DIDAR — Database Intrusion Detection with
Automated Recovery

WARANGAL

Submitted in partial fulfillment of the
requirements for the award of the degree of

Bachelor of Technology (B.Tech)
By
Asankhaya Sharma (03712)
GovindaRajan.S (03723)

Srivatsan.V (03758)

Under the guidance of

Prof. D.V.L.N Somayajulu

Department of Computer Science and Engineering
National Institute of Technology
(Deemed University)

Warangal (A.P.) — 506004

April 2007

Department of Computer Science and Engineering
National Institute of Technology
(Deemed University)

Warangal (A.P.) — 506004

Certificate

This is to certify that, this is a bonafide record of the project work
“DIDAR - Database Intrusion Detection with Automated
Recovery” carried out by Asankhaya Sharma (Roll no: 03712),
GovindaRajan.S (Roll no: 03723) and Srivatsan.V (Roll no:
03758), of Final Year B.Tech (Computer Science & Engineering),
during the academic year 2006 — 07 in partial fulfillment of the

requirements for the award of the degree of Bachelor of Technology.

Prof. D.V.L.N Somayajulu Dr. T. Ramesh

Department of CSE Head, Department of CSE
National Institute of Technology National Institute of Technology
Warangal (A.P) Warangal (A.P.)

l|Page

Acknowledgements

First, we would like to express our heart felt gratitude to our Project guide
Prof. D.V.L.N Somayajulu (Faculty, Dept. of CSE), for his consistent
guidance, encouragement and valuable suggestions through out the project
span.

We would also like to thank Mr. K. Ramesh (Asst. Professor, Dept. of CSE),
for his persistent suggestions. We would also like to owe the credit for this
work to Mr. S. Ravichandra (Faculty In-charge, B.Tech Project Work, Dept
of CSE) as well.

Finally, we would like to thank Prof. T. Ramesh, our Head of the department
for providing us with this wonderful opportunity of doing this project work
with complete support.

Asankhaya Sharma
GovindaRajan.S
Srivatsan.V

(Final Yr B.Tech CSE)
NIT Warangal

2|Page

Abstract

In this project we present a new architecture for database intrusion detection. We
implement this framework called DIDAR (Database Intrusion Detection with Automated
Recovery) and discuss the performance issues. Recently there has been considerable
interest in the design of intrusion detection system for databases. Most of the current
systems take a laid back approach and concentrate more on containment and recovery
once the database has been infected by malicious transaction. We propose a more
proactive solution; DIDAR aims to detect the intrusions as soon as possible with support
for damage containment and auto recovery as well. DIDAR provides intrusion tolerance
by working in two phases — learning and detection. During the learning phase we build a
model of the legitimate queries for each user based on the currently executing
transactions and later use that model to detect the malicious transactions. DIDAR
guarantees quality of information assurance at four different levels for each user. We
have positive results based on our prototype and preliminary testing on synthetic
database. With almost no load to the database DIDAR achieves high detection rates,

quick damage containment and full recovery.

The implementation has been carried out in Visual C# 2005 and can run on any
windows machine with .net framework 2.0. As for the database we choose oracle 10g
express edition. The framework is general enough to be implemented for any commercial
database system. To model a synthetic database we also built a transaction simulator

which helps in testing and experimentation by injecting intrusions in the database.

3|Page

Table of Contents

L. INEEOAUCTION ...ttt ettt et et s bt e b e saeeeneeas 5
1.1 Problem SPeCifiCatiOnccueeiiieiiienieeiieeiie ettt ettt ettt st e sibe e eseveeneeas 6

2. Related WOTK ... 7
B ANALY SIS ettt et ettt e at e e be e abeenbeestae e beeenbeenbeennbeennaas 8
3.1 Learning PRASE........cccuiiiiiiiiieieciieie ettt ettt et enbaeeane e 9
3.2 Detection Phase........cccviiiiiiiieiie ettt et 10
3.3 IS01atiON PRASEecueieieiieiieciiecee e 11
3.4 RECOVETY PRaSE ...c.ueiiiiiiiieiieeee et et e 12
3.5 BlocKIng PRASE........cooiiiiiiiieeieeeeee et 12
3.6 Data Warehousing and Data Mining Phases............cccccoviiiiiiiiinnniiiiieee 12
3.7 Quality of Information Assurance (QOIA)........covvuieeriieeriieeieeeieece e 13
O e e e e et e e e et e e e e e aa e e e e ntaeaeeearaaeeennnres 13
IMIEAIUIM ...ttt ettt et e sa et e s st et e st e eseesbeensesanans 13
HIgh ettt ettt ettt 14
Paranoidocueoiiiiieie et 14

3.8 Granularity of Security Levels.......ccooiiiiiiiiiiiiiiiiicccecee e 14
Role Based Access CONLIOL.......c..ooiuiiiiriiriieieiieieeie et 14
Context Based Access CONtrol.........cccviieiiiiiiiieiiieeciee et 15

R IR Y 06 (<] 1 o VUSRS 15
3.9 SPECIICALIONS ...ttt sttt et 16
FUNCHONAIIEY ..ottt et et e eebeeseaeesneeees 16
EXternal INterfacescccuviiiiiieiiie ettt e e 16
PerfOrmancec...ooueiiiiiiieie e e 16
ATITIDULES. ...ttt e et e et e e et e e eabeessbeeetaeeeasaeesabeeeenseeennnes 16
DeSi@N CONSIIAINLScccuvvieeiiieeiieeeiieeeieeerieeetee et eeeaeeeireeetaeesaaeesnsaeesnseeennseesnnses 17

4. DeSIZN DELALLS ...cueiiiiieiieeiee et ettt ettt et saeeens 17
ATChItecture DIaGramsScccuvieiieriiiiiieiieeit ettt e e esaeseseensee e 17
Learning Phase........ccooiiiiiiiiieiee et st 17
Detection PRase.........cooiiiiiiiiiiieee e e 18
Data Warehousing Phasec.cooiiiiiiiiiiiiiiieee e 19
Data Mining Phase.......c..ooeiuiiiiiiieiiiiecieeee ettt 20
Class DIAGIAIMSeeviriiiriiiiiritirieete ettt ettt ettt s sbe bt sbe e 21

5. Implementation DEtailS...........cccvieiiiiiiiiiieiiieieeee e 28
6. Experimental RESUILScoouiiiiiiiiiiie e 42
0.1 TEST CASES ettt ettt ettt ettt ettt e s st sat e e b e naee 42
6.2 TSt RESUILS ...uuiiiiiie ettt e e e e aa e e e bae e e araeeeens 43

7. Conclusions and Future WOorkcccooioiiiiiiiiiieieeee e 45
S S (=) 1 (oL RSP SRSSRURSPI 48
FN 05157 116 TSSO 50
LSt Of DIQZIAMS ...cuviiiiiiiieiie ettt ettt et e ettt e st e e s e e 50
K@Y WOIAS ..ttt ettt ettt e et e et e s abe e teeesbeeseeesseensaesnseenseenens 51

