
DIDAR – Database Intrusion Detection with
Automated Recovery

Submitted in partial fulfillment of the
requirements for the award of the degree of

Bachelor of Technology (B.Tech)

By

Asankhaya Sharma (03712)

GovindaRajan.S (03723)

Srivatsan.V (03758)

Under the guidance of

Prof. D.V.L.N Somayajulu

Department of Computer Science and Engineering
National Institute of Technology

(Deemed University)
Warangal (A.P.) – 506004

April 2007

1 | P a g e

Department of Computer Science and Engineering

National Institute of Technology
(Deemed University)

Warangal (A.P.) – 506004

Certificate

This is to certify that, this is a bonafide record of the project work

“DIDAR – Database Intrusion Detection with Automated

Recovery” carried out by Asankhaya Sharma (Roll no: 03712),

GovindaRajan.S (Roll no: 03723) and Srivatsan.V (Roll no:

03758), of Final Year B.Tech (Computer Science & Engineering),

during the academic year 2006 – 07 in partial fulfillment of the

requirements for the award of the degree of Bachelor of Technology.

Prof. D.V.L.N Somayajulu Dr. T. Ramesh
Department of CSE Head, Department of CSE
National Institute of Technology National Institute of Technology
Warangal (A.P) Warangal (A.P.)

2 | P a g e

Acknowledgements

First, we would like to express our heart felt gratitude to our Project guide
Prof. D.V.L.N Somayajulu (Faculty, Dept. of CSE), for his consistent
guidance, encouragement and valuable suggestions through out the project
span.

We would also like to thank Mr. K. Ramesh (Asst. Professor, Dept. of CSE),
for his persistent suggestions. We would also like to owe the credit for this
work to Mr. S. Ravichandra (Faculty In-charge, B.Tech Project Work, Dept
of CSE) as well.

Finally, we would like to thank Prof. T. Ramesh, our Head of the department
for providing us with this wonderful opportunity of doing this project work
with complete support.

Asankhaya Sharma
GovindaRajan.S

Srivatsan.V

(Final Yr B.Tech CSE)
NIT Warangal

3 | P a g e

Abstract

In this project we present a new architecture for database intrusion detection. We

implement this framework called DIDAR (Database Intrusion Detection with Automated

Recovery) and discuss the performance issues. Recently there has been considerable

interest in the design of intrusion detection system for databases. Most of the current

systems take a laid back approach and concentrate more on containment and recovery

once the database has been infected by malicious transaction. We propose a more

proactive solution; DIDAR aims to detect the intrusions as soon as possible with support

for damage containment and auto recovery as well. DIDAR provides intrusion tolerance

by working in two phases – learning and detection. During the learning phase we build a

model of the legitimate queries for each user based on the currently executing

transactions and later use that model to detect the malicious transactions. DIDAR

guarantees quality of information assurance at four different levels for each user. We

have positive results based on our prototype and preliminary testing on synthetic

database. With almost no load to the database DIDAR achieves high detection rates,

quick damage containment and full recovery.

 The implementation has been carried out in Visual C# 2005 and can run on any

windows machine with .net framework 2.0. As for the database we choose oracle 10g

express edition. The framework is general enough to be implemented for any commercial

database system. To model a synthetic database we also built a transaction simulator

which helps in testing and experimentation by injecting intrusions in the database.

4 | P a g e

Table of Contents

1. Introduction ... 5

1.1 Problem Specification ... 6
2. Related Work .. 7
3. Analysis... 8

3.1 Learning Phase .. 9
3.2 Detection Phase ... 10
3.3 Isolation Phase .. 11
3.4 Recovery Phase ... 12
3.5 Blocking Phase.. 12
3.6 Data Warehousing and Data Mining Phases ... 12
3.7 Quality of Information Assurance (QoIA) .. 13

Low ... 13
Medium ... 13
High... 14
Paranoid .. 14

3.8 Granularity of Security Levels .. 14
Role Based Access Control ... 14
Context Based Access Control.. 15

3.8 Modeling ... 15
3.9 Specifications .. 16

Functionality ... 16
External Interfaces .. 16
Performance .. 16
Attributes... 16
Design Constraints .. 17

4. Design Details ... 17
Architecture Diagrams .. 17

Learning Phase .. 17
Detection Phase ... 18
Data Warehousing Phase .. 19
Data Mining Phase .. 20
Class Diagrams ... 21

5. Implementation Details ... 28
6. Experimental Results .. 42

6.1 Test Cases ... 42
6.2 Test Results ... 43

7. Conclusions and Future Work .. 45
References ... 48
Appendix ... 50

List of Diagrams ... 50
Keywords .. 51

5 | P a g e

1. Introduction

The widespread use of the World Wide Web (WWW) has led to the constantly

increasing use of web applications to store and share endless information. This

information is generally stored in databases that are stable and generally robust. For

example companies and organizations use Web applications to provide a broad range of

services to users, such as on-line banking and shopping. Because the databases

underlying Web applications often contain confidential information (e.g., customer and

financial records), these applications are a frequent target for attacks. Thus there is a

widespread need for an intrusion tolerant database to prevent such attacks against

confidential data. Intrusion detection is one of the prime areas of research currently in

databases. With the advent of the internet and the World Wide Web, more and more work

is now done online. All the necessary information from shopping orders to banking

transactions is stored in databases. Protecting the information in such case is of utmost

importance. Even with proper access control features there are several modes of attack

possible like the SQL injection. Although proper coding practices can prevent most

attacks there are still number of legacy programs that have to be protected. Moreover

even in case of an attack the system should still be able to degrade gracefully. The most

comprehensive system that addresses most of these problems is the Intrusion Tolerant

