, making the precision 0.

Table VI shows the precision, given a set of recall values,
where we include the results of [11] in the second column.
From Table VI, we can infer that our approach does improve
the quality of the model in identifying vulnerability-related
commits, however, the use of commit patch does not seem to
contribute much to the improvement in precision when recall
increases. As is observable by comparing Figures 6 and 7, the
precision and recall without and with using commit patch have
similar curves.

We discover that it is indeed the case that the usage of com-
mits helps in the identification of vulnerability-related issue
reports, and we can therefore answer RQS5 in the affirmative.
Similar to the result for RQ2, for RQ6 we also discover that the
commit patch does not significantly improve the identification
quality of vulnerability-related issues when recall increases,
although improvements are observable when recall is low. We
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Fig. 6: Precision and Recall for identification of vulnerability-
related issue reports without considering commit patch

Probability of Vulnerability Relatedness (PVR) Threshold

Fig. 7: Precision and Recall for identification of vulnerability-
related issue reports with considering commit patch

show the improvements in precision compared to the results of
[11] in Table VII, where on average, the use of patch data does
not improve the identification of vulnerability-related issues.
Our new techniques on average improves the identification of
vulnerability-related issues in [11] by 52% at most, and that
is, without commit patch data.

IV. DISCUSSION

A. Threats to Validity

Threats to validity of our results are as follows:

e Our results depend on the dataset we use. Since as
we have shown, commit data including committer’s
id may contribute significantly to the identification of
vulnerability-related commits, and since different persons
may be involved in different projects, this suggests that
the results should also depend on the projects that we
have selected in our dataset.

o Similar to Zhou and Sharma [11], in building our datasets,
we filtered out commits and issues reports that are clearly
unrelated to vulnerabilities using regular expression. The
regular expression includes common keywords related to
security vulnerabilities, such as security, vulnerability,
XSS, CVE, etc.. Therefore, our results depend on this fil-

Precision
Recall [ [I1] | Ours w/o Patch | Ours w/ Patch
0.50 0.70 0.79 0.81
0.72 0.47 0.76 0.76
0.76 0.42 0.76 0.74
TABLE VI

PRECISION WRT. RECALL FOR THE IDENTIFICATION OF
VULNERABILITY-RELATED ISSUE REPORTS

Improvements as compared to [11]
Recall Ours w/o Patch (%) [ Ours w/ Patch (%)
0.50 13 16
0.72 62 62
0.76 81 76
[ Average | 52 51

TABLE VII
PRECISION IMPROVEMENTS WRT. RECALL FOR THE IDENTIFICATION OF
VULNERABILITY-RELATED ISSUE REPORTS

tering. Our results therefore may vary when the approach
is applied without filtering or with different filtering.

B. Committer’s Id as Feature

Previous work reports that the identification results for issue
reports are better than those for commit messages [11]. This
is because issue reports have richer text information than
commits, and more useful features have been used to train the
model for issue reports. They also decided to use only commit
messages as the only feature. They provided the following
reason:

o Comments are not used since only a small number of
commits have comments.

e Project names are not used since the model should be
applicable to various projects.

o Committer’s names are not used due to concerns about
the lack of accuracy.

In this article, we instead perform a real experiment with
using the committer’s id. There is an indication in the literature
that the quality of the developer significantly affects the
quality of the code [18]. It is possible the more advanced
developers are more likely to be assigned the task to correct a
vulnerability. We have shown experimentally that considering
commit data which include committer’s id is useful to improve
the accuracy of the model.

C. Treating Patch as Program Code

We discover only marginal improvements with the use
of commit patch. In our approach, similar to Sabetta and
Bezzi [12], we consider program patch as natural language
text. Another possible approach is to parse the patch and use
the set of tokens in the result as a feature. In fact, the use of
code features are common in machine learning approaches for
program analysis [7]-[9]. The use of code-specific features
therefore is a possible future direction to be attempted in
improving our approach.



V. RELATED WORK
A. Vulnerability Identification

Our work focuses on finding vulnerabilities that are uniden-
tified. In this area, Perl et al. [10] classifies commits as related
to a CVE or not. Wijayasekara et al. [19] propose an approach
to mine bug databases to identify software vulnerabilities.
Our work is most closely related to the work of Zhou and
Sharma [11], which explores the identification of vulnerabil-
ities from commit messages and bug or issue reports using
machine learning for natural languages. Compared to Perl
et al. [10], the work of Zhou and Sharma does not require
CVE ids, and it improves upon Perl et al. by discovering
hidden vulnerabilities without assigned CVE ids in more than
5,000 projects spanning over six programming languages. For
the identification of vulnerability-related commits, Sabetta and
Bezzi propose feature extraction also from commit patches
in addition to just from commit messages [12], which is
the approach taken by Zhou and Sharma [11]. We adopt the
approach of Zhou and Sharma, which is a supervised machine
learning approach with the usage of K-fold stacking model
(described in Section II-A) due to imbalanced data, however,
inspired by the work of Sabetta and Bezzi, we improve upon
the work of Zhou and Sharma in the following ways:

1) We consider more commit data features to improve
precision, including committer’s id, changed file paths,
and the commit patch itself.

