
CERTIFIED REASONING FOR
AUTOMATED VERIFICATION

ASANKHAYA SHARMA

NATIONAL UNIVERSITY OF SINGAPORE

2014

CERTIFIED REASONING FOR
AUTOMATED VERIFICATION

ASANKHAYA SHARMA

B.Tech. in Computer Science & Engineering

National Institute of Technology, Warangal

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2014

ii

Acknowledgements

I would like to thank my adviser, Associate Professor Chin Wei Ngan for

his constant support and encouragement over the last four years. He introduced

me to the topic of formal verification and guided me throughout the journey of

my PhD studies. He is the nicest person I have ever met and his influence in

areas other than my studies has also been profound. He has taught me to build

character, never give up and overcome difficulties that seem insurmountable. I

am also grateful to Assistant Professor Aquinas Hobor for his help and

mentorship on my research. From him, I learned the importance of certified

proofs and the use of the Coq proof assistant. I appreciate the time taken by my

thesis committee members Associate Professor Dong Jin Song and Associate

Professor Hugh Anderson. They gave constructive feedback that helped shape

the thesis.

During the past four years, I had the opportunity to work and collaborate

with some of the best people I know. I appreciate my coauthors Andreea

Costea, Shengyi Wang, Cristina David, Quang Loc Le and Florin Craciun for

their comments and discussion on our papers which helped improve my overall

understanding of the topic of automated verification. I also thank Cristian

Gherghina, Shengchao Qin and Le Duy Khanh for reading and reviewing my

research papers. My colleagues and friends at the Programming Language

Research Lab made the journey more fun and exciting. The research lab

environment was made more cheerful by the company of Ton Chanh Le,

Yamilet Serrano, Quang Trung Ta, Narcisa Milea and Vijayaraghavan Murali.

At NUS, I had an opportunity to meet new people, learn new things and

experience new ideas. I am thankful to Shuang Liu, Kuldeep Kumar and

Christopher Chak for providing a comforting friend circle on campus.

iii

I appreciate the support of my parents who offered words of encouragement

and motivation whenever I needed it. They have always been a role model for

me and I hope to make them proud some day. I thank my younger brother Akash

for believing in me and for the all fun times we had together. I am thankful to my

in-laws for their faith in me and giving the hand of their daughter in marriage.

I could not have finished this thesis without my wife Sakhee. I am grateful

for her love, understanding and patience. During the last four years, I missed

several weekends and skipped many vacations I could have spent with her. She

provided constant support, help and advise. I promise, I will make it up to you!

Asankhaya Sharma,

Singapore, December 30, 2014

iv

Contents

Summary xi

List of Tables xiii

List of Figures xvi

1 Introduction 1

1.1 Thesis Objectives . 9

1.2 Contributions of the Thesis . 11

1.3 Outline . 13

2 Related Work 17

2.1 Certified Programs and Proofs 21

2.2 Logics and Verification . 22

2.3 Program Analysis and Type Systems 27

2.4 Data and Code Synthesis . 29

3 Certified Reasoning with Infinity 31

3.1 Introduction . 31

3.2 Motivation . 34

3.2.1 Orientation . 34

3.2.2 Infinities enable Concise Specifications 35

v

3.2.3 Infinities increase Compositionality 37

3.2.4 Infinities support (Non-)Termination Reasoning 38

3.2.5 Infinities support Analysis via Quantifier Elimination . . 39

3.3 Syntax and Parameterized Semantics 40

3.4 Reasoning with Infinity . 47

3.4.1 Normalization and Simplification 50

3.5 Implementation . 53

3.6 Experiments . 58

3.7 Comparative Remarks and Summary 61

3.7.1 Ghost Variables . 61

3.7.2 Decision Procedures 62

3.7.3 Summary . 63

4 Verified Subtyping with Traits and Mixins 65

4.1 Introduction . 65

4.2 Verified Subtyping . 69

4.3 Implementation with SLEEK DSL 71

4.3.1 SLEEK DSL . 73

4.3.2 SLEEK Interactive Mode 74

4.4 Experiments . 75

4.5 Comparative Remarks and Summary 76

5 Specifying Compatible Sharing in Data Structures 79

5.1 Introduction . 80

5.2 Motivating Examples . 82

5.2.1 From Separation to Sharing 82

5.2.2 Shared Process Scheduler 86

5.2.3 Comparison with Fractional Permissions 90

vi

5.3 Syntax and Semantics . 91

5.3.1 Storage Model . 96

5.3.2 Semantic Model of the Specification Formula 97

5.4 Verification with Compatible Sharing 99

5.4.1 Forward Verification Rules 102

5.4.2 Soundness . 104

5.5 Experiments . 108

5.6 Comparative Remarks and Summary 109

6 Automated Verification of Ramifications in Separation Logic 113

6.1 Introduction . 113

6.2 Motivating Examples . 115

6.2.1 Updates on Shared Heaps 115

6.2.2 Septraction Lemmas 118

6.3 Verification with Ramifications 120

6.3.1 Proof of a Septraction Lemma 124

6.4 Experiments . 127

6.5 Comparative Remarks and Summary 128

7 Conclusions 131

7.1 Results . 132

7.2 Future Work . 133

Appendix 137

A Certified Reasoning Coq Examples 137

B Certified Reasoning for Separation Logic 145

Glossary 157

vii

Bibliography 175

viii

Summary

Formal methods help improve the quality and reliability of software by

providing proof of correctness. However, ensuring the correctness of

verification tools that apply these formal methods is itself a much harder

problem. A typical way to justify the correctness is to provide soundness

proofs based on semantic models. For program verifiers these soundness

proofs are quite large and complex. In this thesis, we introduce certified

reasoning to provide machine checked proofs of various components of an

automated verification system. We develop new certified decision procedures

and certified proofs to integrate with an existing automated verification system.

Certified reasoning improves the correctness and expressivity of automated

verification without sacrificing on performance.

We present a certified decision procedure (Omega++) for Presburger

arithmetic extended with positive and negative infinity. The correctness of the

procedure is established in the proof assistant Coq. Our decision procedure

enables concise specifications, improves expressivity and compositionality

while been efficient and scalable. We have integrated this decision procedure in

HIP/SLEEK verification system for separation logic. This allows us to verify

programs using infinite data structures and infer pure properties using

Omega++. Next, in order to show that certified reasoning is not limited to the

use of proof assistants, we present a certified subtype checker for the Scala

ix

language. We reduce subtyping of traits and mixins in Scala to checking

entailments in separation logic. We have extended Scala with a domain specific

language SLEEK DSL, that enables checking the validity of separation logic

entailments inside Scala. This shows how certified reasoning based on SLEEK

can check subtyping in Scala. We have applied our technique to the Scala

standard library and found that 67% of the classes do indeed conform to

behavioral subtyping.

Automated verification of data structures with complex sharing is a

challenging problem. Separation logic based methods have shown success in

modular verification of shared mutable data structures. However, for programs

using partially shared heaps, modular compositional proofs are hard to get.

Verifying such programs is of practical importance as they occur in many

device drivers (I/O scheduler), operating system kernels (process scheduler)

and compilers (garbage collector). From a more theoretical perspective, shared

usage of heap is an intrinsic property of certain data structures (such as DAGs,

graphs and overlaid data structures). Existing mechanisms do not provide

natural concise specifications for programs using shared heaps. We address this

challenge by providing an extension of separation logic that can reason about

sharing and aliasing in heaps.

We present an approach to specify and certify heap based data structures

with complex sharing patterns. Our specification mechanism takes into account

different sharing and aliasing scenarios. We build on the prior work of

immutability specifications and support fine grained reasoning with field

annotations. We introduce the notion of memory specifications to capture the

precise footprint and usage of heap. In our logic we give concise and precise

specifications for correctness conditions of programs using complex shared

heaps. Noninterference is an important property of shared reasoning and

x

concurrency. We present an entailment procedure which can verify programs

that use data structures with shared heaps while preserving noninterference by

using a notion of compatible sharing. This enables us to verify practical

algorithms using threaded trees and overlaid data structures. We also present a

certified proof of correctness of compatibility checking using memory

specifications. In case of interference between shared heaps, we calculate the

effect of state updates using ramifications. We present a method to

automatically verify ramifications in separation logic. This enables us to certify

programs using data structures like DAGs and graphs.

Our verification system is totally automated and is based only on user

defined predicates and user specified lemmas. We have developed a prototype

for our system called HIPComp which is built on the HIP/SLEEK verification

system for separation logic. HIPComp enables users to do automated, sound and

modular reasoning about sharing in data structures. We have validated our

approach on a benchmark of small but challenging programs manipulating data

structures with sharing. These programs include simple examples of practical

algorithms for process scheduler, disk scheduler and graph marking.

xi

xii

List of Tables

2.1 List of Operators based on Separation Logic 25
2.2 Comparing Field Annotations with Fractional Permissions . . . 29

3.1 Coq Development Details . 55
3.2 Comparison between Omega++ and Proto 58
3.3 Verification benchmarks with Infinity 59
3.4 Comparing PAI and Omega++ 60
3.5 Inference with Omega++ . 61

4.1 Experiments with Traits and Mixins 75

5.1 Compatible pairs of Field Annotations 98
5.2 Verification with Compatible Sharing 109

6.1 Experiments with Automated Ramifications 127

xiii

xiv

List of Figures

2.1 Overlaid Data Structure . 28

3.1 Our setup: SL + Inf to PA . 34
3.2 Two pre-/postconditions for insertion into a sorted linked list . . 36
3.3 length terminates on proper lists and diverges on cyclic lists . . 39
3.4 Pure Specification Inferred from PAInf QE 39
3.5 PAInf: Input Constraint Language 41
3.6 Main Operations and Relations in Z∞ 42
3.7 Other Operations and Relations in Z∞ 43
3.8 Evaluations on atomic terms 44
3.9 Definition of satisfaction relation 45
3.10 Truth Tables for Three-valued Logic 46
3.11 PAInf: Quantifier Elimination (INF-TRANS) 48
3.12 PAInf: SAT Checking . 49
3.13 PAInf: Evaluation Check . 49
3.14 PAInf: Normalization (INT-TRANS) 51
3.15 Definition of Simplification . 52

4.1 Core Language for Traits and Mixins 69
4.2 Checking Subtyping with Entailment 71
4.3 Overview of SLEEK DSL . 72

5.1 Specification Language . 92
5.2 XMem: Translating to Memory Form 93
5.3 Validating the Memory Specification 95
5.4 Entailment - Base Case . 100
5.5 Entailment - Inductive Cases 101
5.6 Rules with Field Annotations 102

6.1 Septraction Lemma Syntax . 121

xv

6.2 Case Analysis for Septraction Lemma Proving 123

xvi

Chapter 1

Introduction

Software is increasingly playing an important role in everyday life. Many

important services rely on software for proper functioning and running. With

increase in use and development of software, the correct functioning of

programs takes a lot of importance. Bugs or errors in the execution of

programs can lead to costly mistakes (financial software) or even loss of human

life (medical device software). It becomes all the more important to ensure

reliability of software. Validating that programs perform the tasks they are

expected to do can help in maintaining high quality and assurance levels for

software.

There are two major ways to build reliable software systems. One is to do

rigorous testing by executing the programs for a number of inputs. Another is

to produce a formal proof of correctness of software by mathematical analysis.

To quote Dijkstra [29], “Program testing can be used to show the presence of

bugs, but never their absence!”. While formal verification typically involves a

lot of effort on part of the developer or programmer. This thesis focuses on

building reliable software by formal verification. In particular, we are interested

in building tools and techniques to analyze different data structures commonly

1

used in programs.

Data structures with heap sharing are widely used in system software.

Sharing enables more efficient use of memory and allows programmers to

write small programs. However, it can be quite a challenge to formally reason

about such programs. In addition, certain data structures like acyclic and cyclic

graphs have intrinsic sharing. Sharing makes it harder to reason about different

parts of the data structure in isolation. There is a need for better specification

mechanism to express the sharing of heaps and enable compositional proofs

about properties of programs manipulating such heaps. The success of various

automated industrial strength verifiers (such as Microsoft SDV and Astrée) in

improving the quality of software has prompted research into more expressive

verification systems (such as KIV, Dafny, VCC, ACL2 and PVS).

Automated verification through program analysis (in case of Astrée) can

be used as a push button technology by the users to check their programs. In

addition, software model checking has been instrumental to reduce the bugs

found in windows device drivers (Microsoft SDV). However, it is not always

possible to express properties related to functional correctness in a form that

can be supported by the program analyzer. Use of a more expressive logic helps

in representing such properties (ACL2 and PVS). It is challenging to design

complete and sound procedures for deciding properties in expressive logics.

In recent years separation logic [96, 47] has been successfully applied for

automated verification of programs [23, 9, 39, 38]. Separation logic is an

extension of Hoare logic [44], which enables compositional and modular

reasoning of programs in the presence of heap and mutable data structures. In

order to verify a program using Hoare logic we must first specify the desired

correctness properties using a specification language. In Hoare logic we

annotate every method with a pre and post condition. The precondition is

2

required to hold before call to the method and the postcondition is established

at the end of the method. Thus, for each command c we consider a Hoare triple

{P} c {Q} with precondition P and postcondition Q. A verifier automatically

checks if the given program code is correct w.r.t to its pre/post condition.

Program correctness ensures safety and reliability of software. In fact, software

verification has been identified as a Grand Challenge [45, 50] for computing

research.

Several tools [23, 9] have been created to verify programs using separation

logic. These tools can do automated verification of programs using annotations

about pre and post conditions supplied by the users (along with loop invariants).

Separation logic has been instrumental in increasing the popularity of formal

verification as a method to ensure reliability of software.

Separation logic is particularly useful in verifying heap manipulating

programs. In addition to the usual logical operators (¬,∧,∨), in separation

logic, assertions1 valid on disjoint portions of heap can be represented using

the spatial or separating conjunction (∗). Separating conjunction allows

reasoning about different parts of a data structure in isolation with each other.

This property (local reasoning) is present in reasoning with separation logic

because updates on disjoint heaps do not affect each other. Local reasoning

[88] is the key to scalable verification with separation logic. Local reasoning

states that in order to verify a method we need to consider only the heap which

is modified in that method. By the use of separation logic, the heap memory

assertions can be made more precise (with the help of must-aliases implied by

1Our separation logic is both “Java-like” and “C-like”. Our logic is “Java-like” in the sense
that heap locations (pointers) contain (point to) indivisible objects rather than individual memory
cells, avoiding the possibility of pointers pointing into the middle of a structure (i.e., skewing).
On the other hand, our logic is “C-like” because our formulae are given a classical rather than
intuitionistic semantics, i.e., x7→pair〈f, s〉 means that the heap contains exactly a single pair
object at the location pointed to by x rather than at least a single pair object at x.

3

the separating conjunction) and concise (with the help of frame conditions).

The [FRAME] rule of separation logic enables local reasoning.

[FRAME]

{P} c {Q}
{P ∗ F} c {Q ∗ F}

The [FRAME] rule states that if a command c can be executed in a heap

satisfying precondition P and postcondition Q, then it can also be executed in

a larger heap with precondition P ∗ F and postcondition Q ∗ F (with the side

condition that variables modified in c cannot occur free in F). Or conversely,

reading the rule bottom up, a disjoint heap assertion F can be framed on both

the pre and post condition. As an example consider the following assignment,

where x and y are two pointers which are known to be not aliased. The [FRAME]

rule allows us to remove (frame away) the y 7→ assertion in order to verify

the assignment.

{x 7→ ∗ y 7→ }

{P ≡ x 7→ }

x.val = 1;

{Q ≡ x 7→ 1}

{x 7→ 1 ∗ y 7→ }

This means that we can verify the code for a smaller heap and the proof

carries over to the larger heap. In other words, our specifications for methods

can be small in the sense that we need to specify only the heap that is actually

accessed in the method. The [FRAME] rule ensures that the we can execute the

method in a larger heap and need not redo the proof again. Hence the above

example is also valid for a larger heap as shown below.

4

{x 7→ ∗ y 7→ ∗ z 7→ }

x.val = 1;

{x 7→ 1 ∗ y 7→ ∗ z 7→ }

[FRAME] rule is the key to achieve scalability in modular verification with

separation logic. Hence it is desirable to support this rule (framing) even in

cases where the heaps cannot be made disjoint in the pre or post condition.

Many common data structures can actually be represented using the separating

conjunction. For example, in a linked list the head of the list is separated from

the rest of the list and in a binary tree the left and right children are separated.

However, there are certain data structures (like overlaid data structures and

graphs) where it is not possible to isolate them using separating conjunction.

Sharing in data structures leads to following challenges for verification:

• Parts of data structures cannot be isolated.

• Reasoning about data structures requires use of global invariants about

heap.