Database (ITDB) [1]. The intrusion tolerant database system can operate through attacks

in such a way that the system can continue delivering essential services in the face of

attacks. With a focus on attacks by malicious transactions, it can detect intrusions, and

locate and repair the damage caused by the intrusions [2].

 There has been considerable amount of work done in detecting intrusions in

databases. The use of data mining has been found useful in detection based on mining

user query frequent item sets [3, 4]. Another approach is to fingerprint the transactions

and then build a classifier system to differentiate between malicious and benign

transactions [5]. The way the DIDAFIT [5] system fingerprints the queries is by building

regular expression based models of the legitimate queries but we take an entirely

different approach by using relations, attributes and conditionals of the query to construct

6 | P a g e

a fingerprint. All these system involve a learning mechanism for model building in some

form and hence have false positives. Our approach here tries to combine the benefits of

the data mining approach with the fingerprinting of transactions along with a feed back

mechanism to give less false positives. Our proposed intrusion detection and recovery

system also ensures QoS (Quality of Service) which is offered to al the users who log in

to the database as while protecting the database it doesn’t make sense to provide one

single level of security over the entire database

1.1 Problem Specification

To implement the proposed architecture of the DIDAR (Database Intrusion

detection with automated recovery) system as an application with the following aims

1. To learn intrusions by creating fingerprints for all the executing transactions for

each user and thereby creating user access graph for each user

2. To detect intrusions using the user access graph obtained from the learning phase

and also using feedback mechanisms to assist detection.

 3. To provide automated recovery and damage containment in case any malicious

 transaction (Intrusion) affects any part of the database.

4. To provide QoS (Quality of Service) for each user and to have different security

levels for different users thereby adhering to the QoS provided.

7 | P a g e

2. Related Work

Intrusion detection started emerging as an interesting research topic since the

beginning of the 1980s. In the 1990s, intrusion detection became an active area of

research and even some commercial IDSs were built [7]. Over the last few years, several

research works have been carried out that attempt to apply data mining for intrusion

detection. Lee et al [8] suggest a method for network intrusion detection using data

mining techniques. They consider classification, link analysis and sequential analysis as

potential data mining algorithms along with their applicability in the field of intrusion

detection. Barbara et al [9] have built a test bed for the detection of network intrusions

using data mining. Though intrusion detection is comparatively a well researched field,

only a few researches have considered the problem of database intrusion detection.

Chung et al [10] use "working scope" to find frequent item sets, which are sets of features

with certain values. They define a notion of distance measure that captures the closeness

of a set of attributes with respect to the working scopes. Distance measures are used to

guide the search for frequent item sets in the audit logs. Lee et al [11] have proposed real-

time database intrusion detection using time signatures. It monitors the database behavior

at the level of sensor transactions. Sensor transactions are usually small in size and have

predefined semantics such as write only operations and well defined data access patterns.

In real-time database systems, temporal data objects are used. This temporal data has to

be updated periodically. If a transaction attempts to update a temporal data which has

already been updated in that period, an alarm is raised.

Lee et al [10] suggest fingerprinting of the access patterns of genuine database

transactions and using them to identify potential intrusions. They summarize SQL queries

into compact and effective regular expression fingerprints. If a given query does not

match any of the existing fingerprints, it is reported as malicious. Barbara et al [11] use

hidden markov model (HMM) and time series to determine malicious data corruption.

They build a database behavioral model using HMM that captures the changing behavior

over time. Malicious patterns are the ones that are not recognized by the HMM with high

probability. Zhong et al [12] use an algorithm that mines user profiles based on the

8 | P a g e

pattern of submitted queries. Hu et al [3] determine dependency among data items where

data dependency refers to the access correlations among data items. These data

dependencies are generated in the form of classification rules, i.e., before one data item is

updated in the database, which other data items probably need to be read and after this

data item is updated, which other data items are most likely to be updated by the same

transactions. Transactions that do not follow any of the mined data dependency rules are

marked as malicious transactions.

3. Analysis

The problem of intrusion detection was thoroughly analyzed. We consulted

several papers and systems proposed by various investigators, most of which are

available in the references. Based on the study carried out we propose a generic

framework for database intrusion detection and recovery, we call it DIDAR which stands

for database intrusion detection with automated recovery.

The basic DIDAR framework can be divided in several phases. These phases are listed

below

• Learning Phase

• Detection Phase

• Isolation Phase

• Recovery Phase

• Blocking Phase

• Data Warehousing Phase

• Data Mining Phase

 We give the detailed algorithms of each of the phase below

9 | P a g e

3.1 Learning Phase

 During this phase the model of legitimate queries is built using supervised

learning. We assume every transaction currently executing in the database to be benign.