4|Page

1. Introduction

The widespread use of the World Wide Web (WWW) has led to the constantly
increasing use of web applications to store and share endless information. This
information is generally stored in databases that are stable and generally robust. For
example companies and organizations use Web applications to provide a broad range of
services to users, such as on-line banking and shopping. Because the databases
underlying Web applications often contain confidential information (e.g., customer and
financial records), these applications are a frequent target for attacks. Thus there is a
widespread need for an intrusion tolerant database to prevent such attacks against
confidential data. Intrusion detection is one of the prime areas of research currently in
databases. With the advent of the internet and the World Wide Web, more and more work
is now done online. All the necessary information from shopping orders to banking
transactions is stored in databases. Protecting the information in such case is of utmost
importance. Even with proper access control features there are several modes of attack
possible like the SQL injection. Although proper coding practices can prevent most
attacks there are still number of legacy programs that have to be protected. Moreover
even in case of an attack the system should still be able to degrade gracefully. The most
comprehensive system that addresses most of these problems is the Intrusion Tolerant
Database (ITDB) [1]. The intrusion tolerant database system can operate through attacks
in such a way that the system can continue delivering essential services in the face of
attacks. With a focus on attacks by malicious transactions, it can detect intrusions, and

locate and repair the damage caused by the intrusions [2].

There has been considerable amount of work done in detecting intrusions in
databases. The use of data mining has been found useful in detection based on mining
user query frequent item sets [3, 4]. Another approach is to fingerprint the transactions
and then build a classifier system to differentiate between malicious and benign
transactions [5]. The way the DIDAFIT [5] system fingerprints the queries is by building
regular expression based models of the legitimate queries but we take an entirely

different approach by using relations, attributes and conditionals of the query to construct

5|Page

a fingerprint. All these system involve a learning mechanism for model building in some
form and hence have false positives. Our approach here tries to combine the benefits of
the data mining approach with the fingerprinting of transactions along with a feed back
mechanism to give less false positives. Our proposed intrusion detection and recovery
system also ensures QoS (Quality of Service) which is offered to al the users who log in
to the database as while protecting the database it doesn’t make sense to provide one

single level of security over the entire database

1.1 Problem Specification

To implement the proposed architecture of the DIDAR (Database Intrusion

detection with automated recovery) system as an application with the following aims

1. To learn intrusions by creating fingerprints for all the executing transactions for

each user and thereby creating user access graph for each user

2. To detect intrusions using the user access graph obtained from the learning phase

and also using feedback mechanisms to assist detection.

3. To provide automated recovery and damage containment in case any malicious

transaction (Intrusion) affects any part of the database.

4. To provide QoS (Quality of Service) for each user and to have different security

levels for different users thereby adhering to the QoS provided.

6|Page

2. Related Work

Intrusion detection started emerging as an interesting research topic since the
beginning of the 1980s. In the 1990s, intrusion detection became an active area of
research and even some commercial IDSs were built [7]. Over the last few years, several
research works have been carried out that attempt to apply data mining for intrusion
detection. Lee et al [8] suggest a method for network intrusion detection using data
mining techniques. They consider classification, link analysis and sequential analysis as
potential data mining algorithms along with their applicability in the field of intrusion
detection. Barbara et al [9] have built a test bed for the detection of network intrusions
using data mining. Though intrusion detection is comparatively a well researched field,
only a few researches have considered the problem of database intrusion detection.
Chung et al [10] use "working scope" to find frequent item sets, which are sets of features
with certain values. They define a notion of distance measure that captures the closeness
of a set of attributes with respect to the working scopes. Distance measures are used to
guide the search for frequent item sets in the audit logs. Lee et al [11] have proposed real-
time database intrusion detection using time signatures. It monitors the database behavior
at the level of sensor transactions. Sensor transactions are usually small in size and have
predefined semantics such as write only operations and well defined data access patterns.
In real-time database systems, temporal data objects are used. This temporal data has to
be updated periodically. If a transaction attempts to update a temporal data which has

already been updated in that period, an alarm is raised.

Lee et al [10] suggest fingerprinting of the access patterns of genuine database
transactions and using them to identify potential intrusions. They summarize SQL queries
into compact and effective regular expression fingerprints. If a given query does not
match any of the existing fingerprints, it is reported as malicious. Barbara et al [11] use
hidden markov model (HMM) and time series to determine malicious data corruption.
They build a database behavioral model using HMM that captures the changing behavior
over time. Malicious patterns are the ones that are not recognized by the HMM with high

probability. Zhong et al [12] use an algorithm that mines user profiles based on the

7|Page

pattern of submitted queries. Hu et al [3] determine dependency among data items where
data dependency refers to the access correlations among data items. These data
dependencies are generated in the form of classification rules, i.e., before one data item is
updated in the database, which other data items probably need to be read and after this
data item is updated, which other data items are most likely to be updated by the same
transactions. Transactions that do not follow any of the mined data dependency rules are

marked as malicious transactions.

3. Analysis

The problem of intrusion detection was thoroughly analyzed. We consulted
several papers and systems proposed by various investigators, most of which are
available in the references. Based on the study carried out we propose a generic
framework for database intrusion detection and recovery, we call it DIDAR which stands

for database intrusion detection with automated recovery.

The basic DIDAR framework can be divided in several phases. These phases are listed
below

e Learning Phase

e Detection Phase

e |solation Phase

e Recovery Phase

e Blocking Phase

e Data Warehousing Phase

e Data Mining Phase

We give the detailed algorithms of each of the phase below

8|Page

3.1 Learning Phase

During this phase the model of legitimate queries is built using supervised
learning. We assume every transaction currently executing in the database to be benign.

Any SQL query can be written as the following general form with three clauses.

SELECT Attributes
FROM Relations/Tables
WHERE Conditions

For every SQL query we associate a quadruple <t,R,A,C> which represents the

fingerprint of the query [6].

Where,

’t” stands for the type of query (SELECT, UPDATE or DELETE)
"R’ stands for the number of relations in the query
’A’ stands for the number of Attributes in the query

’C’ stands for the number of Conditions in the query

Each such quadruple represents the whole query. Now for each user in the database we
create a user access graph G (V, E) such that, V is the set of quadruples and E represent
the access pattern of the queries in the database. While learning we read all the queries
executing in the database, fingerprint them and convert them into a quadruple and add a
node in the user access graph. Once the learning is finished the user access graph looks

like something below.

9|Page

<0,2,4,3>

<0,2,3,1>

Once the learning is over each user has a user access graph where each node in the graph
represents the fingerprint of the transaction. Based on this information we proceed to

detection phase.