2) In our approach to identify vulnerabillity-related com-
mits, we use self learning to increase the amount of
labeled data. We discovered that this self learning is
highly effective.

3) We extract features from commit data for identifying
vulnerability-related issue reports.

Given the same recall, we better the precision of Zhou and
Sharma, as can be seen in Tables IV and VII. For vulnerability-
related commit identification, we also better the precision of
Sabetta and Bezzi’s approach, as is shown in Table V.

B. Learning with Imbalanced Data

The K-fold stacking models that we use is based on models
ensemble which can be used for imbalanced data. Handling
imbalanced data is an important research area in machine
learning with an early survey by Weiss [20] and a more
recent surveys by He and Garcia [21], by Sun et al. [22]
and by Guo et al. [13]. From these, we learn that the main
approaches to imbalanced dataset include preprocessing, cost-
sensitive, and ensemble methods. The preprocessing methods
can be further classified into re-sampling methods and feature-
selection methods. The re-sampling methods can be further
categorized into undersampling, oversampling, and hybrid
methods. Undersampling removes data from the majority
class in the dataset to balance the data, while oversampling
synthesize data for the minority class in the dataset. In the
feature-selection methods, one removes some irrelevant fea-
tures from the feature space, resulting in more balanced data
with only features that are relevant. Cost-sensitive learning

assumes higher costs for the misclassification of minority
class samples compared to majority class samples, with the
algorithm optimizes towards lower cost. Ensemble methods
is a popular solution for imbalanced learning [13]. It can be
classified into three: bagging, boosting, and stacking [23]. In
bagging method, the dataset is split into disjoint subsets, and
a different classifier is applied to each subset. The results
are then combined using either voting for classification, or
averaging for regression. In boosting method, we serially
combine weak classifiers to obtain a strong classifier. In
stacking method, which includes the K-fold stacking method
that we use, the classifiers are coordinated in parallel and their
results are combined using a meta classifier or meta regressor,
which in our case is logistic regression.

In the area of software engineering, Wang and Yao consider
imbalanced data for software defect prediction [24]. The
problem of software defect prediction is to predict defective
modules for the next software release based on past defect
logs. The data is therefore imbalanced, as the number of non-
defective modules is far larger than the defective ones. The
authors consider data re-sampling techniques, cost-sensitive
method, and ensemble learning methods. One of the best
results is provided by and boosting learning method Ad-
aBoost.NC [25]. The work of Rodriguez et al. also reviews
classifiers for imbalanced data for the software defect pre-
diction problem [26]. They consider 12 algorithms, and with
using C4.5 and Naive Bayes as base classifiers, and they
use Matthew’s Correlation Coefficient (MCC) as performance
metric. They also discovered that ensemble methods, includ-
ing SMOTEBoost and RUSBoost provide better results than
sampling or const-sensitive methods.

C. Self Training

Self training is a widely-used semi-supervised learning
when training data contains a small subset of labeled data,
and with a large amount of unlabeled data. This situation
arises when when labeled data are often expensive and time
consuming to get, yet the unlabeled data are easier to collect.
In self training, a model is trained with labeled data and then
used to label the unlabeled data. The larger set of the labeled
data is then used to train better performance model.

Nigam et al. use self training to classify text from three
different real-world domains: newsgroup postings, web pages
and newswire articles [27]. They use naive Bayes classifier and
expectation-maximization (EM) algorithms for model training.
Their experiment shows unlabeled data contains useful in-
formation about target functions, and the use of unlabeled
data reduces classification error by up to 33%. Yarowsky
uses self training for word sense disambiguation [28]. The
algorithm is based on two constraints that words tend to
have one sense per discourse and one sense per collocation.
It achieves nearly the same performance with supervised
algorithm given identical training contexts (95.5% vs. 96.1%)
and even gets better performance when using one-sense-per-
discourse constraint. Self training is used by Rosenberg et
al. [29] for object detection. They point out if unlabeled data



are labeled incorrectly by self-training model and added to
the labeled data set, the model may be potentially corrupted.
So they add the self-training labeled data into labeled data
set incrementally and check the result. They use naive Bayes
classifier as well. Their study demonstrates that self-training
model can achieve results comparable to a model trained in
the traditional supervised learning using a much larger set of
fully labeled data.

The above works show self training can achieve good result
for semi-supervised learning. This is also evidenced by our
results in Section III-C. In our experiments, we have a large
number of unlabeled commits and GitHub issue data we
collected. We use stacking model combined with self training,
which significantly improves the model performance a lot.

D. Vulnerability Discovery

There are many works that attempts to analyze software
or related artifacts to discover vulnerabilities that are not
previously known. Although this problem is different from the
focus of this article, nevertheless, the subjects of the analysis,
which encompass the program code or related artifact are
overlapping. In this section we discuss other work in static and
dynamic program analysis, symbolic execution, and machine
learning.