Any SQL query can be written as the following general form with three clauses.

 SELECT Attributes

 FROM Relations/Tables

 WHERE Conditions

For every SQL query we associate a quadruple <t,R,A,C> which represents the

fingerprint of the query [6].

Where,

’t’ stands for the type of query (SELECT, UPDATE or DELETE)

’R’ stands for the number of relations in the query

’A’ stands for the number of Attributes in the query

’C’ stands for the number of Conditions in the query

Each such quadruple represents the whole query. Now for each user in the database we

create a user access graph G (V, E) such that, V is the set of quadruples and E represent

the access pattern of the queries in the database. While learning we read all the queries

executing in the database, fingerprint them and convert them into a quadruple and add a

node in the user access graph. Once the learning is finished the user access graph looks

like something below.

10 | P a g e

Once the learning is over each user has a user access graph where each node in the graph

represents the fingerprint of the transaction. Based on this information we proceed to

detection phase.

3.2 Detection Phase

 Detection is fairly simple, each transaction that is currently executing is

fingerprinted and converted into a quadruple. We traverse the user access graph and look

for a matching node (say u) with same quadruple. If we cannot find such a node the

transaction is labeled malicious or else we proceed again with the next transaction. Since

we need to follow only the edges of the user access graph, for the next transaction we

simply check all the nodes ‘v’ such that there is an edge between ‘u’ and ‘v’. This way

we can identify the malicious transactions.

Since it is not uncommon to have false positives we provide a feedback

mechanism, if while in the detection phase some legitimate transaction is identified as

malicious the user can give feedback and based on that we insert a new node in the user

access graph with the quadruple representing the fingerprint of the current transaction.

This will be clear from the following figure.

<0,2,3,1>

<0,2,1,1>

<2,1,2,3> <0,2,3,2>
<0,2,4,3>

<1,3,1,3>

<1,2,3,2>

11 | P a g e

Once it is ensured the transaction is malicious we proceed according to the quality of

information assurance (QoIA) [2] attached to the user. The other phases namely, the

Isolation phase and the Recovery phase will be explained shortly to yield a better

understanding of the entire architecture.

3.3 Isolation Phase

 Once the malicious transactions have been identified in the detection phase then

we need to do damage containment by isolating that particular transaction from others

and prevent it from being executed. In the Isolation phase we make sure that such

transactions do not execute or do not execute any transactions that depend on them. This

is done by analyzing the transaction dependency graph for each such transaction and

stopping any avalanche execution that is found from the graph. In other words we not

only isolate the malicious transactions but also all transactions that depend on them,

thereby preventing the intrusion from spreading across the database. The above diagram

clearly illustrates that. From this phase the control then passes on to the recovery module

(recovery phase) which will be addressed in the next section.

<0,2,3,1>

<0,2,1,1>

<2,1,2,3>

<0,2,3,2>

<0,2,4,3>

<1,3,1,3>

<1,2,3,2>

<2,1,2,3>

New
Node

12 | P a g e

3.4 Recovery Phase

 Once isolation of malicious transactions is done and their dependencies have been

identified, the control then passes on to the recovery module which implements this

phase. Ere the recovery module’s job is to undo any changes done by the malicious

transactions to the database and restore the database back to the state where it was just

before the execution of the malicious transaction. The recover model by itself may restore

it back by either using some kind of log based recovery method or by using appropriate

checkpoints that was created by the database. This is the last major phase of the

implementation

3.5 Blocking Phase

 This phase is used to block invalid/malign transactions from executing without

actually having to go through the detection phase once again. The blocking phase works

by initially building and associating a signature for each malicious transaction that is

detected in the detection phase. Once that is done, then for each user in the database we

will have a list of signatures also associated. Thus when a new transaction is executing

for a particular user it is compared with the list of the existing signatures for that user and

if there is a match the transaction is directly blocked without needing to go through the

detection phase once again. Thus effectively the DIDAR system combines the advantages

of the two traditional methods i.e. signature based approach and anomaly based approach.

The following sections describe the two additional phases Data Warehousing Phase and

Data Mining Phase.

3.6 Data Warehousing and Data Mining Phases

 The most important thing during detection and recovery of intrusions is to decide

upon the security levels for different users. Even though there are different ways of

assigning security levels, the best would be from continuous monitoring of a user’s

accessing pattern etc. These phases accomplish exactly this. It’s done by actually storing

the user access patterns from the user access graph in a data warehouse at regular

13 | P a g e

intervals (say daily) (Data Warehousing Phase). Then from the data warehouse and the

history of intrusions a classifier can be built for each user (Data Mining Phase). The

security level can then be decided based on the classification and the attacks attempted on

user data. Each of the intrusion is associated with a risk level which can be set by the

user. This risk level forms the basis of classification of the security levels. We create a

log of every successful intrusion detected, which has a risk level associated with it. This

log can be lasted mined for information pertaining to the security levels at the discretion

of the user.

3.7 Quality of Information Assurance (QoIA)

 Different database users will have different needs and expect different levels of

information assurance. So while protecting the database it doesn’t make sense to provide

one single level of security over the entire database. We propose four different levels of

security which ensure quality of information assurance.