• In the absence of a [FRAME] rule and presence of global invariants it

becomes difficult to make the verification method scale to larger

programs.

• The invariants about data structures are difficult to state (unnatural) which

makes it harder to express interesting properties.

In these cases we can still get compositional proofs and enable local

reasoning if we can show that the shared heaps of the data structure do not

interfere. This gives us the following [NONINTER] rule.

5

[NONINTER]

{P} c {Q} noninter(R,P) ∧ noninter(R′, Q)

{R} c {R′}

The [NONINTER] rule generalizes the [FRAME] rule by allowing us to

conclude R and R′ from P and Q as long as the precondition P and

postcondition Q does not interfere with R and R′ respectively. For our running

example of two pointers x and y, consider the following case where the two

pointers are aliased. We cannot represent them using the separation

conjunction (∗) and hence we cannot use the [FRAME] rule directly. However,

we can still verify the assignment if we can check that the heap specified in the

precondition P (postcondition Q) does not interfere with the larger heap given

by R (R′).

{R ≡ (x 7→ 1 ∧ y 7→ 1)}

{P ≡ x 7→ 1}

x.val = 1;

{Q ≡ x 7→ 1}

{R ≡ (x 7→ 1 ∧ y 7→ 1)}

The [NONINTER] rule allows us to handle cases where the shared heaps do

not affect each other. As a more realistic example, consider the IO scheduler in

Linux which maintains an overlaid structure of doubly-linked list and a

red-black tree. The linked list is used to record the order in which nodes are

inserted in the queue, and the red-black tree provides an efficient indexing

structure on sector fields of nodes. In such an overlaid data structure, provided

the fields are not updated, the linked list and the tree do not interfere with each

other even though they share the entire heap. More formally, such a data

6

structure can be specified using a conjunction [68], e.g. given a predicate

representing a linked list : ll〈x〉, and a predicate representing a tree : tree〈t〉,

the following predicate ll〈x〉 ∧ tree〈t〉 captures an overlaid data structure of

a list and tree. In this thesis we present an automated procedure to detect

non-interference and verify programs using such data structures. Data

structures like graphs involve unrestricted sharing, the left and right children of

a binary DAG may point into each other. Data structures with unrestricted

sharing lead to the following challenges for verification:

• Due to unrestricted sharing it is harder to specify which parts of the data

structure are shared.

• Updates made to different shared parts of the data structure need to

preserve the shape properties.

• Local changes made to a part of data structure may have the unintended

consequence of changing other shared parts.

Recently, Hobor and Villard [46] have introduced the [RAMIFY] rule to deal

with such cases.

[RAMIFY]

{P} c {Q} ramify(R,P,Q,R′)

{R} c {R′}

The key idea being that if we cannot prove noninterference, we need to show

that the result of replacing P in R by Q implies R′. The [RAMIFY] rule supports

this kind of reasoning. For the running example with two pointers it is clear that

removing x 7→ from R and replacing with x 7→ 1 will give us R′.

7

{R ≡ (x = y ∧ x 7→) ∨ (x 6= y ∧ x 7→ ∗ y 7→)}

{P ≡ x 7→ }

x.val = 1;

{Q ≡ x 7→ 1}

{R′ ≡ (x = y ∧ x 7→ 1) ∨ (x 6= y ∧ x 7→ 1 ∗ y 7→)}

This example shows that [RAMIFY] is more general than [NONINTER],

however it is also more expensive to calculate ramifications so we try to use

[NONINTER] for cases with compatible sharing and [RAMIFY] for cases where

the heaps may interfere.

Automated verification tools help reduce the burden of correctness on the

user by generating proofs. However, these tools themselves may be source of

soundness bugs. A bug in a program verifier may be responsible for wrongly

verifying several other user programs. Thus it is important that the correctness

of these verifiers itself be subject to formal methods. It is extremely hard and

challenging to take a large piece of software like a program verifier and certify

its correctness. Instead, in this thesis, we propose a novel but practical solution

to this problem by certifying the reasoning that is built into the program

verifier. Our thesis is that certified reasoning helps improve the correctness and

expressivity of a program verifier without sacrificing on the efficiency of the

verification process.

As an application of certified reasoning we present a new decision

procedure (Omega++) for Presburger arithmetic extended with positive and

negative infinity. The correctness proof of Omega++ is mechanized and verified

in the proof assistant Coq. The certified proof is also used to generate OCaml

code by extraction from Coq and that code is integrated into a program verifier.

By isolating and verifying a key decision procedure that is integrated into a

8

program verifier, we increase confidence in the correctness of the overall

automated verification process. This also reduces the trusted computing base of

the overall system. We call this process certified reasoning as the reasoning

capability of the verifier about a particular domain of interest (Presburger

arithmetic extended with positive and negative infinity) has been certified to be

correct.

Certified reasoning is not limited to the use of proof assistants only. It is

possible to use other more mature tools which can be trusted to certify software

built on top of them. As an example of this we show how we can use SLEEK

entailment checker for separation logic to decide subtyping between traits and

mixins in Scala. We extend Scala with a domain specific language for this task

and reduce subtyping to checking validity of entailments. This check for

validity can be carried out using a trusted component (SLEEK), thus giving a

higher degree of assurance.

1.1 Thesis Objectives

The key goal of this thesis is to certify programs and proofs that are used in

automated verification using separation logic. The overall theme of the effort

is to reduce the trusted computing base of a program verifier so that we can

check the proof of correctness of its components. This also enables more end

to end proofs as we can check not only the program but also the verifier (that is

used to certify the program). To lay the foundations for certified reasoning we

identify three different kinds of components that are part of automated reasoning

as typically implemented in a program verifier - certified decision procedures,

certified programs and certified proofs.

Firstly we tackle the problem of certified decision procedure. A program

9

verifier applies Hoare rules and reduces the verification of program to solving

some decision problems in a particular domain. Our goal in this respect, is to

design and certify the correctness of a decision procedure which is useful for

verifying programs of interest. We present a certified decision procedure

(Omega++) for Presburger arithmetic extended with positive and negative

infinities. This domain enables verification of programs with size properties

and is found to be quite useful for allowing concise, composable and

expressive specifications. The source code is extracted from the certified proof

by reflection and the decision procedure is also integrated into a program

verifier (HIP).

Secondly we present a certified program which enables subtyping between

traits and mixins in Scala. Unlike Java, the Scala type system does not respect

subtyping between mixin classes. We extend Scala with a domain specific

language (SLEEK DSL) that enables subtyping with traits and mixins. This

check for subtyping is semantic and itself based on deciding entailments in

separation logic and is thus called verified subtyping.

Thirdly we present a certified proof of compatibility checking in data

structures. Separation logic is quite useful for expressing data structures that

are based on disjoint heaps, but it is poor at capturing sharing in data structures.

We present a mechanism to specify and verify sharing in data structures based

on a notion of compatibility. The compatibility checking proof is certified in

Coq and that is the key soundness guarantee of our entailment procedure. This

procedure is also implemented in a verifier (HIPComp) and the certified proof

increases our confidence in the semantic formulation of the separation logic

extension that requires compatibility checking.

Using certified reasoning during automated verification is bound to incur

some performance penalty due to the fact that the extracted code may be

10

inefficient. Another objective of the thesis is to ensure that certified reasoning

is efficient. To this end we benchmark our approach and present optimizations

that ensure that certified reasoning is efficient for the verification of programs

of interest.

1.2 Contributions of the Thesis

The contributions of the thesis can be divided across the following three vectors:

Certified reasoning with infinity

(Chapter 3, first presented in [108])

• We start from the well-established domains of separation logic [96] and

Presburger arithmetic [93] and add two abstract/fictitious/ghost symbols

∞ and −∞, for which we provide a precise, well-defined semantics.

Although a seeming-minor addition, these symbols add significantly to

the expressivity and power of our logic.

• We use infinities to increase the compositionality of our logic by

showing that “lists” and “bounded lists” are equivalent when the bound

is∞. Infinities also add to our specification framework’s readability and

conciseness. For example, we show that∞ allows us to drop disjuncts in

the specification for code that manipulates a sorted linked list.

• Finally, infinities enable some interesting applications. We apply the

notion of quantifier elimination in Presburger arithmetic with infinities to

infer pure (non-heap) properties of programs.

• Our major technical advance is the development of Omega++, a sound

and complete decision procedure for Presburger arithmetic with infinities

11

(including arbitrary quantifier use). In other words, we do not sacrifice

any of the computational advantage normally gained by restricting

ourselves to Presburger arithmetic, despite the addition of infinities.

• Omega++ is written in the Coq theorem prover [1], allowing us to formally

certify it (modulo the correctness of Omega itself, which we utilize as

our backend). We extract our performance-tuned Coq implementation

into OCaml and package it as a library, which we benchmarked using the

HIP/SLEEK verification toolset [23].

Verified subtyping with traits and mixins

(Chapter 4, first presented in [106])

• We formalize the traits and mixins hierarchies in Scala as required for

checking subtyping. We present an approach based on entailment in

separation logic to verify subtyping.

• We present a domain specific language (SLEEK DSL) which is embedded

in Scala and can support verified subtyping with traits and mixins. The

SLEEK DSL extends the Scala language and allows programmers to insert

separation logic entailments in their code.

• We apply our technique to the Scala standard library and verify subtyping

in 67% of mixins. To the best of our knowledge this is the first such study

of use of traits and mixins with respect to behavior subtyping in Scala.

This shows that even though mixins do not enforce subtyping, 67% of

usage of mixins is in conformance with behavior subtyping.

Specifying compatible sharing in data structures

(Chapter 5, first presented in [107])

12

• We provide a specification mechanism to express different kinds of

sharing and aliasing scenarios. We enhance automated reasoning in

separation logic with new operators (?∪, ∧ and ∧∗). These operators can

capture may, must and partial aliasing scenarios.

• We show, how to check for non interference for data structures with

sharing. By ensuring that shared parts of data structures are accessed

only in a immutable fashion, we can show that the update to the shared

parts will not interfere. This enables us to treat them locally and reason

with the [NONINTER] rule.

• For interfering data structures we provide a method to do automated

ramifications. Ramifications are used to calculate the effect of updating

to one part of a shared structure on the other. Automated ramifications

allow us to use [RAMIFY] rule during entailment and support unrestricted

sharing in data structures.

• Our entailment procedure preserves the principle of local reasoning which

ensures scalability during modular verification.

• We have implemented our procedure in a prototype and applied to a small

benchmark of programs using data structures with complex sharing.

1.3 Outline

The rest of the thesis is structured as follows. In chapter 2, we survey some

related work in the area. In particular, we compare and place our work with

respect to related work in certified programs and proofs, program verification,

program analysis and code synthesis.

13

Chapter 3 presents the first instance of certified reasoning in the form of a

decision procedure for Presburger arithmetic extended with positive and

negative infinities. We discuss the challenges in certifying such a decision

procedure in Coq and also the performance implications. Our implementation

provides an experience report for others interested in enabling certified

reasoning in their program verifier.

Chapter 4 presents an instance of certified program, a type checker which

provides verified subtyping with traits and mixins. We describe our reduction

from subtyping to entailment proving and the use of SLEEK DSL to support

separation logic formulas in Scala. The next two chapters present an instance

of certified proof, where the soundness of the compatible sharing technique is

established in Coq.

Chapter 5 discusses verification of sharing without interference. We

introduce the notion of memory specification with field annotations to handle

verification of sharing without interference. The field annotations help in

deciding compatible sharing between data structures while the memory

specification enables us to support various aliasing and sharing scenarios. Our

implementation can do automated verification of several challenging programs

with sharing.

Chapter 6 considers the case with interference. To support verification of

algorithms with unrestricted updates on shared parts, we use the [RAMIFY] rule.

We present a method to automate the verification of ramifications in separation

logic using lemmas. Our implementation can do automated verification of

several challenging programs including DAG and graph marking algorithms.

Finally, we conclude in chapter 7, with some pointers for future work. In

particular, for future work we are interested in reducing the annotation burden

on the user for the current technique. Our extended logic captures various

14

sharing and aliasing scenarios that can be used to infer shape predicates for

programs using such structures. Aliasing and deep sharing are challenging

problems for current shape analysis tools. We can capture more precise shape

predicates using the various sharing operators (?∪, ∧ and ∧∗) described in this

thesis. In addition, this thesis lays the foundations for certified reasoning. The

eventual goal of certified reasoning is to build more trust in formal tools by

doing machine checked proofs of their correctness. Other potential application

targets for certified reasoning include symbolic execution engines

[101, 105, 102], program analyzers and model checkers.

15

16

Chapter 2

Related Work

There is a rich body of research focused on designing specification languages for

verification of object oriented and imperative systems. We first mention some

general verification related work and then survey more deeply, research in the

area of certified proofs and programs.

The Java Modeling Language (JML) [18, 15] and related tools allow Hoare

style pre and post conditions specification for verification of Java programs. In

JML, users can annotate classes and methods with specifications that are

checked automatically by the verifier. Specifications are written as Java

annotations and can be compiled by any Java compiler. The limitation when

using the same language for specification and development is that certain

properties are hard to specify. In particular, the relationship between object

references and aliasing of fields are harder to capture in JML. In comparison

our framework is based on separation logic which allows to express properties

about shared mutable data structures in a concise and precise manner.

Dafny [97] is recent verifier based on implicit dynamic frames which can

be used to check functional properties of .NET programs. Dynamic frames also

use the concept of framing which is essential in separation logic. However, in

17

dynamic frames, there is additional annotation burden on the user to specify the

frame for each method. So, in addition to the pre and post conditions the user

also needs to provide a modifies condition which captures the parts of heap that

are used and changed by the method. Dynamic frames inherit the benefit of

local reasoning as the parts unchanged by the method can be framed out.

Separation logic based entailment checkers typically have the ability to infer

the frame during the entailment. Our proposal builds on the frame inference

capability of such an entailment checker. We enhance the frame inference to

allow us to do framing in the presence of sharing in heap. Sharing with

noninterference can be supported by checking for compatibility prior to

framing and then allowing shared parts to be framed as well. Chalice [69]

extends Dafny to verify concurrent programs. The benefits of framing carry

over to the concurrent case as well. Thus, it is possible to allow different

threads to modify same global state as long as they are not interfering.

On the other hand, for separation logic, we have VeriFast [48], a verifier for

C and Java programs which supports multiple threads and lock based

reasoning. In VeriFast, users provide pre and post specifications, loop

invariants, lemmas and proof guidance. The tool then checks automatically if

the program can be validated with the given specifications. In contrast, we do

not require users to give proof guidance for automated verification. In fact, our

entailment procedure is lifted to a set of states to do proof search while

checking an entailment. We exploit this capability of our entailment system to

implement automated ramifications and compatible sharing without asking the

user for guidance during proofs. We support user defined predicates and user

specified lemmas that allow flexibility in expressing different shape predicates.

Lemmas are also applied automatically in a goal directed fashion to support

verification.

18

Our work builds on the work of verification by separation logic based

approaches. The general framework of separation logic is undecidable and

Berdine et al. proposed a decidable fragment in [7]. They also developed the

first verification tool Smallfoot [9] which is based on symbolic execution [8] of

separation logic formulas. Shape predicates supported by Smallfoot are limited

to list segments. List segments are not sufficient for verifying properties of

programs manipulating more complex shapes like binary search trees and AVL

trees. Their work was extended to work with user defined predicates [23] and

user specified lemmas [83] and implemented in the HIP/SLEEK [21]

verification system.

In HIP/SLEEK, the user needs to only provide annotations for pre and post

conditions (along with loop invariants). The tool can do automated verification

of programs using complex shapes like binary search trees, AVL trees and red

black trees. HIP/SLEEK verifier also supports verification of numerical and set

properties. In order to handle sharing in data structures we need to reason over

the set of addresses that the predicates corresponding to the data structure hold

over. We use the set of addresses to capture the memory region represented by

the predicate and check for noninterference over memory regions. Doing so lets

us avoid unnecessary unfolding of predicate definitions and reduces the test for

compatibility to be a simple syntactic check.

Several further optimizations [24, 25, 65, 100] have been implemented by

verifiers using separation logic. The specialization calculus (described in [24])

allows a more efficient way to handle disjunctive predicates that arise while

verifying programs with inductive shape definitions. The specialization was

essential to verify certain programs and algorithms with large disjuncts in their

predicate definition. Our entailment procedure is implemented inside such a

system and benefits from all existing and future advancements done for

19

efficient processing of formulas. These issues are orthogonal to our work

which handles sharing and aliasing inside an entailment procedure for

separation logic formulas.