3.2 Detection Phase

Detection is fairly simple, each transaction that is currently executing is
fingerprinted and converted into a quadruple. We traverse the user access graph and look
for a matching node (say u) with same quadruple. If we cannot find such a node the
transaction is labeled malicious or else we proceed again with the next transaction. Since
we need to follow only the edges of the user access graph, for the next transaction we
simply check all the nodes ‘v’ such that there is an edge between ‘u’ and ‘v’. This way
we can identify the malicious transactions.

Since it is not uncommon to have false positives we provide a feedback
mechanism, if while in the detection phase some legitimate transaction is identified as
malicious the user can give feedback and based on that we insert a new node in the user
access graph with the quadruple representing the fingerprint of the current transaction.

This will be clear from the following figure.

10|Page

<0,2,4,3>

<0,.2,3,1>

<2,1,2,3>

Once it is ensured the transaction is malicious we proceed according to the quality of
information assurance (QolA) [2] attached to the user. The other phases namely, the
Isolation phase and the Recovery phase will be explained shortly to yield a better

understanding of the entire architecture.

3.3 Isolation Phase

Once the malicious transactions have been identified in the detection phase then
we need to do damage containment by isolating that particular transaction from others
and prevent it from being executed. In the Isolation phase we make sure that such
transactions do not execute or do not execute any transactions that depend on them. This
is done by analyzing the transaction dependency graph for each such transaction and
stopping any avalanche execution that is found from the graph. In other words we not
only isolate the malicious transactions but also all transactions that depend on them,
thereby preventing the intrusion from spreading across the database. The above diagram
clearly illustrates that. From this phase the control then passes on to the recovery module

(recovery phase) which will be addressed in the next section.

11|Page

3.4 Recovery Phase

Once isolation of malicious transactions is done and their dependencies have been
identified, the control then passes on to the recovery module which implements this
phase. Ere the recovery module’s job is to undo any changes done by the malicious
transactions to the database and restore the database back to the state where it was just
before the execution of the malicious transaction. The recover model by itself may restore
it back by either using some kind of log based recovery method or by using appropriate
checkpoints that was created by the database. This is the last major phase of the

implementation

3.5 Blocking Phase

This phase is used to block invalid/malign transactions from executing without
actually having to go through the detection phase once again. The blocking phase works
by initially building and associating a signature for each malicious transaction that is
detected in the detection phase. Once that is done, then for each user in the database we
will have a list of signatures also associated. Thus when a new transaction is executing
for a particular user it is compared with the list of the existing signatures for that user and
if there is a match the transaction is directly blocked without needing to go through the
detection phase once again. Thus effectively the DIDAR system combines the advantages
of the two traditional methods i.e. signature based approach and anomaly based approach.
The following sections describe the two additional phases Data Warehousing Phase and

Data Mining Phase.

3.6 Data Warehousing and Data Mining Phases

The most important thing during detection and recovery of intrusions is to decide
upon the security levels for different users. Even though there are different ways of
assigning security levels, the best would be from continuous monitoring of a user’s
accessing pattern etc. These phases accomplish exactly this. It’s done by actually storing

the user access patterns from the user access graph in a data warehouse at regular

12|Page

intervals (say daily) (Data Warehousing Phase). Then from the data warehouse and the
history of intrusions a classifier can be built for each user (Data Mining Phase). The
security level can then be decided based on the classification and the attacks attempted on
user data. Each of the intrusion is associated with a risk level which can be set by the
user. This risk level forms the basis of classification of the security levels. We create a
log of every successful intrusion detected, which has a risk level associated with it. This
log can be lasted mined for information pertaining to the security levels at the discretion

of the user.

3.7 Quality of Information Assurance (QolA)

Different database users will have different needs and expect different levels of
information assurance. So while protecting the database it doesn’t make sense to provide
one single level of security over the entire database. We propose four different levels of

security which ensure quality of information assurance.

Low

While the database is in a low level of security we only identify the intrusions
with the feedback mechanism. There is no damage containment or recovery. This allows
user to formulate a proper security perimeter with all possible transactions listed in the
user access graph while also being aware of the security issues related to the data being

accessed and/or changed.

Medium
In the medium level we provide the low level of security plus damage

containment. After the detection we enter a damage containment phase.

Damage Containment Phase

During this phase we take a lock manually on all the tables accessed in the

13|Page

malicious transaction. By taking a lock we ensure that no other transaction can execute
which can read data from the infected tables thus effectively containing the damage. As
no new data can be infected this prevents the intrusion to cause damage spreading. The
user can release the lock by rollback or commit the transaction after preparing for manual

recovery.

High

The key aspect of the high level of security is in addition to the medium level of
security, even the recovery can be automated. Soon after the damage containment phase
the recovery starts. During automated recovery we rollback the database to the state just
before the intrusion actually took place. Now we create a transaction dependency graph
beginning from the malicious transaction. Using this graph we redo all the benign
transactions. No malicious transactions are executed and hence the database heals itself to

a correct and consistent state.

Paranoid

This level provides the highest QoIA and uses most of the resources. We take the
recovery one step ahead by introducing a blocking phase which has been discussed
already in the previous section. The level is preferable only if the user executes

transactions on critical or sensitive data whose integrity is of utmost importance.

3.8 Granularity of Security Levels

The problem of assigning different security levels to different users can be looked

at a more detailed granular level by considering the following types of access controls.

Role Based Access Control - This actually is dictated by the user’s access to the

data and the different operations that he can do on it.

l4|Page

Context Based Access Control — The context of the user access i.e. the type of
data being accessed, it’s sensitivity etc. actually decide the level of security and access
permissions for a particular user. These factors must also be taken into account before

deciding on the security levels and access permissions for different users

3.8 Modeling

The following figure gives the information flow model of the DIDAR framework.

P
Damage
Database Detect L Containment

Transaction
Dependency Graph

User
Access
Graph

/ Signatures

Learning

15|Page

3.9 Specifications

Functionality
The software should provide the basic functionality of protecting a database in

event of an intrusion. The database should remain live and online while the software
works in the back ground. Software should not give too many alerts to the user and

inform about only the relevant ones.

External Interfaces
The software interacts with the database as and when needed. This will ensure

that the database is not unnecessarily overloaded with the queries originating from the
software itself. The other external interfaces it can connect to is a data mining plug-in to

decide on the security levels automatically.

Performance
The software should detect the intrusion in a reasonable time. The damage spread

by the intrusion by the time it is successfully detected should be within the scope of
repair by the recovery module. The software should not overload the database. Normal
queries should execute in proper time even when the software is running. The recover

time and detection time should be as small as possible.

Attributes
The software should be easily maintainable. We should be able to access the

database thorough software from any terminal on the network and not only on the
database server itself. The software should itself be secure from attacks that can

compromise the database.

16|Page

Design Constraints

There are no major design constraints on the implementation. The software
developed is in VC# 2005 and works for oracle 10g database. The IDE used for
development is Microsoft Visual Studio 2005.

4.0 Design Details
Architecture Diagrams

The following depicts the basic architecture of the various phases.