Low
 While the database is in a low level of security we only identify the intrusions

with the feedback mechanism. There is no damage containment or recovery. This allows

user to formulate a proper security perimeter with all possible transactions listed in the

user access graph while also being aware of the security issues related to the data being

accessed and/or changed.

Medium
 In the medium level we provide the low level of security plus damage

containment. After the detection we enter a damage containment phase.

Damage Containment Phase

 During this phase we take a lock manually on all the tables accessed in the

14 | P a g e

malicious transaction. By taking a lock we ensure that no other transaction can execute

which can read data from the infected tables thus effectively containing the damage. As

no new data can be infected this prevents the intrusion to cause damage spreading. The

user can release the lock by rollback or commit the transaction after preparing for manual

recovery.

High
 The key aspect of the high level of security is in addition to the medium level of

security, even the recovery can be automated. Soon after the damage containment phase

the recovery starts. During automated recovery we rollback the database to the state just

before the intrusion actually took place. Now we create a transaction dependency graph

beginning from the malicious transaction. Using this graph we redo all the benign

transactions. No malicious transactions are executed and hence the database heals itself to

a correct and consistent state.

Paranoid

 This level provides the highest QoIA and uses most of the resources. We take the

recovery one step ahead by introducing a blocking phase which has been discussed

already in the previous section. The level is preferable only if the user executes

transactions on critical or sensitive data whose integrity is of utmost importance.

3.8 Granularity of Security Levels

 The problem of assigning different security levels to different users can be looked

at a more detailed granular level by considering the following types of access controls.

Role Based Access Control - This actually is dictated by the user’s access to the

data and the different operations that he can do on it.

15 | P a g e

Context Based Access Control – The context of the user access i.e. the type of

data being accessed, it’s sensitivity etc. actually decide the level of security and access

permissions for a particular user. These factors must also be taken into account before

deciding on the security levels and access permissions for different users

3.8 Modeling

The following figure gives the information flow model of the DIDAR framework.

Database

Learning

Detect

User
Access
Graph

Damage
Containment

Transaction
Dependency Graph

Recovery

Signatures

Block

16 | P a g e

3.9 Specifications

Functionality
 The software should provide the basic functionality of protecting a database in

event of an intrusion. The database should remain live and online while the software

works in the back ground. Software should not give too many alerts to the user and

inform about only the relevant ones.

External Interfaces
 The software interacts with the database as and when needed. This will ensure

that the database is not unnecessarily overloaded with the queries originating from the

software itself. The other external interfaces it can connect to is a data mining plug-in to

decide on the security levels automatically.

Performance
 The software should detect the intrusion in a reasonable time. The damage spread

by the intrusion by the time it is successfully detected should be within the scope of

repair by the recovery module. The software should not overload the database. Normal

queries should execute in proper time even when the software is running. The recover

time and detection time should be as small as possible.

Attributes
 The software should be easily maintainable. We should be able to access the

database thorough software from any terminal on the network and not only on the

database server itself. The software should itself be secure from attacks that can

compromise the database.

17 | P a g e

Design Constraints

 There are no major design constraints on the implementation. The software

developed is in VC# 2005 and works for oracle 10g database. The IDE used for

development is Microsoft Visual Studio 2005.

4.0 Design Details

Architecture Diagrams

The following depicts the basic architecture of the various phases.

Learning Phase

18 | P a g e

Detection Phase

19 | P a g e

Data Warehousing Phase

20 | P a g e

Data Mining Phase

21 | P a g e

Class Diagrams

22 | P a g e

23 | P a g e

24 | P a g e

25 | P a g e

26 | P a g e

27 | P a g e

28 | P a g e

5. Implementation Details

As mentioned already the implementation of the DIDAR system is done and constrained

well within the scope and restrictions available to us. This section illustrates the use and

the choice of the various parameters involved in the implementation of DIDAR. The

system is implemented in VC# 2005 edition and is available to work on Oracle 10g

edition. The main idea of detection of malicious transactions is carried out in a single

class which is the MainScreen. The following figure illustrates the user interface part of

the MainScreen.cs program.

29 | P a g e

The Connect menu in this MainScreen offers the user to either connect to a database or to

exit the application. On clicking connect the ConnectForm opens up asking the user to

enter the username and the password for connecting to the database.

The user can then connect to the database by specifying the username and the password.

Once the user connects to the database he sees the list of all the accounts which are open

in the database. The user (usually the Administrator) can then set the various security

privileges which he wishes to give to different users whose accounts are open. The

following figure shows the screen after the user / Administrator logs in to the database.

30 | P a g e

 After Logging to database – Before setting Security levels

After setting Security levels

31 | P a g e

The user list can be displayed by selecting the list of users with an open account from the

database and then displaying it on the MainScreen, the code for which is given below

 The user can then select either the option of Learning or Detecting intrusions for

all the users. This is done by selecting the Options submenu in the Options form which

opens up the options form as shown in the following figure. Once the user selects an

option from the OptionsForm and clicks OK Button, the mode (Learning or Detection) is

set to the choice of the user.