Separation logic has also been successfully applied to verify object oriented

programs [22, 32] where the principle of abstraction and separation [89] can be

used to model inheritance and information hiding [90]. Separation logic based

techniques provide a natural way to express abstraction and information hiding

found in object oriented programs. These verifiers allow supporting behavior

subtyping and other object oriented patterns in the programs.

The success of separation logic for verification of heap manipulating

programs is due to the ability to specify disjoint regions of memory and enable

local reasoning with the frame rule. In addition, many other formalisms have

been proposed for shape analysis of data structures. This includes the work of

Moeller and Schwartzbach [79] in Pointer Assertion Logic (PAL) which uses

second-order monadic logic for specification. In PAL shape invariants for loop

and function calls must be supplied by the programmer and checked by MONA

tool. Sagiv et al. [98] presented a parameterized framework for shape analysis

using 3-valued logic (TVLA) . In TVLA, based on the properties expected of

data structures, programmers must supply a set of predicates to the framework

which are then used to analyze that certain shape invariants are maintained.

Kuncak et al. [61] used role type system to specify legal aliasing

relationships. Their role system allows the programmer to specify as role

constraints, the legal aliasing relationships that define the roles for objects,

fields and parameters. An inter-procedural and context sensitive role analysis

algorithm can then verify that a program maintains user-supplied role

constraints. Hackett and Rugina [40] proposed a region-based shape analysis

where shape abstraction is built on region abstraction. Their region analysis

20

identifies points-to relation between memory regions, while their shape

analysis abstracts the state of each individual heap location by keeping track of

the reference counts from each region to the tracked location. Most of the

above techniques only focus on analysis shape invariants and do not attempt to

track the size properties of data structures. In addition, they do not work well

with aliasing and sharing in heap. By developing a richer specification

mechanism that can capture the different aliasing and sharing situations we

allow programmers to verify data structures with complex sharing.

Another related methodology for automated verification is that of model

checking. It is a push button technique based on state space search that does

not impose a large annotation burden on the user. There are several popular

model checkers like PAT [111] and SPIN [103] that have been applied for

verification of real time systems (e.g. cardiac pacemaker [99]). The

specification language used in model checkers (such as PROMELA for SPIN)

is usually not executable although it is possible to extract an implementation

[104] from the model after verification. In this thesis, we focus on a

specification and verification based system instead as it allows us to capture

more expressive properties.

This covers the brief overview of the work related to general verification of

programs and shape analysis. In the next four sections, we review and discuss

in more detail, closely related research to certification, verification, analysis and

synthesis.

2.1 Certified Programs and Proofs

In recent years, there have been several projects that have looked at certifying

large software like operating systems, compilers and databases. The CompCert

21

[70] project has produced a certified compiler for a large subset of the ANSI

C language. The correctness of the compiler has been mechanized in the proof

assistant Coq. In a recent study of bugs in C compilers [19], CompCert was the

only one which did not have any bugs in its implementation. This reinforces the

importance of certification and mechanized proofs in programming.

Considerable progress has also been made towards certified operating

systems, the seL4 OS kernel [57] was certified using the Isabelle/HOL proof

assistant. The entire certification process took several man years to complete.

Stewart et. al. [110] have built a certified heap theorem prover based on

separation logic. The theorem prover is based on a decision procedure for the

list segment fragment and cannot handle other kinds of data structures.

Certified programs have also found applications in program analysis [3]. Our

proposal of certified reasoning is similar in spirit to existing works on certified

programs and proofs. However, instead of trying to verify the entire system we

take a pragmatic approach and certify different components that form the core

of the reasoning required for automated verification. This way we build on top

of the success of existing work and extend it to support newer domains

(Presburger arithmetic with positive and negative infinity) and applications

(sharing in data structures).

2.2 Logics and Verification

In order to understand better the existing work on logics related to sharing let

us define some preliminary notions. Let s, h |= Φ denote the model relation,

i.e. the stack s and heap h satisfy the constraint Φ. Where we define stacks

(total mapping between variables and values) and heaps (partial map between

locations and values) in the usual way. With this we can define the separation

22

conjunction ∗ as follows.

s, h |= κ1∗κ2 iff ∃h1, h2 h1⊥h2 and h = h1·h2 and

s, h1 |= κ1 and s, h2 |= κ2

Here h1⊥h2 represents disjoint heaps h1 and h2, while h1 · h2 is the disjoint

union. The ∗ helps in capturing heaps that are not aliased, as an example

consider the following pointers x and y which are known to be not aliased.

x 7→ ∗ y 7→

Our sharing and aliasing logic is most closely related to Hobor and Villard

[46]. They present the [RAMIFY] rule of separation logic and show how to

reason (paper and pen) with graphs, DAGs and overlaid structures using their

ramification library. Our work can be seen as a specific instance where we seek

to automatically verify programs with sharing that lead to ramifications in the

proof. Hobor and Villard use the operator of overlapping conjunction (?∪) to

specify shared heaps between two predicates. The ?∪ operator can be defined as

the follows:

s, h |=κ1?∪κ2 iff ∃h1, h2, h3 h1⊥h2⊥h3 and h = h1·h2·h3 and

s, h1·h3 |= κ1 and s, h2·h3 |= κ2

The ?∪ operator allows us to represent aliased (or overlapping) heap (h2).

This is useful to capture may aliasing, as an example if the pointers x and y may

be aliased we can express them as the following formula.

x 7→ ?∪y 7→

On the other hand the ∧ operator is defined as follows.

23

s, h |=κ1∧κ2 iff s, h |= κ1 and s, h |= κ2

The ∧ operator is helpful in expressing must aliasing in heap. If we know

that pointers x and y are aliased, then we can represent them using the following

formula.

x 7→ ∧ y 7→

Together these operators can handle a variety of sharing and aliasing

scenarios (we defer the discussion of ∧∗ operator to chapter 5 as it requires some

additional notions). In addition it is useful to define the −−#∗ operator which can

help in capturing state which may be missing some heap. It is defined as

follows.

s, h |=κ1−−#∗κ2 iff ∃h1, h2 h2 = h1 · h

s, h1 |= κ1 and s, h2 |= κ2

As an example consider the following formulas.

x 7→ −−#∗(x 7→ ∗ y 7→) ≡ y 7→

x 7→ −−#∗(x 7→ ?∪y 7→) ∗ x 7→ ≡ (x 7→ ?∪y 7→)

Table 2.1 provides a list of the various operators used in this thesis. The use

of new operators for handling sharing is further motivated by recent discovery

of sepish operator by Gardner et al. [36] in the context of verification of

JavaScript programs. However, they present only the logic and do not provide

an automated system for reasoning. The operator which supports overlapping

heaps is notoriously hard to reason with in an automated fashion and thus most

tools do not support it.

24

Table 2.1: List of Operators based on Separation Logic

Name Symbol Description
Separating Conjunction ∗ disjoint objects
Conjunction ∧ same objects
Overlaid Conjunction ∧∗ same object disjoint fields
Overlapping Conjunction ?∪ overlapping objects
Septraction −−#∗ there exists an object inside another

The concept of ramification was introduced by Krishnaswami et al. [60] for

verifying event-driven programs. They show how to calculate ramified frames

in a domain specific logic with particular semantics. The frame captured in their

logic has a ramification operator defined on it. The ramification operator helps

to calculate the changes to other parts of structure in presence of sharing.

Other formalisms to reason with shared structures include logics for

reasoning with graphs [17] and views [49]. Prior logics for graphs do not focus

on spatial aspects of how the graph may be represented in a program. However,

they provide mechanisms to express different mathematical graph

transformations in a specification language. In contrast, we are focused on

automated verification of shared structures as they are represented in program

by programmers. This enables us to directly verify code that may be written by

users without transforming it to some mathematical model.

The problem of sharing has also been explored in the context of concurrent

data structures and objects [31, 112]. The concurrent abstract predicates of

Young et al. use the −−#∗ operator and shared memory regions for verifying

concurrent data structures. Our work is influenced by them but for a sequential

setting, indeed the notion of self-stable concurrent abstract predicates is

analogous to our condition for noninterference. Concurrent abstract predicates

25

implement control using resource permissions, with the property that the

permissions must ensure that a predicate is self-stable: that is, immune from

interference from the surrounding environment. Predicates are thus able to

specify independent properties about the data, even though the data are shared.

The check for noninterference in a sequential setting is much simpler. We use

the memory specifications to syntactically check predicates with compatible

sharing. Even though, we are reasoning in a sequential setting the use of heap

by different predicate may correspond to different access patterns. These

access patterns need to be verified to ensure that they do not lead to

interference.

Regional logic [5] also uses a notion of set of addresses as footprint of

formulas. These regions are used with dynamic frames to enable local

reasoning of programs. The frames are captured using read and write effects in

regional logic. As an example consider the following assignment.

{x 6= null}

y = x.left;

{y = x.left}[wr y]

Here [wr y] captures the write effect of the assignment command. In regional

logic one can conjoin an invariant I on both sides if the write effect of the

command doesn’t affect it. For this example we can use the standard rule of

consequence and get the following.

{x 6= null ∧ I}

y = x.left;

{y = x.left ∧ I}[wr y]

In contrast, we allow users to specify predicates with set of addresses. The

26

set of addresses are checked by the tool to ensure that they cover the footprint of

the formulas. Our entailment procedure can do frame inference and we do not

need to specify framing conditions with methods. Memory layouts [37] were

used by Gast, as a way to formally specify the structure of individual memory

blocks. A grammar of memory layouts enable distinguishing between variable,

array, or other data structures. When dealing with shared regions of memory,

knowing the layout of memory can be quite helpful for reasoning. Our notion

of memory specification is not general enough to reason with layouts but we

use a Java like model with objects and fields with fixed layout. The overlapping

between heap nodes is restricted by this model to be only between corresponding

fields that respect the fixed object and field layout.

In the next section, we will discuss some work related to type systems and

program analysis which aims to tackle sharing, with special emphasis on heaps

and aliasing.

2.3 Program Analysis and Type Systems

In the area of program analysis, the work most closely related to ours is by Lee

et al. [68] on overlaid data structures. They show, how to use two

complementary static analysis over different shapes and combine them to

reason about overlaid structures. Their shape analysis uses the ∧ operator in

the abstract state to capture the sharing of heaps in overlaid structures (see fig.

2.1), but they do not provide a general way to reason with shared heaps. They

also require the use of ghost instructions and ghost state to transfer information

between the sub-analyses. These instructions are used to control

communication among the sub-analyses. The purpose of this control is to

achieve a high level of efficiency by allowing only necessary information to be

27

transferred among sub-analyses at as few program points as possible. Their

analysis has been used to prove memory safety of the Linux deadline IO

scheduler and AFS server.

Figure 2.1: Overlaid Data Structure

A separation logic based program analysis has been used to handle non-

linear data structures like trees and graphs [20]. In order to handle cycles they

keep track of the nodes which are already visited using multi-sets. In our work,

with graphs, we do not need to explicitly track nodes or do any other global

analysis. This is the key to compositional and modular proof which leads to

a more natural and easy specification. Shape analysis for other composite and

complex structures has been done through the use of higher-order predicates

[6] and abstract modeling of containers [30]. These approaches cannot handle

unrestricted sharing and aliasing across containers.

The importance of noninterference was described by Boyland in his work

on fractional permissions [14]. Usually noninterference is used in the context of

concurrency, we define a similar notion for shared heaps. Fractional permissions

can be used to check for noninterference. However, in our work, we use a

simpler construct using annotations on fields and memory regions.

The field annotations help in specifying the cases when the memory cells

are aliased (overlapped) and the fields are disjoint (overlapping). It is useful to

28

specify multiple views over the same set of memory cells (e.g. overlaid data

structure). The following table shows a comparison between field annotations

and fractional permissions.

Table 2.2: Comparing Field Annotations with Fractional Permissions

Annotation Permission Fractional Permission
@M Mutable 1
@I Immutable 0 · · · 1
@A Absent existential

The immutability annotation when applied to field, differs from fractional

permission [14], in that it retains full ownership of field, while the read-only

property is being imposed. They are helpful for automatic verification of

predicates with compatible sharing without the need for solvers with fractional

reasoning capability. Reasoning with fractions requires the use of special

provers that can handle fractional constraints and many other tools like Chalice

[69] and VeriFast [48] provide abstractions to hide fractions from users.

Recently a type system for borrowing permissions [81] was proposed by Naden

et al. which avoids the use of fractions and relies on access permission based

annotations. In the next section, we review some work related to program

synthesis.

2.4 Data and Code Synthesis

The problem of developing programs which use sharing in data structures has

been considered challenging enough that there has been some work to

automatically synthesize correct code for such programs. In [41] Hawkins et

al. describe a high level relational algebra based specification mechanism to

specify complex sharing, which is then used to generate the physical data

29

structure that has sharing. They allow users to choose from several base data

structures like lists, containers and hash tables that are later fused (composed)

together to create composite structures with sharing to enable better and more

efficient retrieval.

They extend their approach in [42] to generate data representation as well

as the code to query the data structure in the form of relational queries. In their

paper they identify the challenge of specifying invariants on multiple

overlapping data structures and mention that existing verification techniques

are insufficient to reason about them. Our work can be seen as an attempt to

provide a specification and verification mechanism for such shared structures.

Synthesis based approaches [41, 42] restrict the potential use of the

generated data structure. The only way to use the structure is by querying over

a fix set of generated access functions. In contrast, verification of such complex

structures allows us to reason with arbitrary code that may manipulate these

structures. In addition synthesis can help in generating new code and data

structures but is not useful for verifying the existing code which uses

non-trivial sharing. Moreover, the use of relational operators for querying

though intuitive and declarative is already difficult to reason with when used

along with concurrent structures [43] and requires separate lock placements.

In this thesis, we take a verification based perspective on the problem and

provide mechanisms to specify precisely the sharing in data structures. In

comparison to prior work we present the first automated verification method to

handle different kinds (may, must and partial) of sharing in data structures. We

have implemented our approach in a prototype and can verify several

challenging new and existing examples of programs using such sharing in data

structures.

30

Chapter 3

Certified Reasoning with Infinity

We demonstrate how infinities improve the expressivity, power, readability,

conciseness, and compositionality of a program logic. We prove that adding

infinities to Presburger arithmetic enables these improvements without

sacrificing decidability. We develop Omega++, a Coq-certified decision

procedure for Presburger arithmetic with infinity and benchmark its

performance. Both the program and proof of Omega++ are parameterized over

user-selected semantics for the indeterminate terms (such as 0 *∞).

3.1 Introduction

Formal software analysis and verification frameworks benefit from expressive,

compositional, decidable, and readable specification mechanisms. Of course,

these goals often conflict with each other: for example, it is easy to add

expressivity if one is willing to give up decidability! Happily, we have found a

free lunch: by adding the notion of “infinity” to the specification language we

can usefully add to the expressivity, readability, and compositionality of our

specifications while maintaining their decidability.

31

Specifically, we start from the well-established domains of separation logic

[96] and Presburger arithmetic [93] and add two abstract/fictitious/ghost

symbols ∞ and −∞, for which we support a precise, well-defined semantics.

Although a seeming-minor addition, these symbols add significantly to the

expressivity and power of our logic.

In section 3.2.3 we use infinities to increase the compositionality of our logic

by showing that “lists” and “bounded lists” are equivalent when the bound is

∞. Moreover, in section 3.2.4, we use ∞ to mix notions of partial and total

correctness within a logic.

Infinities also add to our specification framework’s readability and

conciseness. For example, we will see in section 3.2.2 that∞ allows us to drop

disjuncts in the specification for code that manipulates a sorted linked list.

Finally, infinities enable some interesting applications. In section 3.2.5 we

apply the notion of quantifier elimination in Presburger arithmetic with infinities

to infer pure (non-heap) properties of programs.

All of the previous gains are worthy in their own right, but our major

technical advance is the development of Omega++, a sound and complete

decision procedure for Presburger arithmetic with infinities (including arbitrary

quantifier use). In other words, we do not sacrifice any of the computational

advantage normally gained by restricting ourselves to Presburger arithmetic,

despite the addition of infinities. We call our tool “Omega++” both to

acknowledge the importance of the underlying Presburger solver Omega [55]

and because we believe we have modestly incremented its utility.

Omega++ is written in Gallina, the specification language of Coq [1],

allowing us to formally certify it (modulo the correctness of Omega itself,

which we utilize as our backend). We extract our performance-tuned Gallina

into OCaml and package it as a library, which we have benchmarked using the

32

HIP/SLEEK verification toolset [23].