Static analysis is a way of analyzing program code without
actually executing it. This has a practical advantage of an easy
setup, since it treats programs as data without the need to setup
a runtime environment to execute them. Static analyses have
been applied to various code artifact, from the source code
to the binary, and everything in between, such as compiler
intermediate language code. Static vulnerability detection at
the source level include Flawfinder [30], IST4 [31] for C/C++,
RATS [32] for multiple languages (C, C++, Perl, PHP, and
Python), and Clang static analyzer for C and C++ [33].
However, these analyzers are language-specific, and even for
supported languages may have cases where they fail to find
the underlying issues due to the imprecision of the analysis.
For example, RATS does not find cross-site scripting (XSS)
or SQL injection vulnerabilities, which requires reasoning
on the flow of data. Moreover, when applied to real-world
projects, these tools raise massive false positives that are hard
to reduce. Other static analysis tools work at the intermediate
language level. FindBugs [34] analyzes Java bytecode and
source code to discover bug patterns and Parfait [17] works
on the LLVM language. Performing analysis at the lower
level of abstraction potentially removes the dependency on
programming languages. However, although FindBugs has a
comparatively low report count [35], and Parfait has a low
false positive rate [17], their precisions are unknown. Domain
specific languages like SGL [36] aim to improve the precision
of static analysis but require users to specify patterns of
vulnerabilities or bugs.

Dynamic analysis analyzes the source code by executing
it on real inputs. Basic dynamic analysis (or testing) tools
search for vulnerabilities by executing the program under test
(PUT) on a range of possible inputs. There are also dynamic

analysis tools that do taint tracking at runtime [37]-[39]. PHP
Aspis does dynamic taint analysis to identify XSS and SQL
vulnerabilities [39]. ZAP [37] finds vulnerabilities in web
applications. Some dynamic analysis tools are called fuzzers.
Fuzzers work by executing the program under test using inputs
that are likely to result in unexpected behavior, such as a
crash or a successful exploit. One such database of inputs
is FuzzDB [40] used by ZAP. Fuzzers can be categorized as
black box, grey box, and white box. Black-box fuzzers executes
the PUT without any knowledge about the PUT. Some well-
known black-box fuzzers include JBroFuzz [41] used in ZAP
and Peach fuzzer [42]. Grey-box fuzzers execute the PUT with
a limited knowledge about the PUT. Well-known grey-box
fuzzers are AFL [43] and libFuzzer [44]. They aim to achieve
high coverage by detecting test inputs in the corpus that when
executed reach new code region. The inputs are then prioritized
to be mutated to generate new inputs. White-box fuzzers (aka.
concolic testers) employ full semantic knowledge of the PUT
and symbolic execution technology [45] to achieve high path
coverage. However, they suffer from scalability issues. Well-
known white-box fuzzers include DART [46], CUTE [47] and
JCUTE [48].

Symbolic execution [45] uses the semantic of the code to
translate all the instructions along an execution path into a set
of constraints called the path condition, whose satisfiability is
testable using a constraint solver. By mutating the path con-
dition, the execution paths of the program can be explored. A
symbolic execution engine replaces the inputs of the program
with symbolic variables which represent unknown values. The
path condition is a logical relation on these symbolic input
variables. Whitebox fuzzers use symbolic execution where
a PUT’s execution path guides the construction of the path
condition. New inputs are generated based on the mutation
of the path condition and applying constraint solving on the
mutated path condition. A well-known symbolic execution tool
that does not start from an actual execution path is KLEE [49].
The symbolic execution tools that we mention here all perform
path enumeration and they suffer from path explosion as well
as performance penalty due to constraint solving: It is well
known that each call to the constraint solver is expensive.
Some well-known solvers used in symbolic execution are
73 [50] and STP [51].

Besides the above techniques that focus exclusively on the
program code, machine-learning techniques provide an alter-
native to assist vulnerability detection by mining context and
semantic information from program code and beyond. Some
work focus on detecting vulnerabilities using the program code
as input data. Among these works, the work of Medeiros et
al. [52] detects false positives in static program analysis bug
report using machine learning. Shar et al. [53] focus on SQL
injection and cross-site scripting (XSS). Others perform bug
detection using non-program-code artifacts. Sahoo et al. [54]
provide a survey on malicious URL detection approaches
using machine learning. Ghaffarian and Shahriari provide a
survey on software vulnerability analysis and discovery using
machine learning [6].



VI. CONCLUSION

In this article we proposed an approach based on machine
learning to identify vulnerabilities in open-source software.
We used the publicly-available open-source issue reports,
including bug reports and pull requests, as well as commit data
to determine if a particular version of open-source software
is vulnerable. We improved upon existing approach in the
literature [11] by extracting features from more parts of the
commit data, including committer’s id and changed file paths.
We also consider the use of self training technique to increase
the size of labeled data. We experimentally demonstrated
that our new approach improved the performance of previous
approach, where we improve the precision for identification
of vulnerability-related commits on average by 78% at most
without self training, and 106% with self training. We also
consider pairing commits and their corresponding issue reports
to improve the identification effectiveness of vulnerability-
related issue reports. Our approach on average improves
the precision by 52%. In summary, we obtain significant
improvements in model precision, for both the identification
of vulnerability-related commits and issue reports. These im-
provements significantly reduce manual work in identifying
vulnerability-related commits.
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