Learning Phase

Database

L eaming
System

User Access
Graph

17|Page

Detection Phase

Intrusion Blocker

Feedback

!

18|Page

Container

Recovery

st

Data Warehousing Phase

——
' 7
User Access

Graph
—

Data Cleaning

Data
Freprocessing

Data Warshouse

19|Page

Data Mining Phase

Data Warehouse

20|Page

Model Building

Classifier Systems

Security Levels

Class Diagrams

==pattial==
AbowutBox
(fram ITDE)

] components: =ystem Componenttodel IContainer=null

] tableLayvoutPanel System Windows Forms TablelayoutPanel
] IogaPictur eBoo Syatem Window:s Forms PictureBo:

El labelProductiame: System Windows Forms Label

g labelVersion SystemMvindows Forms Label

g [labelCopyright System Windows Forms Label

] labelZompanyMame: System windows Forms Label

] textBoxDescription: System Windows Forms. TextBox

gl okButton: SystemWindows Forms Button

A bautBo

z=izetAccessor, property== AzsemblyTitle): string
==izetAccessor, propeye= Aszemblyersion) string
=z=izetAccessor, property== AzzemblyDescription]: =tring
2=Getdooessor, propetty== AzzemblyProduct string
=azetACcessor, propety== AszemblyCopyright(): string
==izetAccessor, propetty== AszemblyCompany (L string

TOOOOOOP

labelversion_Click(in zender.object, in eEvent&rgs)void

Ei} labelZompanyMame_Clicklin zenderobject, in e:Event&rgz) i
|ﬁ} okButton_Click(in sender;ohiect, in e:EvertArgswoid

|ﬁ} AbotBox_Load(in zender:object, in e:Event &rgs) void

ﬁ} ==0verride== Dispozelin dizposing: bool);woid

|ﬁ} InttiglizeComponent) woicd

21| Page

22|Page

==partial==
ConnectForm

[fram ITDE)

a
a
a

uszer: String

pazs: String

connstr String

user name: String[*

zec level Strino*

no_of usersint=0

components; System. Componentiodel IContainer=null
buttont: Zystem Wwindows Forms Button
button2: System Windows Forms Button
labell: System Windowes Farms Lakel
label2: System Windowes Farms Lakbel
label3: System Mindoves Forms Lakbel
textBoxd: System Wwindovws Forms. TextBox
textBoxu: System Wwindovws Forms TextBox
textBoxp System indowws Forms. TextBox

ConnectForm)

buttonZ_Clicklin zender:abject, in e:Evert&rgs T void
ConnectFarm_Load(in zender: abject, in e Evertirgz) void
buttond _Clicklin sender:object | in e:Event&rgswoid
==overtides= Dizpozelin dizposing boolwoid

InitiglizeCamponert ;o

23|Page

==partial==

Formed

(fram ITDE)

a
i
a

uzernames query exec: Siring[*]

nioa:int=1

nioc:int=0

nat:irt=1

guerytest: String=""
prey_guery: =tring=""
cmctype: String

ot String[*]=nessy String[100]
indezint=0

==const== space; char=""
table names: String=""

table count:int=0

components: System Componenthodel [Cantainer=null

guery _exec: Systemvindovws Forms. TextBox
label: System Windows Forms Label

titner1: Zystem Window s Forms Timer

Farm
tirmer1 _Ticklin =ender:okbject, in e:Evert&Argsvoid
==overtide== Disposelin dizposing: boal) woicd

IntializeComponent) void

==parial==
OptionsForm
(from TDE)

'| componerts: System Componenttodel IContsiner=null
'| groupBox: System Windows Forms GroupBox
'| radioButtonDetection: System ihindos Farme RadiButtan

'| radioButtonLearning: System Windows Forms RadioButton ==statice=
'| huttant: System idincawes Forms Buttan Program
'| hutton2: System Windows Forms Button (from ITDE)

OptionsFarm) [1 statScreenMainScreen

buttonZ_Click(in zender.object, in e:EvertArgz]vwoid

ﬂ) ceattributes== Maini | void

radioButton] _CheckedChangediin sender:object, in e:Evertdrgs) vaid
groupBoe! _Enter(in sender:object, in e:Eventirgz)vaoid
radioButtonDetection_CheckedChanged(in senderobject, in e:EventArgsvoid
buttont _Click(in sender,object, in e:Evert&rgz)void

=anvertide== Disposelin disposing hoal)vaid

InitializeComponent!). vaid

POV G

==aftributes, partial==
Settings
{fram DIDAR:Properties)

gl defautinstance: Settings=((Seftings(ulobal: System Confiquration ApplicationSettingsBase Synchronized(new Settings(1)1)

¥ =xGethocessor, propertyss Defaullir Settings

==gttributes==
Resources
[from DIDAR:: Propetties)

] resourceitan: global: System Resources Resourceianager

] resourceCutture: global: System Globalization. Cuturelnfo

E} ==aftributes== Resources()
r_fl} ==zethcoessar, attributes | property== ResourceManager(global System Resources Resourcebanader
6} z=Geticoessor, Sethocessor, sftributes | propery== Culture:global: Svstem Globalization Cutturelnto

24| Page

25|Page

==partial==
Settings

[fram ITDE)

a
a
a
a
a
a
a
&l
&l
&l
&l
&l
&l
&l
&l
&l
&l
&l
&l
&l
&l
&l
&l
1

interval int=5000

risk hiche String="g"
risk medium: String="4"
rizk low: String="2"
prey high: String

presy e String

presy oy String
components: =ystem Componenthodel IZontainer=null

lakel : System Windows Forms Lakbel

textBox1: System Windovws Forms TextBox
groupBoxl: System Windows Forms GroupBox
lakel2: System Windows Forms Lakbel
groupBox2 System Windows Forms GroupBox
labeld: System Windowes Forms Lakbel

buttont ; Zystemavindow s Forms Button
button2; Zystem window s Forms Button
texdBiox: System Windows Forms TextBox
labels: System Windows Forms Lakel

labels: System Windows Forms Lakbel

labeld: System Windows Forms Lakbel

buttonZ: Zystemwindow s Forms Button
textBoxd: Svstem Windovws Forms TextBox
textBox 3 System Windovws Forms. TextBox
labelr System Windows Forms Lakel

RO e

Setting=0)

textBox1 _TextChanged(in zenderabject, in e Evert&rgs 1 woid
button! _Click(in sender:object, in e Eventirgs)void
buttonZ_Clickin zender:abject, in e Everd&rgz)void
buttonz_Clicklin zender:object, in e Evertirgs) woid