One notable technical feature of Omega++ is that it can handle several

semantic variants of Presburger arithmetic with infinity. For example,

Presburger arithmetic usually admits multiplication by a constant as a

notational convenience, e.g. 3 · x def
= x + x + x. This obvious-seeming

convenience becomes a little less obvious when one adds infinities: what is

0 · ∞? Mathematical sophisticates can—and do—disagree: some prefer 0 as a

convention in certain contexts (including, reasonably, ours) [78], while others

prefer the result to be undefined due to the indeterminate status of the

corresponding limit forms [59]. When possible, Omega++ takes an agnostic

approach to such disagreements by allowing the user to specify the semantics

of some subtle cases. Omega++ is thus a certified compiler from a set of

related source languages (Presburger arithmetics with infinities) to a fixed,

well-understood target (vanilla Presburger).

The rest of the chapter is structured as follows. In section 3.2 we

demonstrate the value of adding infinities to Presburger arithmetic. In

section 3.3 we develop a precise formal semantics for Presburger arithmetic

with infinities. In section 3.4 we describe the algorithm for the decision

procedure and state its key properties, all of which have been verified in Coq

for our optimized implementation. In section 3.5 we discuss the

implementation itself and in section 3.6 we benchmark its performance.

Finally, in section 3.7 we describe some related work and conclude.

Omega++ is available for download and experimentation here:

http://loris-7.ddns.comp.nus.edu.sg/˜project/SLPAInf/

33

http://loris-7.ddns.comp.nus.edu.sg/~project/SLPAInf/

3.2 Motivation

In this section, we highlight the benefits of augmenting a specification logic

with infinities. For consistency we focus on separation logic [47, 96] but other

specification mechanisms which rely on Presburger arithmetic can enjoy similar

benefits.

3.2.1 Orientation

Our flavor of separation logic is based on the HIP/SLEEK system [23], letting us

run tests and benchmarks with a state-of-the-art verification toolchain. Methods

are specified with a pair of pre- and postcondition (Φpr, Φpo), with the keyword

res allowed in the Φpo to refer to the return value. We have enhanced the logic

to allow the symbols∞ and −∞ where it would normally require integers; we

also allow quantification over infinities.

SL + Inf. PA + Inf. PA

OmegaOmega++HIP/SLEEK

Figure 3.1: Our setup: SL + Inf to PA

From a systems perspective, our

setup is sketched in figure 3.1.

First, entailment between separation

logic formulae with infinities in

HIP/SLEEK is reduced (à la Chin et

al. [23]) to entailment between numeric formulae in Presburger arithmetic with

infinities (PAInf). Our main contribution is the next phase, detailed in section

3.4, in which we translate PAInf to vanilla Presburger arithmetic (PA). Finally,

we discharge PA proof obligations with Omega. There are other combinations

of separation logic with extensions of PA (such as sets/multisets) that can be

used to enhance the specification and verification process. We discuss them in

section 3.7.2 with related work.

34

3.2.2 Infinities enable Concise Specifications

Let’s start to see what infinities can buy us! Consider a simple program that

inserts a new node into a sorted linked list, whose nodes are defined as follows:

data node {int val; node next; }

The data field val stores numerical information and the pointer field next

points to the subsequent node in the structure. Consider two alternative

inductive predicates that characterize sortedness using only a single numeric

parameter1 that describes the list’s minimum value:

Scenario 1 - no infinity enhancement:

sorted ll〈root, min〉 ≡ root7→node〈min, null〉

∨ ∃ q, mtail · (root7→node〈min, q〉 ∗ sorted ll〈q, mtail〉 ∧ min≤mtail)

Scenario 2 - with infinity enhancement:

sorted ll〈root, min〉 ≡ (root=null ∧ min=∞)

∨ ∃ q, mtail · (root7→node〈min, q〉 ∗ sorted ll〈q, mtail〉 ∧ min≤mtail)

The base case of Scenario 1 denotes a singleton, while its inductive case

describes a linked list of length at least two. Though usable, this definition has a

frustrating shortcoming: it cannot handle empty linked lists, since such lists do

not have a finite minimum value. In contrast, Scenario 2 handles the empty list

gracefully since the minimum of an empty list can be defined to be just∞!

The code for insert is in figure 3.2. Parameter x points to a sorted linked

list, while y is the data node we wish to insert (preserving sortedness). Notice

1Note that there are other ways of specifying sortedness, such as through the use of multi-set,
that may also capture stronger properties, like content preservation. However, they may require
more complex provers in their reasoning.

35

node insert(node x, node y){
if (x == null) return y;
else {
if (y.val <= x.val){
y.next = x;
return y;
} else {
x.next = insert(x.next, y);
return x;

} } }

Scenario 1 :
Φpr : y7→node〈v, null〉 ∧ x=null

∨ sorted ll〈x, a〉 ∗ y7→node〈v, null〉
Φpo : sorted ll〈res, b〉 ∧ x=null ∧ b=v

∨ sorted ll〈res, b〉 ∧ b=min(a, v)

Scenario 2 :
Φpr : sorted ll〈x, a〉 ∗ y7→node〈v, null〉
Φpo : sorted ll〈res, b〉 ∧ b=min(a, v)

Figure 3.2: Two pre-/postconditions for insertion into a sorted linked list

36

that the pre/post specifications in Scenario 1 require disjunctions to separate the

cases when x is empty and nonempty, whereas Scenario 2 handles both cases

uniformly. Infinities thus enable more concise and readable (easy to maintain)

specifications.

3.2.3 Infinities increase Compositionality

Consider this definition for an n-node linked list whose values are bounded by

b:

llB〈root, n, b〉 ≡ (root=null ∧ n = 0)

∨(∃ q, v · root7→node〈v, q〉 ∗ llB〈q, n− 1, b〉 ∧ v ≤ b)

Suppose we have a function f which uses this definition in its precondition:

Φpr : llB〈x, n, m〉 ∗ . . .

where x points to a linked list bounded by m. Next, suppose we call f from

a program point where the only available information involves the shape and

length of a linked list x (that is, we have no information about its bound), e.g.

we satisfy the predicate ll〈x, n〉 as defined below:

ll〈root, n〉 ≡ (root=null ∧ n=0)∨ ∃ q · (root7→node〈 , q〉 ∗ ll〈q, n− 1〉)

With infinities this is easy: just instantiate m to∞ since

ll〈x, n〉 ↔ llB〈x, n,∞〉

37

Without infinities, however, this is not so easy since we must first determine an

appropriate bound for x’s values. Thus, infinities increase the compositionality

of our logic, which in turn improves the reusability and conciseness of our

specifications.

3.2.4 Infinities support (Non-)Termination Reasoning

Le et al. [66] developed a technique to reason about termination and

non-termination with a resource constraint RC〈min, max〉 that tracks the

minimum and maximum permitted execution steps. Using Presburger

arithmetic with infinity, terminating programs are modeled by

RC〈 , max〉 ∧ max<∞ and non-terminating programs are captured by

RC〈∞,∞〉. Le et al. [66] evaluated the semantics of non-termination reasoning

with the help of Omega++.

As an example consider the following predicate definitions for a finite list

segment and a circular list.

ls〈root, p, n〉 ≡ (root=p ∧ n=0)

∨ ∃ q · (root7→node〈 , q〉 ∗ ls〈q, p, n− 1〉 ∧ root6=p)

cll〈root, n〉 ≡ ∃ q · (root7→node〈 , q〉 ∗ ls〈q, root, n− 1〉)

Figure 3.3 demonstrates these resource constraints on a length function for

linked lists. We show two specifications: the first shows that length terminates

on finite lists ls, and the second shows that length diverges on circular lists

cll.

38

int length(node x){
if (x == null)
return 0;
else

return (1 + length(x.next));
}

Termination Spec :
Φpr : ls〈x, null, n〉 ∗ RC〈 , M〉

∧ n<M ∧ M<∞
Φpo : ls〈x, null, n〉 ∗
RC〈 , M− (n + 1)〉 ∧ res=n

Non-Termination Spec :
Φpr : cll〈x, n〉 ∗ RC〈∞,∞〉
Φpo : false

Figure 3.3: length terminates on proper lists and diverges on cyclic lists

3.2.5 Infinities support Analysis via Quantifier Elimination

Algorithmic quantifier elimination (QE) is a powerful technique for decision

procedures in symbolic logic [52]. Kapur highlights the importance of

geometric QE heuristics for the case of generating program invariants,

distinguishing between octagonal and max-plus invariants [53]. While Kapur

exploits the structure of verification conditions generated from numerical

programs, we focus on generating inductive invariants for programs

manipulating dynamically allocated data structures.

void append(node x, int a){
if (x.next == null)
x.next = new node(a, null);

else

insert(x.next, a);
}

Shape Spec :
Φpr : ll〈x, 〉∧x6=null

Φpo : ll〈x, 〉∧x6=null

Spec with Inferred Pure :
Φpr : ll〈x, n〉 ∧ n>0
Φpo : ll〈x, n + 1〉 ∧ n>0

Figure 3.4: Pure Specification Inferred from PAInf QE

Consider the code in figure 3.4, which appends a node to the end of an

acyclic linked list. The first specification only captures shape; it would be useful

to infer size properties as well. We can do so by using PAInf-based QE to

support inference of octagonal constraints with infinities in the presence of heap-

39

based verification. Forward reasoning generates relational obligations which

are then discharged by QE over PAInf, leading to the second specification with

numeric properties. In addition to the octagonal constraints we can also infer

constraints over min and max relations.

3.3 Syntax and Parameterized Semantics

There are several benefits of adding the notion of infinity to a program logic.

However, due to the presence of certain terms like (∞−∞), it is an interesting

problem to define the correct (or rather desired) semantics. We will now proceed

to a formal discussion of Presburger arithmetic with infinity.

Our constraint language extends Presburger arithmetic with two abstract

symbols designating positive (∞) infinity and negative (−∞) infinity. The

language is detailed in figure 3.5. However, we would like to make some extra

notes. First, we use a type based approach to distinguish between the domain

of variables. The notation w : τ denotes that the variable w is of type τ .

Second, for performance reasons that are explained in section 3.5 we do not

aim for a minimal input constraint language. That is the reason why the input

language also supports min and max constraints. The min and max constraints

in the input language are automatically translated to min= and max= (using the

following rewriting rules π ; [v/max(a1,a2)]π ∧ max=(v, a1, a2) and

π ; [v/min(a1,a2)]π ∧min=(v, a1, a2)).

Next, we present the parameterized semantic model for PAInf and establish

theorems and lemmas that show the correctness of our decision procedure. All

theorems and lemmas in this chapter are machine checked in Coq. Parameters

are introduced to adapt different possible ways of handling the tricky parts of

PAInf, such as the terms (∞ − ∞) and (0 × ∞). Since our semantics is

40

π ::= β | ¬π | π1∧π2 | π1∨π2 | π1→π2 | ∃(w : τ)·π | ∀(w : τ)·π
β ::= true | false | a1<a2 | a1≤a2 | a1=a2 | a1 6=a2

| a1 ≥ a2 | a1 > a2
a ::= k | v | c×a | a1 + a2 | −a | a1 − a2 | max(a1,a2) | min(a1,a2)
k ::= c | ∞ | −∞

where v, w are variable names; c is an integer constant

Figure 3.5: PAInf: Input Constraint Language

parameterized, all procedures, theorems and lemmas based on the semantics

are also parameterized. We start by defining an environment to map variables

to values.

Definition 1. An environment for a universe τ of concrete values is a function

φτ : V → τ from the set of variables V to τ . For such a φτ , we denote by

φτ [x 7→ a] the function which maps x to a and any other variable y to φτ (y).

We define the semantics of arithmetic operations and relations for PAInf

formally in figure 3.6 and 3.7 (denoted by JβKZ∞). The subscript of JK denotes

the domain of constants. Z∞ means Z ∪ {∞,−∞}. By analogy, JβKZ means

the domain is Z. With these definitions one can compute every atomic term into

a truth value with respect to an environment φτ and domain of constants η as

described in figure 3.8, and denoted by EVALηφτ .

We define the satisfaction relation φτ |=sat
η π and dissatisfaction relation

φτ |=dst
η π (in figure 3.9) for each logical formula π over the environment φτ

and domain of constants η by structural induction on π. Sometimes, a formula

π can neither be satisfied nor be dissatisfied. In that case, we say π is

undetermined, which can be presented as φτ |=udt
η π. We define two distinct

relations for satisfaction and dissatisfaction as we support both two-valued and

41

[ADDITION]

Jk1 + k2KZ∞
def
=



⊥ k1 or k2 is ⊥
⊥ k1 =∞, k2 = −∞
⊥ k1 = −∞, k2 =∞
∞ k1 or k2 is∞, and neither is −∞
−∞ k2 or k2 is −∞, and neither is∞
Jk1 + k2KZ k1 and k2 are finite

[LESS−THAN−EQ]

Jk1 ≤ k2KZ∞
def
=



F/U k1 or k2 is ⊥
T k2 =∞
T k1 = −∞
T k1 = k2 =∞
T k1 = k2 = −∞
F k1 =∞, k2 6=∞
F k1 6= −∞, k2 = −∞
Jk1 ≤ k2KZ k1 and k2 are finite

[IDENTITY]

JkKZ∞
def
= k

[NEGATION]

J−kKZ∞
def
=


⊥ k = ⊥
∞ k = −∞
−∞ k =∞
J−kKZ k is finite

Figure 3.6: Main Operations and Relations in Z∞

three-valued logic. In case of three-valued logic a formula can be neither

satisfied nor dissatisfied (undetermined).

Much of the semantics for PAInf is “as you might expect”. For example,

when all the values are finite, all of the operations and relations behave the same

way they would in PA. On the other hand, any finite value plus ∞ equals ∞

and any finite value plus −∞ equals −∞. It is trickier to figure out what to do

with the sum of∞ and−∞; we treat this as a meaningless value (much like the

“value” of 0
0

in the reals) denoted by “⊥”. If∞ and−∞ were actually inverses,

42

[OTHER−OPERATIONS−AND−RELATIONS]

J0× kKZ∞
def
=

{
0 k is finite
0/⊥/k k is not finite

Jc× kKZ∞
def
=


J0× kKZ∞ c = 0

k c = 1

Jk + (c− 1)× kKZ∞ c > 1

J−((−c)× k)KZ∞ c < 0

Jk1 ≥ k2KZ∞
def
= Jk2 ≤ k1KZ∞

Jk1 > k2KZ∞
def
= Jk1 ≥ k2KZ∞ ∧ Jk1 6= k2KZ∞

Jk1 6= k2KZ∞
def
= ¬Jk1 = k2KZ∞

Jk1 = k2KZ∞
def
= Jk1 ≤ k2KZ∞ ∧ Jk2 ≤ k1KZ∞

Jk1 − k2KZ∞
def
= Jk1 + (−k2)KZ∞

Jk1 < k2KZ∞
def
= Jk1 ≤ k2KZ∞ ∧ Jk1 6= k2KZ∞

Jmax=(k1, k2, k3)KZ∞
def
= (Jk1 = k2KZ∞ ∧ Jk3 ≤ k2KZ∞)
∨(Jk1 = k3KZ∞ ∧ Jk2 ≤ k3KZ∞)

Jmin=(k1, k2, k3)KZ∞
def
= (Jk1 = k2KZ∞ ∧ Jk2 ≤ k3KZ∞)
∨(Jk1 = k3KZ∞ ∧ Jk3 ≤ k2KZ∞)

Figure 3.7: Other Operations and Relations in Z∞

we would need to admit the following whopper:

0 = ∞+−∞ = ∞+ (−∞+ 1) = (∞+−∞) + 1 = 1

In fact there is no perfect solution, since it is impossible to add a finite

number of symbols to Z while remaining a group. Lasaruk and Sturm [64]

propose dodging part of this problem by using only a single value for both

positive and negative infinity, which is both greater than and less than all finite

values. This approach ensures that every sum is defined, although∞ still does

not have an inverse and you lose antisymmetry for ≤. We find the notion of a

single infinity to be too restrictive as it prohibits us from expressing some of

the motivating examples from section 3.2.

43

[ARITH−EVAL]

EVALηφτ (k)
def
= JkKη EVALηφτ (v)

def
= Jφτ (v)Kη

EVALηφτ (c× a)
def
= JEVALηφτ (c)× EVALηφτ (a)Kη

EVALηφτ (a1 + a2)
def
= JEVALηφτ (a1) + EVALηφτ (a2)Kη

EVALηφτ (a1 − a2)
def
= JEVALηφτ (a1)− EVALηφτ (a2)Kη

EVALηφτ (−a)
def
= J−EVALηφτ (a)Kη

[BOOLEAN−EVAL]

EVALηφτ (true)
def
= T EVALηφτ (false)

def
= F EVALηφτ (undefined)

def
= U

EVALηφτ (a1 ◦ a2)
def
= JEVALηφτ (a1) ◦ EVALηφτ (a2)Kη

EVALηφτ (max=(a1, a2, a3))
def
=

Jmax=(EVALηφτ (a1), EVALηφτ (a2), EVALηφτ (a2))Kη
EVALηφτ (min=(a1, a2, a3))

def
=

Jmin=(EVALηφτ (a1), EVALηφτ (a2), EVALηφτ (a2))Kη
where ◦ above means one of ≤,≥, <,>,=, 6=.