32 | P a g e

 In order to simulate real querying conditions, we have also come up with a

transaction simulator that can be used to simulate random fingerprints of queries. The

transaction simulator can be turned On / Off. When the transaction simulator is turned on,

the queries are generated randomly by the simulator and the action is done based on the

choice of mode (Learning or Detection by the user). However it is best to ensure that the

application learns completely before it starts to detect intrusions in to the database. When

the transaction simulator is off, the queries are taken as the currently executing ones from

the database.

33 | P a g e

 Once the user decides on whether the transaction simulator is going to be

switched On/Off then the real action begins. Then depending on the choice either the

learning or detection algorithm is activated. If the Transaction Simulator is turned on then

there are random queries generated which can either be not allowed in the user access

graph or can be fingerprinted and then stored as an user access graph in a file. In

detection, when a query is executing for a user, its fingerprint is checked with the user

access graph for that particular user. If the fingerprint exists in the user access graph, then

the transaction is allowed to execute. If it’ doesn’t exist in the graph, then an appropriate

action is taken according to the security level provided to the user. For example, if a

malicious transaction is trying to execute for a user whose security is “Paranoid”, then the

transaction is blocked and written into a file of blocked transactions for that particular

user to make future detections easier and less time consuming. The Learning and

Detection for a simulated environment is given below.

for (int k = 0; k < ConnectForm.no_of_users; k++)
{
 for (int i = 1; i < max; i++)
 {
 cmd_type = random.Next(0, 3);
 no_of_rel = random.Next(1, 6);
 no_of_attr = random.Next(1, 9);
 no_of_cond = random.Next(1, 5);

 fingerprint_lts[i] = cmd_type.ToString() + "," +
 no_of_rel.ToString() + "," +
no_of_attr.ToString() + "," +
no_of_cond.ToString();
 if (MessageBox.Show("Is this fingerprint
allowed?" + fingerprint_lts[i],
"Learning", MessageBoxButtons.YesNo,
 MessageBoxIcon.Question)== DialogResult.Yes)
 {
 fingergraph[i][0] = fingergraph[0][i] =
fingerprint_lts[i];
 fingergraph[i][i] = "1";
 if (i > 1)
 {
 fingergraph[i - 1][i] = "1";

34 | P a g e

 }
 }
 else
 {
 i = i - 1;
 }
 }
 StreamWriter fwriter =
File.CreateText(ConnectForm.user_name[k]
 +"_log.txt");

 for (int i = 0; i < 20; i++)
 {
 for (int j = 0; j < 20; j++)
 {
 if (j < 19)
 {
 fwriter.Write(fingergraph[i][j] + " ");
 }
 else
 {
 fwriter.Write(fingergraph[i][j]);
 }
 }
 fwriter.WriteLine();
 }
 fwriter.Close();

 }

 Similarly transactions executed in the database can also be fingerprinted. Any

executing transaction from the database can be easily obtained along with the username

and the type of the command executed by executing the query:

 "select command_type,sql_text,username from v$session,v$sql
where sql_address = address and users_executing>0"

 The above query returns the username of the user executing the query along with

the query being executed. Thus by repeatedly executing the above query after some

interval we can get the queries that are getting executed. The following is the method of

fingerprinting a query executed by the database

public void learn(String temp, String user, String sec, int ind)

35 | P a g e

{
 if (selected_mode == "Learning")
 {
 fingerprint_l[ind] = temp;
 if (MessageBox.Show("Is this fingerprint allowed?" +
 fingerprint_l[ind], "Learning",
 MessageBoxButtons.YesNo, MessageBoxIcon.Question) ==
 DialogResult.Yes)
 {
 fingergraph[ind][0] = fingerprint_l[ind];
 fingergraph[0][ind] = fingerprint_l[ind];
 fingergraph[ind][ind] = "1";
 if (ind > 1)
 {
 fingergraph[ind - 1][ind] = "1";
 }
 }
 else
 {
 ind = ind - 1;
 }
 StreamWriter fwriter = File.CreateText(user_current +
 "_log.txt");
 for (int k = 0; k < 20; k++)
 {
 for (int j = 0; j < 20; j++)
 {
 if (j < 19)
 {
 fwriter.Write(fingergraph[k][j] + " ");
 }
 else
 {
 fwriter.Write(fingergraph[k][j]);
 }
 }
 fwriter.WriteLine();
 }
 fwriter.Close();
 }

 However the only code difference between the two learning is that in the case of

query executing from database the Learning function is called from a timer after fixed

intervals so as to periodically get the list of executing transactions.

 During detection the transactions coming in either from the transaction simulator

or the database itself are first fingerprinted and then checked with the user access graph

as stated already, and if not present, action is taken according to the designated security

level of that particular user.