==overrides= Dizposelin disposing: bool):woid

==partial==

MainScreen

[fram [TDE)

g1
a
a
a
a
a
a
a
a
a
a
al
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
&l
a
@l
&l
@
&l

e |

clozeCnCirBox: Boolean=false
trans =simuString="Turn Off"
ara: String

selected mode: String
guerytesxt: String="1"

prey_guery: String=""

cindd typeint

no_of relkint

no of attrint

o of cond:int

s irt=20

random: Random=new Random(’
fingerprint dts: String*]
fingerprint = String*
fingerprint o String®

fingerprint | String(*

fingargraph String*)[*]
uzer current String=""
=il String

uger indesxirt=0
iz_hlocked:ird[*]

lable names: String=""
table count:int=0

nioa:int=1

nioc:irt=0

niot:int=1

hlock file:int=0

fvriter2: Streamiiriter

litnet_intetwvalint=0

componerts: System Componenthdodel IZontainer=null

topmenuStrip: System Window s Forms MenuStrip
connectToolStripkdenutterm: System Windawes Forms ToalStriptenuttem

databaseToolStriphenuttem: System Windowes Forms ToolStriphenutem

wicnm TrrlThrinbdar ko Tostorm Wi aues Favme TaalTheinbdamn ibam

26|Page

] viesw ToolStriphenultem: System Windows Forms Tool Striphenuttem
] optionsTool=tripMenutem: Sy stem Windovs Forms ToolStriptenutem
] helpToolStripMenutem: Syatem Windoves Forms ToolStriptdenutem
] aboutToolStriphtenuttem: System Windowes Forms ToolStriphenuttermn
] exitToolStriphenutem: System windoves Forms ToolStriphenutem

] atatusStrip: System Windows Forms StatusStrip

] progresshar: System vindows Forms ToalStripProgressBar

] Status: System Windows Forms ToolStripStatusLabel

] notifyloon: Syatem Window s Forms Motifyleon

] natifycantexthenuztrip: System Windows Forms ContexdtenuStrin
] tool=triptdenutem : System Windowes Forms Tool=triptenutem

] show ToolStriphlenutem: System Windowes Forms . ToolStriphdenutem
[arrLabels SystemWindows Forms Label[*]

[arrLabels2 SystemWwindows Forms Label[*]

[arButtons: SystemWindows Forms Button[*]

] tranzarctionSimulator Tool Striphenutem: System Windows Forms . ToolStripMenutem

r—
J—

label : System Windows Forms Label

-
-

arrcomboBox System Windowes Forms ComboBox*]
zpy TheDatabazeToolStripMenuttem: System Windowes Forms . ToolStriphenuttem

&
pu—1

optionsToolStriphMenutem? : System vindovys Forms . ToolStripkenutem

En
u—

turnn ToolStriphenuttetn: Sy stem windowes Forms. ToolStriphenuttem

En
e

turn o Toal=tripMenutem: System MWindows Forms Tool=triphenutem

En
e

titnet2: Sy stem windows Forms Timer
buttant : Systemn Window s Forms Buttan
zettingsToalStriphenutterm: Systetn Windowe s Forms . ToolStriphlenuttem

=]
o

a—

MainScreent)

MainScreen_Load(in sender:object, in & Eventargs):void
databazeToolStriphenutem_Click(in sender:ohject, in e:Event&rgs) waid
exitToolStriphenuttem_Click(in =ender: object, in e:Eventirgs void
tool=Striphdenuttemt _Click(in sender: object, in & Evert&rgs): void

ghout ToolStriphlenuttem_Clickiin sender: object, in e:Eventirgs) void
optionsToolStriphenuttem_Click(in sender:object, in e:Eventirgs): woid
DBEzers_SelectedindexChanged(in sender:ohiect, in e:Event&ras)vaid
==0vertide== OnClosinglin e CancelEvent Args): void

toolStriphdenuttemd _Click_1(in sender:object, in e:Eventrgs)void

spy TheDatabazeToolStriphenuttem_Clickiin sender:object, in e:Eventirgs) void
turn2nToolStriphenuitem_Click(in zender; object, in e Event&rgs] void
detect_trans _simur) vaid

learn_trans_simui); v oid

turnOfiToolStriphenuttem_Click(in =ender:object, in e:Eventirgz): woid
button? _Click(in =ender:object, in e:EventArgs)void

timer2_Tickiin =ender:object, in e:EventArgs); void

settings ToolStriphenuttem_Click(in sender: object, in e:Eventirgs void
learn(in temp: String, in user:String, in zec: String, inind:ind); woid
detect(in tem: String, in wser_current: String, in sec:String, in tablenames: String, inwser_indescint, in table_court:int);waid
lock_tablesiin hl_names: String) void

==0vertide== Disposelin disposing: ool waid

Initialize Component():woid

POOCOODVDVRDVOODRDDVOLVDRDODR G |5

27| Page

5. Implementation Details

As mentioned already the implementation of the DIDAR system is done and constrained
well within the scope and restrictions available to us. This section illustrates the use and
the choice of the various parameters involved in the implementation of DIDAR. The
system is implemented in VC# 2005 edition and is available to work on Oracle 10g
edition. The main idea of detection of malicious transactions is carried out in a single
class which is the MainScreen. The following figure illustrates the user interface part of

the MainScreen.cs program.

DIDAR Pre Release

Connect Yiew Transarction Simulator Help

28|Page

The Connect menu in this MainScreen offers the user to either connect to a database or to
exit the application. On clicking connect the ConnectForm opens up asking the user to

enter the username and the password for connecting to the database.

Connect To Database [Z”E”z|

Connection String | |

Iser Name | |

Paszword | |

LConnect Cancel

The user can then connect to the database by specifying the username and the password.
Once the user connects to the database he sees the list of all the accounts which are open
in the database. The user (usually the Administrator) can then set the various security
privileges which he wishes to give to different users whose accounts are open. The

following figure shows the screen after the user / Administrator logs in to the database.

29|Page

After Logging to database — Before setting Security levels

DIDAR Pre Release

| Connect Wiew Transarction Simulatar Help

USERS SECURITY LEVEL
| 5v5 [=
SYSTEM | <

AMOMNYMOUS [=
HR " |

i Ready ;}

After setting Security levels

DIDAR Pre Release

| Conneck Wigw Transarction Simulator Help

i- USERS SECURITY LEVEL
5SS High

| SYSTEM High
ANOMNYMOUS High
HR High
ITDE High

i Ready

30|Page

The user list can be displayed by selecting the list of users with an open account from the

database and then displaying it on the MainScreen, the code for which is given below

Fle Edt WView Project Buld Debug Tools ‘Window Community Help | Full Screen

Mainacreen Designer.cs & Forml.cs [Design] @) Settngs.cs @ Maindcreen.cs [Design] & Maindcreen.cs & | Forml.cs ' ConnectForm.csa | - X

|4{g ITDE. ConnectForm W | |g¢butt0nl_click(ub]ect sender, Eventérgs e)

connstr=textBoxd. Text;

lstring ConnectForm, connstr EX T

nt_status = 'OPEN'";

DE . Program.
conn.Close

thi=.Hide():

|
[Jam|dx3 uann|as @]

|

Ready Ln 73 Col 58 Chsg

The user can then select either the option of Learning or Detecting intrusions for
all the users. This is done by selecting the Options submenu in the Options form which
opens up the options form as shown in the following figure. Once the user selects an

option from the OptionsForm and clicks OK Button, the mode (Learning or Detection) is

set to the choice of the user.