Figure 3.8: Evaluations on atomic terms

In addition to the issues with using a single infinity, handling comparisons

with ⊥ is another challenge. A possible solution is treating all comparisons

with ⊥ as false. This is reasonable but not perfect. For example, in this context,

it is not the case that x > y is equivalent to ¬(x ≤ y) when x or y are ⊥.

Interestingly this is the choice made by IEEE floating point standard [2].

Another possibility is to use a three-valued logic and treat any comparison with

⊥ as the “third unknown value”. There are several three-valued logics studied

in the literature [10]. We use Kleene’s weak three-valued logic which interprets

the unknown value as “Error” and propagates it to the entire formula.

The truth tables for this three-valued logic are shown in figure 3.10. In

three-valued logic, when x or y are ⊥, x > y and ¬(x ≤ y) are equivalent. In

Omega++, users can choose between a two-valued or three-valued logic, which

is indicated in [LESS−THAN−EQ] rule given in figure 3.6. Note that in three-

44

φτ |=sat
η β iff EVALηφτ (β) is T.

φτ |=sat
η ¬π iff φτ |=dst

η π holds.
φτ |=sat

η π1 ∧ π2 iff both φτ |=sat
η π1 and φτ |=sat

η π2 holds.
φτ |=sat

η π1 ∨ π2 iff both φτ |=sat
η π1 and φτ |=sat

η π2 holds,
or both φτ |=dst

η π1 and φτ |=sat
η π2 holds,

or both φτ |=sat
η π1 and φτ |=dst

η π2 holds.
φτ |=sat

η π1 → π2 iff both φτ |=sat
η π1 and φτ |=sat

η π2 holds,
or both φτ |=dst

η π1 and φτ |=sat
η π2 holds,

or both φτ |=dst
η π1 and φτ |=dst

η π2 holds.
φτ |=sat

η ∃(w : τ) · π iff φτ [w 7→ k] |=sat
η π holds for some k ∈ τ,

and forall all k ∈ τ , either φτ [w 7→ k] |=sat
η π

or φτ [w 7→ k] |=dst
η π holds.

φτ |=sat
η ∀(w : τ) · π iff φτ [w 7→ k] |=sat

η π holds for all k ∈ τ

φτ |=dst
η β iff EVALηφτ (β) is F.

φτ |=dst
η ¬π iff φτ |=sat

η π holds.
φτ |=dst

η π1 ∧ π2 iff both φτ |=dst
η π1 and φτ |=dst

η π2 holds,
or both φτ |=sat

η π1 and φτ |=dst
η π2 holds,

or both φτ |=dst
η π1 and φτ |=sat

η π2 holds.
φτ |=dst

η π1 ∨ π2 iff both φτ |=dst
η π1 and φτ |=dst

η π2 holds.
φτ |=dst

η π1 → π2 iff both φτ |=sat
η π1 and φτ |=dst

η π2 holds.
φτ |=dst

η ∃(w : τ) · π iff φτ [w 7→ k] |=dst
η π holds for all k ∈ τ

φτ |=dst
η ∀(w : τ) · π iff φτ [w 7→ k] |=dst

η π holds for some k ∈ τ,
and forall all k ∈ τ , either φτ [w 7→ k] |=sat

η π
or φτ [w 7→ k] |=dst

η π holds.

φτ |=udt
η π iff neither φτ |=sat

η π or φτ |=dst
η π holds.

Figure 3.9: Definition of satisfaction relation

valued logic, according to the relation definition in figure 3.9, formulae like

⊥ < 0 are neither satisfied nor dissatisfied.

The definition of multiplication in the presence of infinities (0 × ∞) can

also be selected by the user as shown in figure 3.6. There are three possible

choices for defining 0 × ∞ : 0, ⊥ and ∞. For each of these options we can

choose a two-valued or three-valued logic, thus Omega++ supports six

45

P ¬P
true false

false true

undefined undefined

P Q P ∨Q
true true true

true false true

true undefined undefined

false true true

false false false

false undefined undefined

undefined true undefined

undefined false undefined

undefined undefined undefined

P Q P ∧Q
true true true

true false false

true undefined undefined

false true false

false false false

false undefined undefined

undefined true undefined

undefined false undefined

undefined undefined undefined

Figure 3.10: Truth Tables for Three-valued Logic

different customized semantics in total. As described in section 3.6, for our

experiments we use the semantics with three-valued logic and 0 × ∞ def
= 0.

However, in general any of the six customized semantics can be used as the

decision procedure is parameterized over these choices and our certified proof

guarantees that all choices are sound, complete and decidable.

In order to match the intuition of user, by design, most valid formulae in PA

remain so in our semantics for PAInf, just as most invalid formulae in PA are

46

still invalid in PAInf. Here are two short examples which are valid in both (if

you drop the universe of quantification as you move from PAInf to PA):

∀(x : Z∞)·∃(y : Z∞)·x ≤ y ∀(x : Z∞)·∀(y : Z∞)·x+1 = y+1→ x = y

However, there are differences. This formula is valid in PA but invalid in PAInf:

∀(x : Z∞) · ∃(y : Z∞) · x+ y = 0

The previous formula is false in PAInf when x = ∞. More generally, although

Z∞ is not a group, it still has many useful algebraic properties, such as the

following.

Lemma 3.3.1. + is Associative J(a+ b) + cKZ∞ and Ja+ (b+ c)KZ∞ are equal

or both undefined.

Lemma 3.3.2. + is Commutative Ja + bKZ∞ and Jb + aKZ∞ are equal or both

undefined.

Lemma 3.3.3. 0 is the Additive Identity Ja + 0KZ∞ and a are equal for all

defined a.

Lemma 3.3.4. + is Monotonic If Ja ≤ bKZ∞ is T and if both Ja + cKZ∞ and

Jb+ cKZ∞ are defined, then Ja+ c ≤ b+ cKZ∞ is also T.

3.4 Reasoning with Infinity

For the following discussion we assume the existence of a solver for Presburger

arithmetic (such as Omega [55]). Our focus is to automate the reasoning of

ghost infinities by leveraging on existing solvers.

47

Note that v ∈ Z∞, is the same as, v ∈ Z ∨ v =∞∨ v = −∞. This fact can

be used to give a quantifier elimination procedure for PAInf as shown in figure

3.11. However, using this approach naively leads to an explosion in the size of

formulae to be checked. As an example, consider the following formula,

∀x, y, z · (z=∞∧ y=x + z ∧ x<∞)

Using the [FORALL−INF] rule to eliminate the three quantified variables

(x, y and z), leads to 33 (= 27) constraints. To avoid this problem, we support

both kinds of quantifiers (∃(w : Z) and ∃(w : Z∞)) in the implementation. This

allows for a more efficient quantifier elimination as variables with finite

domain do not give rise to new disjunctions in formulae. Since, infinity is

added as a ghost constant only in the specification logic, all program variables

are still in finite domain. Supporting two kinds of quantifiers matches nicely

with the distinction between the domain of specification variables (Z∞) and

program variables (Z). In section 3.6 we compare our system with an

implementation of PAI from [64] and demonstrate the effectiveness of using

our procedure for quantifier elimination.

[EXISTS−INF]

∃(w : Z∞)·π ; ∃(w : Z)·π
∨[∞/w]π
∨[−∞/w]π

[FORALL−INF]

∀(w : Z∞)·π ; ∀(w : Z)·π
∧[∞/w]π
∧[−∞/w]π

Figure 3.11: PAInf: Quantifier Elimination (INF-TRANS)

For checking satisfiability in the PAInf we use the algorithm shown in

figure 3.12. We denote the procedure for satisfiability checking as SAT (π). It

has the following four steps: (i) first we eliminate the quantifiers starting with

48

the innermost quantifier, (ii) next we apply a normalization which detects

tautologies and contradictions in constraints using infinity, (iii) then we

eliminate min-max and constant constraints and (iv) finally we solve the

resulting formula using an existing PA solver Omega.

SAT(π)
=⇒ SAT(πF)
=⇒ SAT(πN)
=⇒ SAT(πG)

πF = INF-TRANS(π)
πN = INT-TRANS(πF)
πG = SIMP(πN)

(1) Quantifier Elimination
(2) Normalization
(3) Simplification
(4) Omega

Figure 3.12: PAInf: SAT Checking

At a high level the intuition behind the SAT checking algorithm is as follows:

after quantifier elimination, the πF formula has quantifiers only on the finite

domain variables. The normalization, detects tautologies and contradictions in

constraints using infinity and rewrites the formula to πG. The normalization

eliminates all the infinite constants from the formula. The resulting formula (πG)

is in PA and its satisfiability can be checked using Omega. Next we describe the

steps in the SAT checking algorithm in detail.

[EVAL−FIN]

v ; Z
c ; Z
−Z ; Z
Z + Z ; Z
Z − Z ; Z
c× Z ; Z

[EVAL−INF]

∞+∞;∞
−∞+(−∞) ; −∞
−∞+Z ; −∞
Z+(−∞) ; −∞
∞+Z ;∞
Z +∞;∞

[EVAL−BOT]

∞+(−∞) ; ⊥
−∞+∞; ⊥
⊥+Z ; ⊥
Z+⊥; ⊥
⊥+⊥; ⊥
−⊥; ⊥

Figure 3.13: PAInf: Evaluation Check

49

3.4.1 Normalization and Simplification

We define a set of rewriting rules based on the semantics of formulae in PAInf.

We work only with closed-form formulae, thus after applying the quantifier

elimination given in figure 3.11, all the remaining variables are in the finite

domain (Z). It is possible to compare the variables with infinities by evaluating

their values (as they are all finite) using the semantics given in the section 3.3.

This is performed by the Evaluation Check function in figure 3.13 which

reduces each expression to a finite value Z. Thus for the normalization rules in

figure 3.14 we only need to consider the integer values (Z) and the infinity

constants. Note that, the Evaluation Check is only applied as part of the

normalization process, with the purpose of checking the finiteness and

eliminating infinity. In particular, the actual formula is only transformed to a

form without infinity constants; it is not evaluated to a value.

The normalization process uses the rewriting rules given in figure 3.14

(rules for 6=,≥, < and min= are similar and omitted for brevity). These rules

detect the tautologies and contradictions in the usage of ∞ and −∞, thus all

the constraints involving ∞ and −∞ are eliminated. After the application of

these rules the given formula is reduced to a form which can be solved by

existing PA solvers like Omega.

We also proved the following theorems and lemmas about quantifier

elimination INF-TRANS and normalization INT-TRANS. These theorems and

lemmas hold for both two-valued/three-valued logics and all choices of

(0 ×∞). Hence, the Coq certified proof of these theorems and lemmas is also

parameterized. All our theorems are stated in both directions, thus we prove

not only soundness but also completeness of the procedure. Note that for

quantifier elimination the universe of environment τ and the domain of

50

[NORM−INF−EQ]

⊥ = ; error

= ⊥; error

Z =∞; false

∞ =∞; true

−∞ =∞; false

−∞ = Z ; false

−∞ = −∞; true

∞ = Z ; false

∞ = −∞; false

Z = −∞; false

[NORM−INF−LEQ]

⊥ ≤ ; error

≤ ⊥; error

Z ≤ ∞; true

∞ ≤∞; true

−∞ ≤ ∞; true

−∞ ≤ Z ; true

−∞ ≤ −∞; true

∞ ≤ Z ; false

∞ ≤ −∞; false

Z ≤ −∞; false

[NORM−INF−LT]

⊥ < ; error

< ⊥; error

Z <∞; true

∞ <∞; false

−∞ <∞; true

−∞ < Z ; true

−∞ < −∞; false

∞ < Z ; false

∞ < −∞; false

Z < −∞; false

[NORM−EQ−MAX]

max=(∞,∞,∞) ; true max=(−∞, Z, Z) ; false

max=(, ,⊥) ; error max=(−∞,−∞,−∞) ; true

max=(∞, Z,−∞) ; false max=(∞, Z, Z) ; false

max=(−∞, Z,−∞) ; false max=(∞,−∞,∞) ; true

max=(∞,∞, Z) ; true max=(−∞,∞,−∞) ; false

max=(−∞,∞, Z) ; false max=(Z,∞, Z) ; false

max=(∞,−∞,−∞) ; false max=(∞,−∞, Z) ; false

max=(,⊥,) ; error max=(−∞,−∞, Z) ; false

max=(Z,∞,−∞) ; false max=(∞, Z,∞) ; true

max=(∞,∞,−∞) ; true max=(−∞, Z,∞) ; false

max=(⊥, ,) ; error max=(Z,−∞,−∞) ; false

max=(Z,−∞,∞) ; false max=(Z,Z,∞) ; false

max=(−∞,−∞,∞) ; false max=(−∞,∞,∞) ; false

max=(Z,∞,∞) ; false

[NORM−INF−ERR]

error ; false (two-valued logic)
error ; undefined (three-valued logic)

Figure 3.14: PAInf: Normalization (INT-TRANS)

constants η are both instantiated to Z∞.

Lemma 3.4.1. Quantifier Elimination φZ∞ |=sat
Z∞ π if and only if φZ |=sat

Z∞

INF-TRANS(π), φZ∞ |=dst
Z∞ π if and only if φZ |=dst

Z∞ INF-TRANS(π),

For infinity elimination τ is Z∞ and η is Z. This is due to the fact that after

51

quantifier elimination the domain of all the variables is finite.

Lemma 3.4.2. Infinity Elimination φZ |=sat
Z∞ π if and only if

φZ |=sat
Z INT-TRANS(π), φZ |=dst

Z∞ π if and only if φZ |=dst
Z INT-TRANS(π).

[ELIM]

max=(a1, a2, a3) ; (a1 = a2 ∧ a3 ≤ a2) ∨ (a1 = a3 ∧ a2 ≤ a3)
min=(a1, a2, a3) ; (a1 = a2 ∧ a2 ≤ a3) ∨ (a1 = a3 ∧ a3 ≤ a2)

[SIMP]

β ; ELIM(β)
undefined ∧ π ; undefined π ∧ undefined ; undefined

true ∧ π ; π π ∧ true ; π
false ∧ π ; false π ∧ false ; false

undefined ∨ π ; undefined π ∨ undefined ; undefined

true ∨ π ; true π ∨ true ; true

false ∨ π ; π π ∨ false ; π
undefined→ π ; undefined π → undefined ; undefined

false→ π ; true π → true ; true

true→ π ; π π → false ; ¬π
¬true ; false ¬false ; true

¬undefined ; undefined

∀(w : τ) · undefined ; undefined

∀(w : τ) · true ; true

∀(w : τ) · false ; false

∃(w : τ) · true ; true

∃(w : τ) · undefined ; undefined

∃(w : τ) · false ; false

Figure 3.15: Definition of Simplification

So for the total transformation TRANS(π) = INT-TRANS(INF-TRANS(π))

used in satisfiability checking, we have the following theorem:

Theorem 3.4.3. Satisfiability Checking φZ∞ |=sat
Z∞ π if and only if φZ |=sat

Z

TRANS(π), φZ∞ |=dst
Z∞ π if and only if φZ |=dst

Z TRANS(π),

52

Gallina, the internal functional language of Coq is strongly normalizing.

Thus, all functions written in Coq must terminate.

Theorem 3.4.4. Termination Satisfiability checking in PAInf (figure 3.12)

terminates.

The quantifier elimination with infinity expands the logical formula π and

the normalization introduces many logical constants. We introduce a

simplification function SIMP which recursively eliminates logical constants

according to the rules in figure 3.15 in order to reduce the length of a formula.

As Omega doesn’t support max= or min= we also include the elimination of

max= and min= in SIMP. Note that for three-valued logic, logical constants

contains a third value: undefined which is not supported by Omega. Our

SIMP function actually propagates undefined to the whole formula such that

we know if a formula is undetermined before calling Omega due of the

following theorem:

Theorem 3.4.5. Decide Undetermined φZ |=udt
Z π if and only if

SIMP(π)=undefined

Thus, we do not need to extend Omega to support undefined. SIMP also

preserves the validity of formulae:

Theorem 3.4.6. Simplification φZ |=sat
Z π if and only if φZ |=sat

Z SIMP(π),

φZ |=dst
Z π if and only if φZ |=dst

Z SIMP(π).

3.5 Implementation

The Omega++ decision procedure (along with the proofs of all the associated

lemmas and theorems) is implemented in Coq. Since Omega++ supports six

different customized semantics our implementation of the transformation and

53

proofs is modular and composable. The customized parts—two- or three-valued

logic, value of (0 ×∞) are abstracted as different module types composed by

parameters and axioms. Each concrete choice instantiates the module type via

definitions and lemmas. For example, part of our module type for “value” looks

like this:

Module Type SEM_VAL.