36 | P a g e

The code for the detection phase is shown below

Detection Phase:

String filename = user_current + "_log.txt";
 StreamReader freader = File.OpenText(filename);
String text_line;
const char Space = ' ';
int count, code;
String[] output = new String[400];
while ((text_line = freader.ReadLine()) != null)
{
 count = 0;
 code = 1;
 char[] de_limiters = new char[]
 {
 Space
 };
 foreach (string subString in text_line.Split(de_limiters))
 {
 output[count] = subString;
 if (count < 20)
 {
 if (temp == output[count])
 {
 code = 1;
 MessageBox.Show("Fingerprint found in user
 access graph " + temp, "Found",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information);
 break;
 }
 count++;
 code = 0;
 }
 }
 if (code == 0)
 {
 fpr = temp;
 int found_classify = 0;
 if (File.Exists(user_current + "_classifydata.txt"))
 {
 StreamReader str_read = File.OpenText(user_current +
 "_classifydata.txt");
 String strdt;
 while((strdt = str_read.ReadLine())!=null)
 {
 foreach(string subString in strdt.Split(' '))
 {
 if(subString.Equals(fpr))
 {
 found_classify ++;
 }

37 | P a g e

 }
 }
 str_read.Close();
 }
 if (found_classify >0)
 {
 MessageBox.Show("Fingerprint execution Blocked");
 }
 else if (found_classify == 0)
 {
 if (MessageBox.Show("Would you like to classify
 fingerprint as legal?", "Add Fingerprint?",
 MessageBoxButtons.YesNo,
 MessageBoxIcon.Question) == DialogResult.Yes)
 {
 MessageBox.Show("Fingerprint added in the user
 access graph", "Success",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information);
 }
 else
 {
 String file_name = user_current +
 "_classifydata.txt";
 String risk_cat;
 if (String.Compare(no_of_tables.ToString(),
 Settings.risk_low) > 0)
 {
 if (String.Compare(no_of_tables.ToString(),
 Settings.risk_medium) > 0)
 {
 risk_cat = "High";
 }
 else
 {
 risk_cat = "Medium";
 }
 }
 else
 {
 risk_cat = "Low";
 }
 if (File.Exists(file_name))
 {
 StreamReader sr =
 File.OpenText(file_name);
 StreamWriter sw;
 String strdata, datastr;
 int exit_code = 1;
 while ((strdata = sr.ReadLine()) != null)
 {
 foreach (string subString in
 strdata.Split(' '))
 {
 datastr = subString;
 if (String.Equals(datastr,
 fpr))

38 | P a g e

 {
 exit_code = 0;
 break;
 }
 }
 }
 sr.Close();
 if (exit_code == 1)
 {
 sw =
 File.AppendText(file_name);
 sw.Write(fpr + " " + risk_cat);
 sw.WriteLine();
 sw.Close();
 }
 }
 else
 {
 StreamWriter sw1 =
 File.CreateText(file_name);
 sw1.WriteLine(fpr + " " +
 risk_cat);
 sw1.Close();
 }
 if (String.Compare(sec, "Paranoid",
 true) == 0)
 {
 is_blocked[userindex] = 1;
 String file_nm = user_current +
 "ITDB_blocked.txt";
 if (!(File.Exists(file_nm)))
 {
 fwriter2 =
 File.CreateText(file_nm);
 fwriter2.Write(fpr);
 fwriter2.WriteLine();
 fwriter2.Close();
 MessageBox.Show("Fingerprint
 has been classified as
 intrusion", "Intrusion",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information);
 }
 else
 {
 StreamReader fr2 =
 File.OpenText(user_current
 + "ITDB_blocked.txt");
 String fnd = "";
 int found = 0;
 while ((fnd = fr2.ReadLine())
 != null)
 {
 //MessageBox.Show(fpr);
 //MessageBox.Show(fnd);
 if ((String.Compare(fpr,
 fnd, true)) == 0)

39 | P a g e

 {
 found = 1;
 MessageBox.Show
 ("Fingerprint”+
 fpr + " found in
 the Blocked list
 for the user " +
 user_current);
 break;
 }
 }
 fr2.Close();
 if (found == 0)
 {
 fwriter2 =
 File.AppendText
 (user_current +
 "ITDB_blocked.txt");
 fwriter2.Write(fpr);
 fwriter2.WriteLine();
 fwriter2.Close();

 MessageBox.Show
 ("Fingerprint has been
 classified as intrusion",
 "Intrusion",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information);
 }

 }
 block_file++;
 }
 else if ((String.Compare(sec, "Medium",
 true) == 0) ||
 (String.Compare(sec, "High",
 true)) == 0)
 {
 lock_tables(tbl_names);
 }
 }
 }
 break;
 }
 }

Again similar to learning here also the detection algorithm for queries executing on the

database is called by a timer function after some regular interval of time

40 | P

Also

him t

track

taken

the d

assoc

the ri

the S

P a g e

we allow th

to change se

of the intru

n as High, m

atabase. Mo

ciated with it

isk settings

py form whi

he administr

ettings. Whe

usions in a fi

medium and L

ore the numb

t. The Settin

which are u

ich displays

rator to spy t

en detecting

ile along wit

Low depend

ber of relatio

ngs option in

used for clas

all the curre

the database

g, in additio

th the risk f

ding upon the

ons (Tables)

 the View M

ssification pu

ently executi

e for queries

n to other a

factor associ

e damage th

it affects mo

Menu option

urposes .The

ing transactio

s running on

approaches w

ated. The ris

hat a transact

ore will be t

allows the u

e following

ons in the da

n it and allow

we also kee

sk factors ar

tion can do t

the risk facto

user to chang

figures show

atabase.

w

ep

re

to

or

ge

w

41 | P a g e

The following figure shows the settings form where the user can view/modify the settings

 The “Auto Refresh Security Level” button can be used to change the user

security levels based on the classification of the risk factors mentioned already. The

intrusions are prioritized for each user and accordingly the weighted mean is calculated

as the threat posed by intrusions for each user. The Percentage Threat is then calculated

and used to decide upon the security levels, the higher it is, more security the user needs.