3l|Page

INS

Options

Chooze Mode

{#) Detection
() Learning

[Ok,] [LCancel

In order to simulate real querying conditions, we have also come up with a
transaction simulator that can be used to simulate random fingerprints of queries. The
transaction simulator can be turned On / Off. When the transaction simulator is turned on,
the queries are generated randomly by the simulator and the action is done based on the
choice of mode (Learning or Detection by the user). However it is best to ensure that the
application learns completely before it starts to detect intrusions in to the database. When
the transaction simulator is off, the queries are taken as the currently executing ones from

the database.

DIDAR Pre Release X
b

USERS Options L3 H Turn On ‘ EVEL

| Turn Off

S5 High

SYSTEM High

AMNONYHOUS High

HR High

ITDB High
Ready

32|Page

Once the user decides on whether the transaction simulator is going to be
switched On/Off then the real action begins. Then depending on the choice either the
learning or detection algorithm is activated. If the Transaction Simulator is turned on then
there are random queries generated which can either be not allowed in the user access
graph or can be fingerprinted and then stored as an user access graph in a file. In
detection, when a query is executing for a user, its fingerprint is checked with the user
access graph for that particular user. If the fingerprint exists in the user access graph, then
the transaction is allowed to execute. If it” doesn’t exist in the graph, then an appropriate
action is taken according to the security level provided to the user. For example, if a
malicious transaction is trying to execute for a user whose security is “Paranoid”, then the
transaction is blocked and written into a file of blocked transactions for that particular
user to make future detections easier and less time consuming. The Learning and

Detection for a simulated environment is given below.

for (int k = 0; k < ConnectForm.no_of _users; k++)
{
for (int i = 1; 1 < max; i++)
{
cmd_type = random.Next(0, 3);
no_of rel = random.Next(1, 6);
no_of_attr = random_Next(1l, 9);
no_of _cond = random.Next(1, 5);

fingerprint_Its[i] cmd_type.ToString() + "," +
no_of rel.ToString() + "," +
no_of_attr._ToString() + L+
no_of _cond.ToString();
if (MessageBox.Show(*'Is this fingerprint
allowed?" + fingerprint_Its[i],
"Learning', MessageBoxButtons.YesNo,
MessageBoxlcon.Question)== DialogResult.Yes)

fingergraph[i][0] fingergraph[0][i] =

fingerprint_Its[i];
fingergraph[i][i] = "1";
if (>121
{
fingergraph[i

110 = 17

33|Page

StreamWriter fwriter =
File_CreateText(ConnectForm.user_name[K]
+" log.txt');

for (int i = 0; 1 < 20; i++)

{ for (int j = 0; j < 20; j++)
if (j < 19)
{ fwriter Write(fingergraph[i][j] + " ');
glse
i fwriter Write(fingergraph[i1[JD):;
X iwriter.WriteLine();

fwriter.Close();

Similarly transactions executed in the database can also be fingerprinted. Any
executing transaction from the database can be easily obtained along with the username

and the type of the command executed by executing the query:

"select command_type,sql_text,username from v$session,v$sql
where sgl_address = address and users_executing>0"

The above query returns the username of the user executing the query along with
the query being executed. Thus by repeatedly executing the above query after some
interval we can get the queries that are getting executed. The following is the method of

fingerprinting a query executed by the database

public void learn(String temp, String user, String sec, int ind)

34|Page

iT (selected_mode == "Learning')
{
fingerprint_I[ind] = temp;
iT (MessageBox.Show('Is this fingerprint allowed?" +
fingerprint_I[ind], "Learning",
MessageBoxButtons.YesNo, MessageBoxlcon.Question) ==
DialogResult._Yes)

{
fingergraph[ind][0] = fingerprint_I[ind];
Ffingergraph[0][ind] = fingerprint_I[ind];
fingergraph[ind][ind] = "1";
if (ind > 1)
{
fingergraph[ind - 1][ind] = "1";
}
else
{
ind = ind - 1;
}
StreamWriter fwriter = File.CreateText(user_current +
" log-txt'™);
for (int k = 0; k < 20; k++)
{
for (int j = 0; j < 20; j++)
if (g <19
{
fwriter_Write(fingergraph[K]Lj] + ™ ™);
}
else
{
fwriter _Write(fingergraph[K][J1);
}
}
fwriter._WriteLine();
3
fwriter.Close();
}

However the only code difference between the two learning is that in the case of
query executing from database the Learning function is called from a timer after fixed

intervals so as to periodically get the list of executing transactions.

During detection the transactions coming in either from the transaction simulator
or the database itself are first fingerprinted and then checked with the user access graph
as stated already, and if not present, action is taken according to the designated security

level of that particular user.

35|Page

The code for the detection phase is shown below

Detection Phase:

String Filename = user_current + " log.txt";

StreamReader freader = File.OpenText(filename);

String text line;

const char Space =

int count, code;
String[] output = new String[400];
while ((text_line = freader.ReadLine()) !'= null)

{

count = O;

code = 1;
char[] de_limiters = new char[]
{
Space
s

foreach (string subString in text line.Split(de_limiters))

{
output[count] = subString;

it (count < 20)

{
if (temp == output[count])
code = 1;
MessageBox.Show(*'Fingerprint found in user
access graph " + temp, "Found",
MessageBoxButtons.OK,
MessageBoxlIcon. Information);
break;
}
count++;
code = 0;
}
}
iT (code == 0)
{
fpr = temp;

int found _classify = 0;
if (File.Exists(user_current + " classifydata.txt'))
{
StreamReader str_read = File.OpenText(user_current +
" classifydata.txt');
String strdt;
while((strdt = str_read.ReadLine())!=null)

foreach(string subString in strdt.Split(®™ 7))

{
if(subString.Equals(fpr))

{
+

found_classify ++;

36|Page

}
}
str_read.Close();

}
it (found_classify >0)

{
MessageBox.Show("'Fingerprint execution Blocked™);
}
else if (found_classify == 0)
{

ifT (MessageBox.Show(*"Would you like to classify
fingerprint as legal?", "Add Fingerprint?",
MessageBoxButtons.YesNo,

MessageBoxlcon.Question) == DialogResult.Yes)
{
MessageBox.Show("'Fingerprint added in the user
access graph'™, "Success",
MessageBoxButtons.OK,
MessageBoxlIcon. Information);
}
else
{

String file_name = user_current +
" classifydata.txt';
String risk_cat;
if (String.Compare(no_of tables.ToString(),
Settings.risk low) > 0)

{
if (String.Compare(no_of_tables.ToString(),
Settings.risk_medium) > 0)
{
risk_cat = "High";
}
else
{
risk _cat = "Medium';
}
}
else
{
risk _cat = "Low";
}
if (File.Exists(file_name))
{

StreamReader sr =
File.OpenText(file_name);

StreamWriter sw;

String strdata, datastr;

int exit_code = 1;

while ((strdata = sr.ReadLine()) !