Parameter Val : Set.

Parameter truth_and : Val -> Val -> Val.

Parameter truth_or : Val -> Val -> Val.

Parameter truth_not : Val -> Val.

Axiom truth_and_comm : forall v1 v2,

truth_and v1 v2 = truth_and v2 v1.

...

End SEM_VAL.

where truth_and, truth_or and truth_not are truth tables for

conjunction, disjunction and negation. Given this module type our module

implementation for a value in three-valued logic looks like this:

Module Three_Val_NoneError <: SEM_VAL.

Inductive Val_Impl := VTrue | VFalse | VError.

Definition Val := Val_Impl.

Definition truth_and (v1 v2 : Val) := ...

Definition truth_or (v1 v2 : Val) := ...

Definition truth_not v := ...

Lemma truth_and_comm : forall v1 v2,

truth_and v1 v2 = truth_and v2 v1.

Proof. intros; destruct v1, v2; simpl; trivial.

54

Qed.

...

We put our definition of semantics in another module which is parameterized by

these module types. This method enables us to define transformations and prove

theorems in a highly modular and compositional way, regardless of the concrete

values of those parameter modules.

The following table presents some statistics for our Coq implementation of

Omega++. The first column shows the file name, while the second and third

columns are the number of lines in the file taken by the program and its

soundness proof, respectively. Our total development is a modest 3,988 lines

and the ratio of proof to program is a reasonable 2.35.

Table 3.1: Coq Development Details

Coq File Program Proof Time (s) Description
Theory.v 585 737 20.68 Syntax and Semantics; SIMP

Transformation.v 350 1, 203 31.07 INF-TRANS, INT-TRANS
Simplification.v 0 856 338.96 Tactics/lemmas for SIMP

Extraction.v 257 0 1.27 Module to extract OCaml code
1, 192 2, 796 391.98 Total Coq

The fourth column gives the time taken by Coq to verify the file (i.e.

proof/type checking), using a 2.6 GHz Intel Core i7 with 16 GB of DDR3

RAM. Note that type checking times have very little to do with file length. For

example, Transformation.v has 1,553 lines (combined program and

proof), but takes less than 32 seconds to verify. On the other hand, verifying

the 44 lines of the SIMP procedure, whose code is contained in Theory.v,

takes more than five minutes!

We gain a number of benefits in exchange for implementing Omega++ in

Coq. We get proof of termination for free since Gallina (the extractable pure

55

functional language of Coq) is strongly normalizing. More importantly, we get

full machine-checked formal correctness proofs for our source code with

respect to a well defined semantics for Presburger arithmetic with infinity.

Coq’s extraction facility then transforms the Gallina program into OCaml (or

Haskell or Scheme), which we then compile and run as normal. A very simple

handwritten interface in OCaml (omegapp.ml, 162 lines) hides the natural

ugliness of auto-generated code from other OCaml modules and enables a

useful optimization within the generated Coq code as detailed below.

Although extraction seems straightforward, there are a surprising number

of pitfalls. We will next highlight the key optimizations we used to get good

performance and discuss how the program affected the proof—and vice versa.

In the implementation we directly handle all of the logical operators and

min-max constraints of the constraint language (figure 3.5), even though the

“obvious” strategy would be to desugar aggressively. Unfortunately, sugar-free

formulae are actually quite a bit larger than their svelter sugared cousins,

resulting in a significant performance penalty. Working with fully-sugared

formulae has a significant impact on the proofs because we must handle more

cases than would otherwise be necessary.

Similarly, we allow the input formulae to specify, for each quantifier,

whether the domain of quantification is over Z or over Z∞. Quantifier

elimination is expensive, and our “user”—the HIP/SLEEK verification

toolset—often knows when a variable must be finite: in particular, program

variables must be finite, whereas specification variables need not be.

Communicating this fact to Omega++ resulted in significant performance

gains, but again increased the proof effort due to the necessity of handling

more cases.

56

To enable min/max, reduce the length of the output, eliminate redundant

clauses, and propagate the undefined value, we implemented some basic

simplifications (figure 3.15). The SIMP procedure was easy to implement but

very painful to verify due to the vast number of cases we need to consider. In

the end we wrote some custom proof tactics in Ltac (Coq’s proof tactic

language) which crunched through the tedium while we ate lunch.

The previous examples all trade one-time verification effort for a

better-performing algorithm. On the other hand, sometimes the proof improves

the program. Before we started on our Coq implementation, we did a OCaml

prototype for the quantifier-free fragment of the problem. That prototype’s

version of normalization did additional case analysis. Due to our careful

treatment of quantifier elimination we were able to prove that much of this case

analysis was unnecessary in our Coq tool. Moreover, the Coq development

identified a soundness bug in the OCaml prototype, which allowed the invalid

transformation x≥y ; x+1>y, which is false when x = y =∞.

We also use one engineering trick to boost the performance of the extracted

code. The code uses strings to represent both variables and (arbitrary-sized)

integers, but Coq’s encoding of strings is less efficient than OCaml’s. We

therefore usually treat strings as an abstract type within Coq and manipulate

them via an interface to OCaml’s string functions, passed in using a functor.

This interface takes only a few lines of omegapp.ml and results in a

noticeable performance gain.

Overall, Omega++ is far better than our previous OCaml prototype.

Consider:

Of course, our OCaml prototype is a bit of a straw man, but we have been

quite convinced that the substantial effort that it took to write Omega++ in Coq

was well-rewarded. Moreover, as we will soon see, Omega++ has comparable

57

Table 3.2: Comparison between Omega++ and Proto

Tool Sound Complete Termination Semantics Verified
OCaml Prototype No No Unclear Unclear No

Omega++ Yes Yes Guaranteed Precise in Coq

performance to our OCaml prototype, despite solving a trickier problem in a

much more thorough way.

3.6 Experiments

To benchmark Omega++ we integrated it into the HIP/SLEEK verification

toolset [23] and developed a suite of tests (mostly searching and sorting

programs) whose specifications use∞ in interesting ways. The source code for

each of these programs can be investigated in detail and tested with Omega++

[108] on our web site. In all the experiments we selected three-valued logic in

Omega++ and used 0 · ∞ def
= 0 as these are the appropriate choices for program

verification.

We use a 3.20GHz Intel Core i7-960 processor with 16GB memory running

Ubuntu Linux 10.04 for our benchmarks, the first set of which are detailed in

the table below. The first column lists the test name and the second gives its

lines of code.

The third and fifth columns show that Z∞ enables more readable and

concise specifications. Specifically, the third column gives the number of

disjunctions required to express the test’s specifications using Z, whereas the

fifth column expresses the same properties using Z∞. For each test in the first

group (top six), Z∞ requires fewer disjunctions. We do need to be a bit careful:

although the specifications are informally for the same property (e.g.,

58

Table 3.3: Verification benchmarks with Infinity

Benchmark LOC Disjuncts (Z) Time (Ω) Disjuncts (Z∞) Time (Ω++)
Insertion Sort 30 4 0.14 2 0.15
Selection Sort 69 14 0.36 7 0.35

Binary Search Tree 105 12 0.43 6 0.35
Bubble Sort 110 12 0.29 9 0.50
Merge Sort 91 6 0.32 4 1.81

Priority Queue 207 16 0.84 10 2.73
Total Correctness 21 2 0.21

Sorting Min and Max 79 7 1.82

“sortedness”), typically the specifications in Z∞ are formally stronger since the

embedded quantification occurs over larger sets. Note that we do not claim that

Omega++ eliminates the disjunctions from reasoning since the quantifiers over

infinities hide the disjunctions inside them. However, using infinities provides

a useful abstraction to express the same property as the given specification is

more concise.

The difference in formal strength is the fundamental reason why the times

given in columns four and six differ. Column four gives the time (including all

of HIP/SLEEK) using Omega, whereas column six gives the time using

Omega++. For the first four examples Omega++ is comparable to Omega, but

in the final two of the first group of tests we believe the difference in the

domain of quantification results in a significantly harder theorem in Z∞, and

thus, a noticeably longer runtime.

The second group of tests (bottom two) shows that Z∞ is more expressive:

the specifications for each of these tests is not expressible using only Z. The

runtimes we get using (HIP/SLEEK and) Omega++ are encouragingly modest.

Comparison with similar tools. Lasaruk and Sturm [64] also propose

extending Presburger arithmetic with infinity. Their work differs from ours in

several respects. First, they only add a single infinity value, thus dodging any

59

thorny—but in our view, important—semantic issues involving∞−∞. More

importantly, Lasaruk and Sturm describe an algorithm but do not provide an

implementation. For benchmarking purposes, we implemented their algorithm

and tested it using the constraints generated from our test suite. We also

compared our previous OCaml prototype. Our results are as follows:

Table 3.4: Comparing PAI and Omega++

Benchmark Calls Time (PAI) Time (Proto) Time (Ω++)
Insertion Sort 100 4.58 0.78 0.39
Selection Sort 245 >600.00 0.62 0.78

Binary Search Tree 116 150.00 0.48 0.50
Bubble Sort 336 >600.00 1.25 1.34
Merge Sort 155 >600.00 1.05 1.92

Priority Queue 778 >600.00 FAIL 1.20
Total Correctness 120 >600.00 0.31 0.16

Sorting with Min and Max 376 >600.00 0.29 0.19
Entailment Examples 124 1.89 FAIL 1.42

Lemma Examples 35 1.88 1.27 1.65
Total (except PQ and EE) 1, 824 >3, 862.14 7.21 8.11

The second column gives the number of times the associated decision

procedure was called for each test. The third column gives the times for

Lasaruk and Sturm’s “PAI” algorithm; many of the tests timed out after 10

minutes. The fourth column gives the times for our OCaml prototype “Proto”;

notice that for two of the tests Proto failed (completeness holes). The fifth

column gives the times for Omega++.

It is obvious that PAI, at least when implemented directly as given by

Lasaruk and Sturm [64], is uncompetitive. Thus, Omega++ is always faster

than PAI. When comparing Proto to Omega++, recall that Proto is only trying

to solve the simpler problem of quantifier-free formulae. Despite this, for many

of our tests the tools perform similarly. For a few tests, some of Proto’s

heuristics result in appreciably better times; we plan to study these tests in

60

more detail in the future to try to improve Omega++. Overall, Omega++’s

performance is competitive.

Inference. As described in section 3.2.5, quantifier elimination in

Presburger arithmetic with infinity can help with invariant generation of

octagonal constraints. The table below benchmarks using Omega++ for this

analysis technique. The first column gives the test name. The second and third

columns give the user-provided spatial pre- and postconditions in separation

logic. The fourth column gives the inferred pure (non-heap) specification,

while the last column gives the time used by Omega++. The final test is

noteworthy because the inferred invariant uses min/max constraints.

Table 3.5: Inference with Omega++

Method Pre Post Inferred Time (Omega++)
Create true ll〈res, m〉 m=n 0.13
Delete ll〈x, n〉 ll〈res, m〉 n−1≤m 0.17
Insert ll〈x, n〉∧x6=null ll〈x, m〉 n=m−1 0.13
Copy ll〈x, n〉 ∗ ll〈res, m〉 ll〈x, m〉 m=n 0.16

Remove ll〈x, n〉∧x6=null ll〈x, m〉 n−1≤m∧m≤n 0.19
Return ll〈x, n〉 ll〈x, m〉 m=n∧0≤m 0.07

Traverse ll〈x, n〉 ll〈x, m〉 m=n 0.12
Get ll〈x, n〉∧x6=null ll〈res, m〉 m=n−2∧2≤n 0.11

Head ll〈x, n〉∗ll〈y, m〉 ll〈res, n+m−1〉 1=min(n, m) 0.21

3.7 Comparative Remarks and Summary

3.7.1 Ghost Variables

Reynolds demonstrated that ghost variables [95] were useful for verifying

sequential programs. Their importance is highlighted when proving program,

object or loop invariants [77], refining between two transition systems [76] or

when considering program’s security aspects [74].

61

In a concurrent setting, whether adopting a Hoare [95] or a VDM-style [51]

program logic, specification formulae are generally extended with ghost

variables in order to explicitly record the information of interest between

communicating processes. Our work enriches specifications by extending the

domain of ghost values with the mathematical concepts of positive and

negative infinity.

3.7.2 Decision Procedures

Presburger arithmetic [93] is one of the canonical examples of an important

decidable problem. Kuncak et al. [62, 63] presented a decision procedure for a

quantifier-free fragment of Boolean Algebra with Presburger arithmetic

(QFBAPA) which can be used to prove a mixed set-based constraint with

symbolic cardinality and linear arithmetic. QFBAPA was later extended to the

more challenging case of multisets [91] and proved to be NP-complete [92].

The VCDryad [94] framework combines separation logic with decision

procedures for sets and multi sets to verify programs with natural proofs.

Another line of work is focused on not only on proving decidability of

certain logic fragments [16, 7] but also on both the applicability of exhibited

decision procedures [77, 39] as well as their efficiency [13]. In particular,

arithmetic decision procedures [85, 80, 86] are a fundamental part of

interactive systems such as: Isabelle/HOL [84], Coq [11] and ACL2 [54].

Considerable attention is also paid to the problem of exploiting methods which

combine decision procedures from different domains [28, 75], resulting in a

decision of a union of theories the majority being based on the foundations

built by Nelson-Oppen[82] or Shostak [109].

Lasaruk and Sturm [64] were the first to tackle the problem of extending PA

62

with infinity, proving completeness and decidability. As discussed in section

3.6, our work differs from theirs by providing distinct positive and negative

infinities as well as by providing an implementation. In our work, we build an

implementation on top of Omega calculator [55], and certify it in Coq [1].

The general problem of adding infinities to the set of reals was addressed

by Weispfenning [115]. This was later extended to mixed real and integer

quantifier elimination in [116]. Another interesting extension of decision

procedures for real arithmetic is the addition of infinitesimals. The proof

assistant Isabelle/HOL [84] supports the use of such infinitesimals. Loos and

Weispfenning [73] first proposed a virtual substitution approach for quantifier

elimination of infinitesimals. In Omega++, we use a similar virtual substitution

to eliminate infinities as part of the decision procedure. For the case of linear

formulas, the use of substitution for elimination of quantifiers was first

proposed in [114].

3.7.3 Summary

We present Omega++, a decision procedure for Presburger arithmetic with

infinity Z∞. Infinity is a useful abstraction, increasing a program logic’s ability

to model infinite data structures, reason about termination, and compose more

elegantly. Moreover, specifications with infinity are often more concise.

Finally, quantifier elimination for infinities enables an extension to an existing

analysis technique.

Omega++ itself is a sound and complete decision procedure for Z∞, and

has been Coq-certified to respect a precise formal semantics for Z∞. We

integrate Omega++ into an existing verifier and evaluated it on a benchmark of

small programs, demonstrating that it can perform well in practice. Omega++

63

demonstrates that we can develop useful, efficient, and certified programs for

program verification and analysis.

64

Chapter 4

Verified Subtyping with Traits and

Mixins

Traits allow decomposing programs into smaller parts and mixins are a form of

composition that resemble multiple inheritance. Unfortunately, in the presence

of traits, programming languages like Scala give up on subtyping relation

between objects. In this chapter, we present a method to check subtyping

between objects based on entailment in separation logic. We implement our

method as a domain specific language in Scala and apply it on the Scala

standard library. We have verified that 67% of mixins used in the Scala

standard library do indeed conform to subtyping between the traits that are

used to build them.

4.1 Introduction

Traits [35] have been recognized as a mechanism to support fine grained reuse

in programming. Several programming languages (Scala, Fortress, Ruby, etc.)

support the use of traits in some form or other. Traits and mixins provide

65

support for code reuse and composition that goes beyond classes and

inheritance in object oriented programs. In addition, object oriented (OO)

programs themselves are notoriously hard to verify in a modular fashion.

Recently [22, 90, 32] separation logic based approach has yielded success in

verification of object oriented programs. This include support for verifying

inheritance and behavior subtyping, in conformance with OO paradigm. In this

chapter, we extend the work done on verification of OO programs in separation

logic to verify subtyping with traits and mixins. Separation logic is a good

choice for verifying traits because it supports abstraction and information

hiding [90] in the presence of inheritance and subtyping. This enables us to

avoid re-verification when dealing with OO programs that make sure of

subtyping.