Percentage Threat is given by (∑ Ri * Pi / N) * 100.

Where,

Ri is the number of risks of level i.

Pi is the priority of risk level i.

N is the number of intrusions for a particular user.

42 | P a g e

6. Experimental Results

 To actually verify the efficiency and performance measure of a system it is very

important to develop relevant test cases to check whether the application is effectively

meeting the requirements within the boundaries of the restrictions. Hence we came up

with the idea of designing a transaction simulator for churning out random fingerprints of

transactions to test our system. This section explores the test cases that were generated

and the performance measures of our system in detecting malicious transactions that are

intrusions

6.1 Test Cases

 For a database system (Oracle 10g) with three users, namely SYS, SYSTEM and

ANONYMOUS random fingerprints of transactions were generated and they were put to

test on our learning and detection algorithms.

 The fingerprints were generated randomly for each user and depending on the

administrator’s response of classification as an intrusion or a legitimate transaction’s

fingerprint; the user access graphs for each of the above mentioned user were created.

 The fingerprinted transactions were then stored in a file as a matrix representing

the user access graph. The graphs were then used for detection of similar random

generation queries. The results and analysis of the detection and learning phase are

discussed in detail in the following sub section.

 Apart from using the fingerprints generated by the transaction simulator normal

queries from the database were taken while executing and tested for detection. The

discussion of the results of all these tests is in the following sub section

43 | P a g e

6.2 Test Results

 After using the transaction simulator and a few of the queries that were executing

in the database we found that the system was able to classify the intrusions with very

good efficiency, when the learning is quite comprehensive. The efficiency was also aided

largely due to the feedback mechanisms which helped in identifying intrusions and also

legitimate transactions that were left out initially in the learning phase. Based on the

administrator’s response the following fingerprints were classified as legal and added to

the user access graph of the respective users.

SYSTEM: <2,1,7,1> <3,2,3,4> <1,5,1,3> <0,3,1,1> <0,3,5,2> <1,2,5,1>
 <1,3,7,2> <0,3,2,2> <1,4,7,3> <1,4,5,2> <1,1,8,3> <1,5,6,3>
 <2,2,5,1> <2,2,3,3> <1,3,5,1> <1,2,7,1> <2,4,8,2>
 <1,3,4,3> <0,2,1,2>

SYS: <0,2,8,4> <1,2,2,1> <0,3,6,2> <0,3,2,4> <1,5,5,4> <1,3,1,2>
 <0,2,1,3> <1,1,7,2> <0,2,2,4> <1,3,1,1> <0,2,4,4> <1,2,4,1>
 <2,1,3,3> <1,2,7,3> <0,4,7,1> <0,4,7,4 > <2,1,2,4> <1,2,4,1>
 <2,3,5,1>

ANONYMOUS: <0,4,3,4> <0,4,2,4> <2,3,3,4> <0,4,1,2> <1,5,1,1> <2,5,8,4>
 <0,3,8,3> <2,5,5,1> <1,3,5,2> <0,3,1,2> <2,4,5,1> <2,2,5,2>
 <2,3,7,3> <1,2,1,2> <2,3,7,3> <2,3,1,4> <2,2,3,3> <0,4,2,1>
 <2,3,4,2>

Also it is important to note that the initial security level for the above users were set as

High for SYS, Medium for ANONYMOUS and Paranoid for SYSTEM

44 | P a g e

 During detection with the help of the feedback system the administrator was able

to classify the intrusions along with classification of the legitimate ones left out during

learning. The following were the contents of the files which contained the list of blocked

transactions for each user.

SYS: (SYS_Blocked.txt): <0,5,5,3> <0,1,5,2> <1,3,6,3> <1,5,1,1> <2,1,4,2>< 0,1,4,4>

SYSTEM: (SYSTEM_Blocked.txt): <3,1,1,0> <3,1,1,3>

ANONYMOUS: (ANONYMOUS_Blocked.txt): <0,2,2,3>

 Thus any further attempt to execute any of the blocked transaction is not

permitted as these fingerprints will be maintained over time. In addition to this these and

a few other transactions that were not a part of the blocking phase were used in

classifying risk categories and threats of intrusions for various users. After the

classification the users’ security levels were successfully adjusted and finally all users

were allotted a security level of “Medium”

 In addition queries that were executing in the database were taken directly and

fingerprinted and it was found that the results were same. Some queries like

“Select * from user_tables;”

“Select username, password from v$session”;

were executed over different security levels for the same set of users and was found that

the timer if set at a reasonable interval can indeed detect all the queries that execute

without any query being left out.