{

null)

foreach (string subString in
strdata.Split(®™ 7))
{

datastr = subString;
if (String.Equals(datastr,
pr))

37|Page

38|Page

exit_code = 0;
break;

¥

sr.Close();
if (exit_code == 1)

{
sw =
File.AppendText(File_name);
sw.Write(fpr + " "™ + risk _cat);
sw.WriteLine();
sw.Close();
}
}
else
{

StreamWriter swl =
File.CreateText(file_name);
swl.WriteLine(fpr + " " +
risk _cat);
swl.Close();

if (String.Compare(sec, "Paranoid”,

{

true) == 0)

is_blocked[userindex] = 1;
String file_nm = user_current +
"ITDB_blocked.txt";
ifT (I(File.Exists(file_nm)))
{
fwriter2 =
File.CreateText(file_nm);
fwriter2_ Write(fpr);
fwriter2.WriteLine();
fwriter2.Close();
MessageBox.Show(*'Fingerprint
has been classified as
intrusion', "Intrusion",
MessageBoxButtons.OK,
MessageBoxlIcon. Information);

}

else
{
StreamReader fr2 =
File.OpenText(user_current
+ "1TDB_blocked.txt");
String fnd = "";
int found = O;
while ((fnd = fr2_.ReadLine())
I= null)

//NessageBox.Show(fpr);

//NessageBox.Show(fnd);

if ((String.Compare(fpr,
fnd, true)) == 0)

found = 1;
MessageBox.Show
('Fingerprint”+
fpr + ' found in
the Blocked list
for the user ™ +
user_current);
break;

}

}
fr2.Close();
if (found == 0)
{
fwriter2 =
File.AppendText
(user_current +
"ITDB_blocked.txt'™);
fwriter2 Write(fpr);
fwriter2_WriteLine();
fwriter2.Close();

MessageBox.Show
('Fingerprint has been
classified as intrusion",
"Intrusion",
MessageBoxButtons.OK,

MessageBoxlIcon. Information);

}

block file++;

else if ((String.Compare(sec, "Medium',

true) == 0) ||
(String.Compare(sec, ''High",
true)) == 0)
lock tables(tbl_names);
}
}
}
break;

Again similar to learning here also the detection algorithm for queries executing on the

database is called by a timer function after some regular interval of time

39|Page

Also we allow the administrator to spy the database for queries running on it and allow
him to change settings. When detecting, in addition to other approaches we also keep
track of the intrusions in a file along with the risk factor associated. The risk factors are
taken as High, medium and Low depending upon the damage that a transaction can do to
the database. More the number of relations (Tables) it affects more will be the risk factor
associated with it. The Settings option in the View Menu option allows the user to change
the risk settings which are used for classification purposes .The following figures show

the Spy form which displays all the currently executing transactions in the database.

CEX

List of Queries executing for all the users m the Database

zelect command type |, egl test , uzsemame from on, vbagl where sol address = address and users_executing0 |

40|Page

The following figure shows the settings form where the user can view/modify the settings

Settings

Settingz

Refersh time interval |0 MiliSeconds Auto Refresh Security Levels |

Rizk and Security zettings

Set the no. of Tables affected in intruzion for Rizk clazsification

High Fiisk »= E|
Medium Risk <=
Law Risk 3=

k. | | Cancel

HOTE : The Walues here Indicate Default Y aluesz. Change them and click OF. for the new
zettings to take effect

The “Auto Refresh Security Level” button can be used to change the user
security levels based on the classification of the risk factors mentioned already. The
intrusions are prioritized for each user and accordingly the weighted mean is calculated
as the threat posed by intrusions for each user. The Percentage Threat is then calculated
and used to decide upon the security levels, the higher it is, more security the user needs.

Percentage Threat is given by (3, R; * P; / N) * 100.

Where,
R; is the number of risks of level i.
P;i1is the priority of risk level 1.

N is the number of intrusions for a particular user.

41|Page

6. Experimental Results

To actually verify the efficiency and performance measure of a system it is very
important to develop relevant test cases to check whether the application is effectively
meeting the requirements within the boundaries of the restrictions. Hence we came up
with the idea of designing a transaction simulator for churning out random fingerprints of
transactions to test our system. This section explores the test cases that were generated
and the performance measures of our system in detecting malicious transactions that are

intrusions

6.1 Test Cases

For a database system (Oracle 10g) with three users, namely SYS, SYSTEM and
ANONYMOUS random fingerprints of transactions were generated and they were put to

test on our learning and detection algorithms.

The fingerprints were generated randomly for each user and depending on the
administrator’s response of classification as an intrusion or a legitimate transaction’s

fingerprint; the user access graphs for each of the above mentioned user were created.

The fingerprinted transactions were then stored in a file as a matrix representing
the user access graph. The graphs were then used for detection of similar random
generation queries. The results and analysis of the detection and learning phase are

discussed in detail in the following sub section.

Apart from using the fingerprints generated by the transaction simulator normal
queries from the database were taken while executing and tested for detection. The

discussion of the results of all these tests is in the following sub section

42| Page

6.2 Test Results

After using the transaction simulator and a few of the queries that were executing
in the database we found that the system was able to classify the intrusions with very
good efficiency, when the learning is quite comprehensive. The efficiency was also aided
largely due to the feedback mechanisms which helped in identifying intrusions and also
legitimate transactions that were left out initially in the learning phase. Based on the
administrator’s response the following fingerprints were classified as legal and added to

the user access graph of the respective users.

SYSTEM: <2,1,7,1> <3,2,3,4> <1,5,1,3> <0,3,1,1> <0,3,5,2> <1,2,5,1>
<1,3,7,2><0,3,2,2> <1,4,7,3> <1,4,5,2> <1,1,8,3> <1,5,6,3>
<2,2,5,1><2,2,3,3><1,3,5,1><1,2,7,1> <2,4,8,2>
<1,3,4,3><0,2,1,2>

SYS: <0,2,8,4><1,2,2,1> <0,3,6,2> <0,3,2,4> <1,5,5,4> <1,3,1,2>
<0,2,1,3><1,1,7,2> <0,2,2,4> <1,3,1,1> <0,2,4,4> <1,2,4,1>
<2,1,3,3><1,2,7,3> <0,4,7,1> <0,4,7,4 > <2,1,2,4> <1,2,4,1>
<2,3,5,1>

ANONYMOUS: <0,4,3,4> <0,4,2,4> <2,3,3,4> <0,4,1,2> <1,5,1,1> <2,5,8,4>
<0,3,8,3><2,5,5,1><1,3,5,2> <0,3,1,2> <2.4,5,1> <2,2,5,2>
<2,3,7,3><1,2,1,2><2,3,7,3><2,3,1,4> <2,2,3,3> <0,4,2,1>
<2,3,4,2>

Also it is important to note that the initial security level for the above users were set as

High for SYS, Medium for ANONYMOUS and Paranoid for SYSTEM

43 |Page

During detection with the help of the feedback system the administrator was able
to classify the intrusions along with classification of the legitimate ones left out during
learning. The following were the contents of the files which contained the list of blocked

transactions for each user.