Below we consider an example that illustrates the problem of subtyping with

traits and mixins. The ICell trait captures an object with an integer value that

can be accessed with get and set methods. The BICell trait provides a basic

implementation for ICell, while the Double and Inc traits extend the ICell

trait by doubling and incrementing the integer value respectively.

trait ICell {

def get() : Int

def set(x : Int)

}

trait BICell extends ICell {

private var x : Int

def get()

{ x }

def set(x : Int)

{ this.x = x }

}

66

trait Double extends ICell {

abstract override def set(x : Int)

{ super.set(2 ∗ x)}

}

trait Inc extends ICell {

abstract override def set(x : Int)

{super.set(x+ 1)}

}

These traits are used in the following class mixins. The integer value field of

the objects ofOddICell mixin is always odd, while the value is even for objects

of EvenICell mixin. (This is due to the fact that traits are mixed in a linearized

order, thus forOddICell we have the integer value xwhich is doubled by the set

method in Double trait to become 2x and then incremented by the set method

in the Inc trait to be 2x+ 1 which is always odd.)

class OddICell extends BICell with Inc with Double

class EvenICell extends BICell with Double with Inc

In the presence of traits, the type system of Scala is not strong enough to

distinguish between accepted uses of the traits. This can be illustrated by the

following example.

def m (c : BICell with Inc with Double) : Int = {c.get}

val oic = new OddICell

val eic = new EvenICell

m(oic) // V alid

m(eic) // V alid

67

The method m can be called with an object of both mixins EvenICell and

OddICell, even though the expected object type is a subtype of OddICell and

not EvenICell. Thus, the type system in Scala cannot distinguish between the

two calls made to method m as it does not check for subtyping between the

objects. This means that mixins and traits in Scala violate the Liskov

substitution principle [71]. Substitutability of an object by its subtype is a key

principle of object oriented programming and is stated in [72] as follows:

Let φ(x) be a property provable about objects x of type T. Then φ(y) should be

true for objects y of type S where S is a subtype of T.

Traits in the mixin class composition in Scala do not adhere to this

principle. The key contribution of this chapter is to present a method for

checking subtyping in the presence of traits and mixins in Scala. This enables

us to verify mixins and validate that they use traits according to Liskov

substitution principle. Our method is based on reduction of the subtyping to

entailment checking in separation logic.

In section 4.2, we present an approach based on entailment in separation

logic to verify subtyping. In section 4.3, we present a domain specific language

which is embedded in Scala and can support verified subtyping with traits and

mixins. We apply our technique to the mixin class hierarchies in the Scala

standard library and verify subtyping in 67% of the traits as shown in section

4.4. Our complete development including the source code of the domain

specific language and all examples are available on-line at the following URL.

http://loris-7.ddns.comp.nus.edu.sg/˜project/SLEEKDSL/

68

http://loris-7.ddns.comp.nus.edu.sg/~project/SLEEKDSL/

4.2 Verified Subtyping

We consider a core language based on [22] for formalizing our approach. As

shown in figure 4.1, to simplify the presentation we focus only on type

information for traits and mixins while ignoring all other features in our core

language. We also assume that all classes are part of mixin compositions and

only traits are used to create mixins. Since, existing approaches [22] can

handle class based single inheritance, we focus only on mixin compositions in

this chapter. The rest of the constructs in the core language are related to

predicates (Φ) in separation logic. Each trait (and mixin) C can be represented

by a corresponding predicate C(v∗).

mixin ::= class C [extends C1] [with C2]
∗

pred ::= C(v∗) ≡ Φ [inv π]
Φ ::=

∨
(∃w∗·κ∧π)∗

κ ::= emp | C(v∗) | κ1 ∗ κ2
π ::= α | π1∧π2 α ::= β | ¬β
β ::= v1=v2 | v=null | a≤0 | a=0
a ::= k | k×v | a1 + a2

Figure 4.1: Core Language for Traits and Mixins

Predicates based on separation logic are sufficient to specify mixins

because of class linearization in Scala [87]. After class linearization a mixin

class composition (unlike multiple inheritance) has a single linear hierarchy.

The translation of mixins and traits from Scala to the core language given in

figure 4.1 is done by creating a corresponding predicate for each mixin in the

Scala program. E.g. in the case of our running example, the mixins give rise to

the following linearizations and predicates respectively:

69

OddICell← Double← Inc← BICell

OddICell(this) ≡ BICell(this, v) ∗ Inc(v, v1) ∗ Double(v1, null)

EvenICell← Inc← Double← BICell

EvenICell(this) ≡ BICell(this, v) ∗ Double(v, v1) ∗ Inc(v1, null)

A mixin class composition can be treated as a single inheritance hierarchy

based on the linearization and thus, subtyping between the mixins can be

decided by checking the entailment based on separation logic predicates. In

case of our running example, the call to method m is valid with oic object but

not the eic object as the following entailments show.

OddICell(oic) ` BICell(c, v) ∗ Inc(v, v1) ∗ Double(v1, null) V alid

EvenICell(eic) ` BICell(c, v) ∗ Inc(v, v1) ∗ Double(v1, null) Invalid

We now show how the problem of checking subtyping between objects

belonging to two different mixins is reduced to an entailment between the

corresponding predicates in separation logic. This entailment can be checked

with the help of existing solvers for separation logic (like SLEEK [21]). The

entailment rule for checking subtyping with traits and mixins is given in figure

4.2. An object of mixin D is a subtype of mixin C when the entailment

between their corresponding predicates in separation logic is valid.

Entailment checking in separation logic can be used to decide subtyping

with traits and mixins. But in order to integrate subtyping support inside Scala

we face some engineering challenges. In particular, it is too restrictive and

infeasible to do this kind of checking for all the mixins. This requires support

for selective subtyping as all mixins will not satisfy the subtype relation. In

70

[ENT−Subtype−Check]
class C [extends C1] [with C2]

∗

class D [extends D1] [with D2]
∗

C1(this, v1)[∗C2(v1, v2)]
∗ ` D1(this, u1)[∗D2(u1, u2)]

∗

C :> D

Figure 4.2: Checking Subtyping with Entailment

order to provide the programmer the choice of checking subtyping usage in

their methods we have implemented an embedded domain specific language

(DSL) in Scala. This DSL uses the SLEEK entailment checker for checking

the validity of entailments in separation logic. In the next section we describe

the SLEEK DSL and how it is integrated in Scala.

4.3 Implementation with SLEEK DSL

Our proposal is based on embedding a domain specific language (SLEEK DSL)

in Scala. As shown in figure 4.3, a Scala library (SLEEK lib) interfaces directly

with the external application - the SLEEK entailment prover. In addition, we

extend Scala with a DSL (SLEEK DSL) which makes use of the Scala library

to provide the entailment checking feature inside Scala programs. Further, for

using with the Scala interpreter we provide an interactive mode (SLEEK inter)

which uses the SLEEK DSL and library to enable interactive entailment proving.

Thus, the implementation of the verified subtyping in Scala with SLEEK has

three main components:

• a Scala library that supports all SLEEK interactions

• a domain specific language (DSL) implemented in Scala that models the

SLEEK input language. With this DSL we get for free embedded type

71

Figure 4.3: Overview of SLEEK DSL

checking in Scala.

• a helper library designed for the Scala interpreter. The library runs

SLEEK in interactive mode in the background to provide seamless

integration with Scala.

In short, the SLEEK library provides basic functionality for constructing

Scala objects representing separation logic formulas. The entailment checking

method is in fact the actual front-end for SLEEK. It takes two Scala objects

representing separation logic formulas, translates them to the SLEEK input

language and invokes SLEEK. The result and the possible residue is captured

and parsed using the Scala parser combinator library to extract the Scala

representation. To facilitate a better syntax for writing formulas and support for

richer interplay with the Scala types we present a domain specific language,

SLEEK DSL implemented on top of the Scala library. We will outline the

SLEEK DSL by presenting how an entailment checking can be encoded in our

DSL.

72

4.3.1 SLEEK DSL

As an example consider the following entailment check between two separation

logic formulas defined using SLEEK DSL.

val r = x::node〈 , null〉 ` x::ll〈m〉 && m===1

It encodes an entailment between two formulas, one describing a single heap

node, an instance of a data structure called node. The second formula describes

a state in which x is the root pointer of a data structure described by the ll

predicate. This predicate abstracts a linked list of size m.

SLEEK DSL relies on the functions defined in the SLEEK Library to create

new easy to use operators that provide a more user friendly syntax. A special

operator, the double colon (::) is used to describe the points-to relation

commonly used for heap nodes. It also provides the usual arithmetic (e.g. +,−)

and boolean (e.g. &&, ||, ===, ! ==, `) operators to help in constructing the

separation logic formula. The notation used in the DSL is similar to the one

used for SLEEK in [21]. The use of a DSL allows easy intermixing of SLEEK

formulas with other Scala types. We use implicit conversions between types

(e.g. from scala.Int to formula[IntSort]) to make it even easier to use these

formulas in Scala programs.

Furthermore, our library provides a definition for the isValid method in the

formula class. In order to check the validity of the above entailment it is

sufficient to call r .isValid which feeds the entailment to SLEEK and converts

the result back into a scala.Boolean for use as a conditional. Implicit methods

provide an easy mechanism to convert from one type of object to the desired

type. This enables the support for a SLEEK like syntax within Scala. Formulas

allow for a variety of types for the parameters used (such as x and m). In the

73

Scala library, these types are grouped under the following type hierarchy.

sealed trait Top

trait BoolSort extends Top

trait IntSort extends Top

trait BagSort extends Top

trait ShapeSort extends Top

trait Bottom extends BoolSort

with IntSort with BagSort with ShapeSort

This trait allows the embedding of the types used in the separation logic formula

as Scala types. By defining the various operators using these types, soft type

checking for SLEEK formulas is automatically ensured by the underlying Scala

type system. The benefit of using a DSL is that it provides a simpler syntax and

familiar look and feel for the user of the library. The formula represented by the

DSL is also much more concise.

The SLEEK DSL allows programmers to verify entailments written in

separation logic. In addition, programmers can use the DSL to encode

subtyping check as an entailment check in separation logic as described in

section 4.2.

4.3.2 SLEEK Interactive Mode

The Scala runtime provides a good interpreter for rapid prototyping which can

be used from the command line. Similarly, SLEEK also has an interactive mode

in which it accepts commands and gives the results back to command line. In

order to make SLEEK’s interactive mode available to the Scala interpreter, we

provide a helper library that hides the extra intricacies incurred by using SLEEK

74

interactively. The benefit of using the interactive mode is that the user defined

predicates and data types will not be defined again with each call to isValid

method. This makes the interactive mode of SLEEK DSL faster when compared

to calling the same function from the basic SLEEK library.

Our implementation for verified subtyping integrates into Scala as an API

(SLEEK library), as a language (SLEEK DSL) and as an interpreter (SLEEK

Interactive mode). This provides programmers the ability to use our procedure

in different ways as desired.

4.4 Experiments

We have used SLEEK DSL to verify subtyping of mixin compositions from the

Scala standard library. To the best of our knowledge this is the first such study

of subtyping in Scala. The following table presents the results. The first column

is the name of the class hierarchy. The second column lists the total number of

mixins in the hierarchy, while the third column gives the number of mixins for

which we can verify that the subtyping relation holds. The last column gives

the percentage of mixins with subtyping. As an example of mixin hierarchy

Table 4.1: Experiments with Traits and Mixins

Class Hierarchy Total Num of Mixins Mixins with Subtyping Percentage
Exceptions 11 11 100

Maths 5 4 80
Parser Combinator 6 6 100

Collections 27 12 44
Total 49 33 67

whose subtyping relations are verified, consider the following which represents

the maths library in Scala. The only mixin which breaks the subtyping relation

is PartialOrdering. Rest of the mixins can be verified to respect the expected

75

subtyping. Thus we have verified that subtyping holds for 4 out of 5 mixins that

are part of math class hierarchy.

Equiv is SUPERTYPE of PartialOrdering

PartialOrdering is NOT SUPERTYPE of Ordering

Ordering is SUPERTYPE of Numeric

Numeric is SUPERTYPE of Integral

Numeric is SUPERTYPE of Fractional

4.5 Comparative Remarks and Summary

The work that comes closest to our method for checking subtyping is the work

of Bierman et.al [12], they provide a mechanism to use SMT solvers for

deciding subtyping in a first order functional language. On the other hand, we

use SLEEK an entailment checker for separation logic to decide subtyping

between traits and mixins. SMT solvers have also been used [4] for verifying

typing constraints. Similar to our implementation of SLEEK DSL, the ScalaZ3

proposal of Köksal et. al [58] integrates the Z3 SMT solver into Scala.

Although the integration is similar, the two solvers have different focuses: Z3

is a general SMT solver, while SLEEK is a prover for separation logic.

Another line of work is on specification and verification of traits and

mixins. Damiani et. al explore trait verification in [26]. They observe the need

for multiple specifications and introduce the concept of proof outline. They

support a trait based language with limited composition - symmetric sum of

traits and trait alteration. Our work does not directly address the issue of trait

verification but checking subtyping is essential part of OO verification using

separation logic [22]. We believe that dynamic specifications of [22] along

with verified subtyping can be used to verify traits and mixins. Behavior

76

subtyping is a stronger notion of subtyping between objects. The approach of

lazy behavioral subtyping [33] can support incremental verification of classes

in presence of multiple inheritance. However, this is overly restrictive for

mixin compositions in Scala and our method provides a more flexible support

for subtyping in Scala. Even though we present our work in the context of

Scala, the same approach can be applied to any other language supporting

mixins and traits. By doing a suitable translation to our core language, we can

define and verify subtyping based on entailment checking in separation logic.

In this chapter, we present a method to enable verified subtyping in Scala.

Our method is based on a reduction to entailment checking in separation logic.

We implement a domain specific language (SLEEK DSL) in Scala to enable

programmers to check subtyping in their programs. Using SLEEK DSL we

carry out a study of the Scala standard library and verified that 67% of the mixins

were composed of traits that are in a subtyping relation.

77

78

Chapter 5

Specifying Compatible Sharing in

Data Structures

Automated verification of programs that utilize data structures with intrinsic

sharing is a challenging problem. Verifying such programs is of practical

importance because they occur in many device drivers, runtime systems, and

operating system kernels. We develop an extension to separation logic that can

reason about aliasing in heaps using a notion of compatible sharing.

Compatible sharing can model a variety of fine grained sharing and aliasing

scenarios with concise specifications. Given these specifications, our

entailment procedure enables fully automated verification of a number of

challenging programs manipulating data structures with intrinsic sharing. We

benchmark our prototype with examples derived from practical algorithms

found in systems code, such as those using threaded trees and overlaid data

structures.

79

5.1 Introduction

Systems software frequently employs data structures with intrinsic sharing,

such as threaded trees (a data structure which can be treated simultaneously as

a list and a tree). Sharing enables more efficient use of memory and better

performance (e.g., in a binary search tree where the nodes are also part of a

linked list that maintains the order in which the elements were inserted, we get

O(log n) lookup for arbitrary elements using the tree pointers and O(1) lookup

for the last inserted element using the list pointer). Unfortunately, sharing

prevents easy formal reasoning because it precludes simple reasoning about the

different parts of the data structure in isolation.

Many common data structures, such as linked lists and binary trees, can be

naturally represented with ∗ because their constituent subparts occupy disjoint

parts of the heap. However, many more sophisticated data structures, such as

threaded trees and graphs, cannot easily be so naturally represented due to the

sharing intrinsic to such structures.

We extend the notion of separation to enable local reasoning for such

intrinsically-shared data structures by introducing a notion of compatibility. In

brief, two predicates are compatible when updates to one will not affect the

other, despite potential spatial overlap.

Consider the following example. The Linux IO scheduler maintains a

structure which overlays a doubly-linked list, which maintains insertion order,

and a red-black tree, which provides efficient indexing to arbitrary nodes. If the

data fields of the nodes are not updated, then the linked list and tree structures

do not affect each other despite sharing the entire heap, and we can “frame out”

one while working on the other. Thus, our notion of compatibility relies on

restricting access to parts of the described structure in a way that is similar to

80

fractional permissions but without the attendant bookkeeping.

Prior work on program analysis for overlaid data structures [68] only

verifies the shape of the data structure and cannot handle functional properties

like order and height balance. In contrast, our proposal is based on user defined

inductive predicates with shape, size and bag properties that allows us to

express and verify functional correctness of data structures with compatible

sharing. In addition, we have certified the correctness proof of compatibility

checking in Coq.

Our main contribution is an automated procedure to check compatibility and

verify programs using compatible data structures. In particular, we describe:

• a specification mechanism that can model sharing and aliasing scenarios,

• an entailment procedure to reason about sharing,

• how to automate the verification of compatible sharing in data structures,

and

• our implementation and benchmark its performance. Our prototype,

together with a web-based GUI for easy experimentation and machine

checked proofs of compatible sharing in Coq, is available at:

http://loris-7.ddns.comp.nus.edu.sg/˜project/HIPComp/

The rest of the chapter is as follows. In section 5.2, we give some motivating

examples. In section 5.3, we formalize our specification language. In section

5.4, we discuss verification with compatible sharing. In section 5.5, we discuss

our implementation and experiments. In section 5.6, we review some related

work and conclude.