45 | P a g e

6.3 Experiments

We conducted several experiments using the transaction simulator. The first experiment

consisted of observing the effect of increase in the number of transaction to the accuracy

of the system. Keeping the percentage of intrusions constant we increased the number of

transactions and get the following results.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

No. of Transactions v/s
Percentage Accuracy

Percentage Accuracy

46 | P a g e

In the other experiment we keep the number of transactions constant and keep on

increasing the percentage of intrusions in the system. We get the following results.

It is clear form the above results that the percentage accuracy does not change with the

increase in the number of transactions or the increase in the number of intrusions. The

accuracy of the system remains constant between 60%-80% most of the time.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

10% 20% 30% 40% 50% 60% 70% 80% 90%

Percentage Intrusions v/s
Percentage Accuracy

Percentage Accuracy

47 | P a g e

7. Conclusions and Future Work

 We take a more proactive approach in detecting intrusions in a database. DIDAR

has support for damage containment, auto recovery and signature based blocking of

intrusions. The framework is comprehensive and provides intrusion tolerance while

consuming minimum resources and a considerably low overhead to the database by itself.

For future work, the system can be tested on a live application say at a major bank

or some other organization database. Another direction for future research is to maintain

sub-graphs within a user access graph to capture the normal user behavior in a more

intuitive sense. For example, consider the behavior of a reservation agent that needs to

add bookings, modify bookings, cancel bookings, forward bookings, run statistics on

bookings, etc. Each of these can be a separate class of behavior within the profile of a

reservation agent role. The intrusion detection task can then be carried out as a

combination of supervised and anomaly detection approaches.

48 | P a g e

References

[1] Pramote Luenam, Peng Liu, The Design of an Adaptive Intrusion Tolerant

Database System, Proceedings of the Foundations of Intrusion Tolerant Systems, 2003.

[2] Peng Liu, Architectures of Intrusion Tolerant Database Systems, Proceedings of

18th Annual Computer Security Applications Conference, 2002.

[3] Yi Hu, Brajendra Panda, A Data Mining Approach for Database Intrusion

Detection, Proceedings of ACM Symposium on Applied Computing, 2004.

[4] Abhinav Srivastava, Shamik Sural, A.K. Majumdar, Database Intrusion Detection

using Weighted Sequence Mining, Journal of Computers, vol. 1, no. 4, July, 2006.

[5] Wai Lup LOW, Joseph LEE, Peter TEOH, DIDAFIT detecting intrusions in

databases through fingerprinting transactions, Proceedings of International Conference on

Enterprise Information Systems, 2002.

[6] Bertino, E. Terzi, E. Kamra, A. Vakali, Intrusion Detection in RBAC-

administered Databases, Proceedings of 21st Annual Computer Security Applications

Conference, 2005.

[7] E. Lundin, E. Jonsson, Survey of Intrusion Detection Research, Technical Report

Chalmers University of Technology, (2002).

[8] W. Lee, S.J. Stolfo, Data Mining Approaches for Intrusion Detection, Proceedings

of the USENIX Security Symposium, pp. 79-94 (1998).

[9] D. Barbara, J. Couto, S. Jajodia, N. Wu, ADAM: A Testbed for Exploring the Use

of Data Mining in Intrusion Detection, ACM SIGMOD, pp. 15-24 (2001).

49 | P a g e

[10] C. Y. Chung, M. Gertz, K. Levitt, DEMIDS: A Misuse Detection System for

Database Systems, IFIP TC-11 WG 11.5 Working Conference on Integrity and Internal

Control in Information System, pp. 159-178 (1999).

[11] V.C.S. Lee, J.A. Stankovic, S.H. Son, Intrusion Detection in Real-time Database

Systems Via Time Signatures, Real Time Technology and Application Symposium, pp.

124 (2000).

[12] Y. Zhong, X. Qin, Research on Algorithm of User Query Frequent Item sets

Mining, Machine Learning Cybernetics, pp. 1671-1676 (2004).

50 | P a g e

Appendix

List of Diagrams

a) User access graph showing fingerprints.

b) Feedback loop with new node added

c) Information flow model of DIDAR

d) Architecture Learning Phase

e) Architecture Detection Phase

f) Architecture Data Warehousing Phase

g) Architecture Data Mining Phase

h) Class Diagram

i) DIDAR main screen screenshot

j) Connecting to database

k) Settings security level

l) Options menu

m) Mode selection learning or detection

n) Database spy tool

o) Risk and security settings

51 | P a g e

Keywords

Transaction – The smallest unit of the query executing in a database.

Intrusion – Malicious transaction which can cause damage to the database or affect the

data consistency.

Fingerprint – The unique identifier for each transaction of the database. To create a

fingerprint we look into each part of the select … from … where … statement.

Security Levels – The levels in the application which determine the quality of

information assurance provided by the framework. The higher the level more secure is

the database. Choose from low, medium, high and paranoid.

Risk Levels -- Based on the content of the tables and the spread of the damage each

intrusion can be classified with a risk level. There are three levels associated with risk –

low, medium and high. Risk levels are used in the data mining phase to auto adjust the

security levels.