SYS: (SYS_Blocked.txt): <0,5,5,3><0,1,5,2><1,3,6,3><1,5,1,1><2,1,4,2><0,1,4,4>

SYSTEM: (SYSTEM_Blocked.txt): <3,1,1,0> <3,1,1,3>

ANONYMOUS: (ANONYMOUS_Blocked.txt): <0,2,2,3>

Thus any further attempt to execute any of the blocked transaction is not
permitted as these fingerprints will be maintained over time. In addition to this these and
a few other transactions that were not a part of the blocking phase were used in
classifying risk categories and threats of intrusions for various users. After the
classification the users’ security levels were successfully adjusted and finally all users

were allotted a security level of “Medium”

In addition queries that were executing in the database were taken directly and

fingerprinted and it was found that the results were same. Some queries like

“Select * from user_tables;”

“Select username, password from v$session”;

were executed over different security levels for the same set of users and was found that

the timer if set at a reasonable interval can indeed detect all the queries that execute

without any query being left out.

44|Page

6.3 Experiments

We conducted several experiments using the transaction simulator. The first experiment
consisted of observing the effect of increase in the number of transaction to the accuracy
of the system. Keeping the percentage of intrusions constant we increased the number of

transactions and get the following results.

No. of Transactions v/s

Percentage Accuracy
90%

80% A\ —
70% \ / \ /V \
\V4 i \

60%

50%

40%

Percentage Accuracy
30%

20%

10%

0% T T T T T T T T T T T T T 1

R S N R I N R NI RN
TR AR O PSP

45|Page

In the other experiment we keep the number of transactions constant and keep on

increasing the percentage of intrusions in the system. We get the following results.

90%

Percentage Intrusions v/s
Percentage Accuracy

-~

80%

60%

50%

40%

Percentage Accuracy

30%

20%

10%

0%

10%

40% 50% 60% 70% 80% 90%

It is clear form the above results that the percentage accuracy does not change with the

increase in the number of transactions or the increase in the number of intrusions. The

accuracy of the system remains constant between 60%-80% most of the time.

46|Page

7. Conclusions and Future Work

We take a more proactive approach in detecting intrusions in a database. DIDAR
has support for damage containment, auto recovery and signature based blocking of
intrusions. The framework is comprehensive and provides intrusion tolerance while

consuming minimum resources and a considerably low overhead to the database by itself.

For future work, the system can be tested on a live application say at a major bank
or some other organization database. Another direction for future research is to maintain
sub-graphs within a user access graph to capture the normal user behavior in a more
intuitive sense. For example, consider the behavior of a reservation agent that needs to
add bookings, modify bookings, cancel bookings, forward bookings, run statistics on
bookings, etc. Each of these can be a separate class of behavior within the profile of a
reservation agent role. The intrusion detection task can then be carried out as a

combination of supervised and anomaly detection approaches.

47|Page

References

[1] Pramote Luenam, Peng Liu, The Design of an Adaptive Intrusion Tolerant

Database System, Proceedings of the Foundations of Intrusion Tolerant Systems, 2003.

[2] Peng Liu, Architectures of Intrusion Tolerant Database Systems, Proceedings of

18th Annual Computer Security Applications Conference, 2002.

[3] Yi Hu, Brajendra Panda, A Data Mining Approach for Database Intrusion
Detection, Proceedings of ACM Symposium on Applied Computing, 2004.

[4] Abhinav Srivastava, Shamik Sural, A.K. Majumdar, Database Intrusion Detection
using Weighted Sequence Mining, Journal of Computers, vol. 1, no. 4, July, 2006.

[5] Wai Lup LOW, Joseph LEE, Peter TEOH, DIDAFIT detecting intrusions in
databases through fingerprinting transactions, Proceedings of International Conference on

Enterprise Information Systems, 2002.

[6] Bertino, E. Terzi, E. Kamra, A. Vakali, Intrusion Detection in RBAC-
administered Databases, Proceedings of 21st Annual Computer Security Applications

Conference, 2005.

[7] E. Lundin, E. Jonsson, Survey of Intrusion Detection Research, Technical Report

Chalmers University of Technology, (2002).

[8] W. Lee, S.J. Stolfo, Data Mining Approaches for Intrusion Detection, Proceedings
of the USENIX Security Symposium, pp. 79-94 (1998).

[9] D. Barbara, J. Couto, S. Jajodia, N. Wu, ADAM: A Testbed for Exploring the Use
of Data Mining in Intrusion Detection, ACM SIGMOD, pp. 15-24 (2001).

48 |Page

[10] C. Y. Chung, M. Gertz, K. Levitt, DEMIDS: A Misuse Detection System for
Database Systems, IFIP TC-11 WG 11.5 Working Conference on Integrity and Internal
Control in Information System, pp. 159-178 (1999).

[11] V.C.S. Lee, J.A. Stankovic, S.H. Son, Intrusion Detection in Real-time Database

Systems Via Time Signatures, Real Time Technology and Application Symposium, pp.
124 (2000).

[12] Y. Zhong, X. Qin, Research on Algorithm of User Query Frequent Item sets
Mining, Machine Learning Cybernetics, pp. 1671-1676 (2004).

49|Page

Appendix

List of Diagrams

a)
b)
c)
d)
e)
f)
9)
h)
i)
)
K)
1)

User access graph showing fingerprints.
Feedback loop with new node added
Information flow model of DIDAR
Architecture Learning Phase
Architecture Detection Phase
Architecture Data Warehousing Phase
Architecture Data Mining Phase

Class Diagram

DIDAR main screen screenshot
Connecting to database

Settings security level

Options menu

m) Mode selection learning or detection

n)

0)

Database spy tool

Risk and security settings

50|Page

Keywords

Transaction — The smallest unit of the query executing in a database.

Intrusion — Malicious transaction which can cause damage to the database or affect the

data consistency.

Fingerprint — The unique identifier for each transaction of the database. To create a

fingerprint we look into each part of the select ... from ... where ... statement.

Security Levels — The levels in the application which determine the quality of
information assurance provided by the framework. The higher the level more secure is

the database. Choose from low, medium, high and paranoid.

Risk Levels -- Based on the content of the tables and the spread of the damage each
intrusion can be classified with a risk level. There are three levels associated with risk —
low, medium and high. Risk levels are used in the data mining phase to auto adjust the

security levels.

51|Page