81

http://loris-7.ddns.comp.nus.edu.sg/~project/HIPComp/

5.2 Motivating Examples

5.2.1 From Separation to Sharing

Separation logic provides a natural way to represent disjoint heaps using the

separating conjunction ∗. However, if two assertions both require some shared

portion of memory, then ∗ cannot easily combine them. Consider the following

simple example:

data pair { int fst; int snd }

Here pair is a data structure consisting of two fields, fst and snd. The

following assertion indicates that x points to such a structure with field values f

and s:

x7→pair〈f, s〉

We denote two disjoint pairs x and y with the separating conjunction ∗, which

ensures that x and y cannot be aliased:

x7→pair〈f1, s1〉 ∗ y7→pair〈f2, s2〉

In contrast, to capture aliased pairs we use classical conjunction ∧ as follows:

x7→pair〈f1, s1〉 ∧ y7→pair〈f2, s2〉

The ∧ operator specifies “must aliasing”, that is, ∧ ensures that the pointers x

and y are the equal and that the object field values are identical (i.e., f1 = f2

and s1 = s2).

The basic separating and classical conjunctions are sufficient for “tree-like”

data structures. However, to represent and reason about more sophisticated

82

structures we need more subtle specification techniques. Consider a program

that is manipulating a threaded tree (a data structure which overlays a list and

an ordered tree). The nodes of a common type of threaded tree have six fields:

a data field; two “list” fields, next and previous; and three “tree” fields,

left, right, and parent. To verify “list operations” such as enqueue and

dequeue, we wish to frame out left, right, and parent; conversely, to verify

“tree operations” such as insert and lookup, we wish to frame out next and

previous. Tree operations also need access to the data field, to support

O(log n) access. All of the above means we wish to support field-level

framing.

To do so, we add annotations to fields; when the field of an object is absent

(or inaccessible) we mark it with @A, whereas when it is present (or accessible

for read/write) we mark it with @M. Consider the following:

x7→pair〈f1@M, s1@A〉 ∗ y7→pair〈f2@A, s2@M〉

This formula asserts that the heap can be split into two disjoint parts, the first of

which contains a first-half-pair pointed to by x, and the second of which contains

a second-half-pair pointed to by y. Since by default fields are mutable @M, and

when a field is absent @A we need not bind a variable to its value, the formula

can also be written as:

x7→pair〈f1,@A〉 ∗ y7→pair〈@A, s2〉

All this seems simple enough, but there is a subtle wrinkle: notice that x and y

may be aliased (if the combined heap contains a single pair that has been split

in half fieldwise), but need not be (if the combined heap contains two distinct

83

half pairs). This ambiguity is inconvenient. We introduce a new operator, the

overlaid conjunction ∧∗ to indicate that the locations are the same although the

fields are disjoint. Thus, when we write

x7→pair〈f1,@A〉 ∧∗ y7→pair〈@A, s2〉

we unambiguously mean that x and y are aliased and have been split fieldwise.

On the other hand, hereafter when we use ∗, then x and y are not aliased, just as

was the case before we added fieldwise separation. We do not use the ambiguous

version of ∗.

Unfortunately, separating fields by @A and @M is not enough. For example,

a field may be required by “both halves” of the separation; alternatively, we may

want to restrict how some fields are used more precisely.

For example, in the threaded tree example discussed above, we noted that the

“tree” operations also need access to the data field to support log-time access.

However, clients often want to know that even though data may be accessed by

the tree operations, it is never modified.

To support these use cases we can also mark a field immutable @I along

the lines of David et al. [27]. The same field can be present (i.e., not absent

@A) on both sides of an overlaid conjunction ∧∗ as long as both sides are @I.

In addition, any mutable field can be “downgraded” into an immutable field.

Our annotations are thus a kind of “poor man’s fractional permissions [14]”,

in which @A is analogous to the empty permission, @M is analogous to the full

permission, and @I is analogous to an existentialized permission. Although

less precise than fractional permissions, these annotations are sufficient for a

number of interesting examples and by using them we avoid some of the hassles

of integrating fractional permissions into a verification tool [67].

84

We are now ready to give an intuition for our notion of compatible sharing:

essentially, a conjunction (∧, ∧∗, and ∗) expresses compatible sharing when one

side can be safely framed away. Or, in other words it is possible to reason over

only one side of conjunction and ignore the other since they can be combined

together later without conflicts. As the simplest example, the following pairs

are compatible because the separating conjunction guarantees that they exist on

disjoint heaps:

x7→pair〈f1, s1〉 ∗ y7→pair〈f2, s2〉

Consider next the following two uses of classical conjunction ∧:

x7→pair〈f1,@A〉 ∧ x7→pair〈f2,@A〉

x7→pair〈f1@I,@A〉 ∧ x7→pair〈f2@I,@A〉

The difference between the two formulae is that in the second example we

have marked the field fst as immutable @I. Because fst is mutable @M in

the first example, we are not able to frame away half of the conjunction, since

we need to maintain the fact that f1 = f2. On the other hand, in the second

example, since fst is immutable on both sides of the conjunction, we are able

to frame away either side. Therefore, we deem the first example incompatible

while we consider the second compatible.

Checking for compatibility is useful not only for the ∧ operator but also for

∧∗ operator in the presence of aliasing as shown in the following examples:

x7→pair〈f1,@A〉 ∧∗ y7→pair〈f2, s2〉 (Incompatible)

x7→pair〈f1,@A〉 ∧∗ y7→pair〈@A, s2〉 (Compatible)

Our examples so far are for simple pairs. As we will see next, our operators

85

are especially useful in the context of more complex objects, such as user

defined inductive predicates.

5.2.2 Shared Process Scheduler

Consider the implementation of a process scheduler, a key data structure for

such an implementation is the list of processes currently in the system. Assume

that for simplicity, a process may be in only two states, either running or

sleeping. In order to efficiently traverse the list of processes we maintain

pointers to the next running or sleeping process as well. The data structure can

be represented by the following declaration.

data node { int id; node next; node rnext; node snext }

The node object consists of an integer field denoting the process identifier

(id). The next field points to the next process in the list of all processes. The

rnext field points to the next running process and snext field points to the next

sleeping process. In the list of running processes we can mark the snext field as

absent (@A) while in the list of sleeping processes we can mark the rnext field

as absent. Thus the same set of nodes have multiple views (lists) representing

the processes in the system. We use the following three predicates to describe

list of all processes (al), running processes (rl) and sleeping processes (sl).

86

al〈root, S〉≡(root=null∧S={})

∨∃ d, q, Sq · (root7→node〈d@I, q,@A,@A〉∗al〈q, Sq〉

∧S=Sq∪{root})

rl〈root, S〉≡(root=null∧S={})

∨∃ d, q, Sq · (root7→node〈d@I,@A, q,@A〉∗rl〈q, Sq〉

∧S=Sq∪{root})

sl〈root, S〉≡(root=null∧S={})

∨∃ d, q, Sq · (root7→node〈d@I,@A,@A, q〉∗sl〈q, Sq〉

∧S=Sq∪{root})

A key safety property for this process scheduler is that all processes in the

list al should also be in either the list rl or the list sl. Note that the use of

field annotations inside the definition of the predicates ensures that rl can only

access the running processes as the other fields are marked @A. Also the id field

of node in al, rl and sl is marked immutable with @I. The set of addresses

reachable from the root are captured using the predicate parameter S. We can

specify the key invariant for these list of processes using the following formula.

al〈x, Sx〉 ∧ (rl〈y, Sy〉 ∗ sl〈z, Sz〉)∧Sx=Sy∪Sz

Even though this formula uses compatible sharing of heaps, it is non-trivial

to prove that automatically. Since the field annotations are hidden inside the

predicate definition, they cannot be exposed without doing an unfolding of the

predicate. In order to expose the information about the fields inside the

predicate we introduce the notion of memory specifications. We allow the user

to specify the memory footprint of the predicate using the mem construct

which is associated with the predicate definition. The enhanced predicate

87

definitions for the process scheduler are shown below.

al〈root, S〉≡(root=null∧S={})

∨∃ d, q, Sq · (root7→node〈d@I, q,@A,@A〉∗al〈q, Sq〉

∧S=Sq∪{root})

mem S↪→(node〈@I,@M,@A,@A〉)

rl〈root, S〉≡(root=null∧S={})

∨∃ d, q, Sq · (root7→node〈d@I,@A, q,@A〉∗rl〈q, Sq〉

∧S=Sq∪{root})

mem S↪→(node〈@I,@A,@M,@A〉)

sl〈root, S〉≡(root=null∧S={})

∨∃ d, q, Sq · (root7→node〈d@I,@A,@A, q〉∗sl〈q, Sq〉

∧S=Sq∪{root})

mem S↪→(node〈@I,@A,@A,@M〉)

The mem construct consists of a memory region along with a list of possible

field annotations that the predicate unfolding would generate. It allows us to

syntactically check if two predicates that share memory region have compatible

field annotations. Looking at the memory specification of al and rl it is

easy to see that al does not affect (or is compatible with) rl. The id field is

immutable in rl and the only field which is mutable in al is absent in rl. Thus

any updates made to the nodes in memory region S using predicate al will not

have any effect when accessing the same memory region using predicate rl.

To avoid writing such verbose predicates with set of addresses and to make

the specifications more concise, we use the overlaid conjunction operator (∧∗).

Formulas using the ∧∗ operator are translated automatically to those that use the

∗ operator with memory specifications. For the shared process scheduler the

88

memory region shared by the lists al is same as the one shared by rl and sl.

The ∧∗ operator provides the hint to the system to force the memory on both sides

to be the same. Hence, the key invariant of the data structure is captured more

concisely as:

al〈x〉 ∧∗ (rl〈y〉 ∗ sl〈z〉)

This formula is automatically translated by first enhancing the predicate

definitions with memory specifications by using the XMem function from figure

5.2. And then forcing the memory region on both sides of ∧∗ to be the same. As

the final translated formula is exactly the same as given before, the use of ∧∗

provides a specification mechanism to precisely describe the user intention.

//Provided by User

al〈x〉 ∧∗ (rl〈y〉 ∗ sl〈z〉)

//Predicate extension with mem

al〈x, Sx〉 ∧∗ (rl〈y, Sy〉 ∗ sl〈z, Sz〉)

//Translated form

al〈x, Sx〉 ∧ (rl〈y, Sy〉 ∗ sl〈z, Sz〉)∧Sx=Sy∪Sz

Using the ∧∗ operator makes the specification of methods utilizing overlaid

structures less verbose. Consider the following insert method which is called

while scheduling a new process in the system. The new process has to be

inserted into al, and depending on the status flag, also in rl or sl. The

precondition of the method uses the ∧∗ operator to specify the key safety

property. The use of overlaid sharing operator allows the user to express the

precondition in a concise form. Compatible sharing is used to verify this

method as the inserts made to different lists can be shown not to interfere with

89

each other.

void insert(int id, int status, node x, node y, node z)

requires al〈x〉 ∧∗ (rl〈y〉 ∗ sl〈z〉)∧ status=1

ensures al〈x〉 ∧∗ (rl〈y〉 ∗ sl〈z〉)
requires al〈x〉 ∧∗ (rl〈y〉 ∗ sl〈z〉)∧ status=0

ensures al〈x〉 ∧∗ (rl〈y〉 ∗ sl〈z〉)
{
node tmp = new node(id, null, null, null);

tmp.next = x;

x = tmp;

if(status == 1)

y = rlinsert(y, tmp);

else z = slinsert(z, tmp); }

5.2.3 Comparison with Fractional Permissions

In this section, we show the difficulties that arise when using separation logic

with fractional permissions (SLfp) to represent overlaid data structures. We

avoid these issues by using field annotations and overlaid conjunction operator

while specifying compatible sharing in data structures.

Applying fractional permissions (as in SLfp) to fields inside inductive

predicates can unintentionally change the meaning of the predicate. E.g

consider the following predicate definition of an immutable binary tree in SLfp:

tree〈root〉≡root=null

∨∃ d, l, r · (root7→node〈d@1/2, l@1/2, r@1/2〉∗tree〈l〉∗tree〈r〉)

We restrict the use of fields in the predicate using the fraction 1/2 to give a

read-only permission. However, this predicate does not enforce a tree and is in

fact a DAG. In standard SLfp the ∗ operator does not enforce strict separation,

90

thus the left and right children can point to the same node and combine using

the 1/2 permissions given to each node. A more sophisticated permission system

like tree-shares [67] can avoid this problem, but it is not known how to extend a

tree-shares like model to fields.

We avoid this problem by using a definition of the ∗ operator that enforces

strict object level separation. Also, we use field annotations that provide a

simpler way to specify mutable, immutable and absent fields. If we use ∗ for

object level separation and ∧ for object level sharing then it is natural to

introduce another operator ∧∗ for object level sharing and field level separation.

The overlaid conjunction (∧∗) is also practically useful to represent several data

structures as shown in section 5.5.

5.3 Syntax and Semantics

Our specification language is based on separation logic, as given by Chin et.

al. in [23]. We extend the language described in [23] with memory enhanced

predicate definitions. The extended language is shown in figure 5.1 (we use the

superscript ∗ to denote a list of elements). Φpr ∗→Φpo captures a precondition

Φpr and a postcondition Φpo of a method or a loop. They are abbreviated from

the standard representation requires Φpr and ensures Φpo, and formalized by

separation logic formula Φ.

In turn, the separation logic formula is a disjunction of a heap formula and a

pure formula (κ∧π). The pure part π captures a rich constraint from the domains

of Presburger arithmetic, monadic set constraint or polynomial real arithmetic.

We use the set constraints for representing memory regions as shown in figure

5.1. The predicate definition allows optional mem construct to be specified.

The mem construct is useful in cases like the overlaid data structures where it

91

pred ::= p(v∗) ≡ Φ [inv π][mem S↪→([c(@u∗)]∗)]
mspec ::= Φpr ∗→Φpo

Φ ::=
∨

(∃w∗·κ∧π)∗

κ ::= emp | v 7→c(v[@u]∗) | p(v∗) | κ1]κ2 (]∈{∗,∧,∧∗})
π ::= α | π∧ϕ α ::= β | ¬β
β ::= v1=v2 | v=null | a≤0 | a=0
a ::= k | k×v | a1 + a2 | max(a1,a2) | min(a1,a2)
ϕ ::= v∈S | S1=S2 | S1⊂S2 | ∀v∈S · π | ∃v∈S · π
S ::= S1∪S2 | S1∩S2 | S1−S2 | {} | {v}
u ::= M | I | A (M <: I <: A)
where p is a predicate name; v, w are variable names;

c is a data type name; u is a field annotation;

Figure 5.1: Specification Language

is important to be able to specify that the memory regions of both overlaying

structures are exactly the same.

For predicate definition, we also declare a pure invariant (inv π) that is

valid for each instance of the predicate. For predicates that also have mem,

we do not allow the set of addresses S to contain any null pointers. Hence,

whenever the predicate has a memory specification, we strengthen the invariant

by automatically adding a constraint using the addMemInv(π, S) function as

shown below.

addMemInv(π, S) =df π ∧ (∀x∈S · x 6=null)

Before we can use the memory specification in the entailment we need to

check whether the predicate definition implies the memory specified by the

user. In order to do that we take help of the XMem(κ) function. The

XMem(κ) function, whose definition is given in figure 5.2, returns a sound

approximation of the memory footprint of heap κ as a tuple of the form:

92

(S, [c(@u∗)]∗) which corresponds to the set of addresses and the list of field

annotations used in memory specifications.

The function isData(c) returns true if c is a data node, while isPred(c)

returns true if c is a heap predicate. We use lists L1 and L2 to represent the field

annotations. The function union(L1, L2) returns the union of lists L1 and L2.

We do not need to consider the pure formula π in XMem as it doesn’t

correspond to any heap. In general, Φ can be disjunctive, so we can have a

number of possible approximations of memory for a predicate, each

corresponding to a particular disjunct.

XMem(emp) =df ({}, [])
isData(c)

XMem(c〈p, v@u∗〉) =df ({p}, [c〈@u∗〉])
isPred(c) c〈p, S, v∗〉≡Φ[inv π][mem S↪→L]

XMem(c〈p, S, v∗〉) =df (S, L)

XMem(κ1)=(S1, L1) XMem(κ2)=(S2, L2)

XMem(κ1]κ2) =df (S1∪S2, union(L1, L2))

Figure 5.2: XMem: Translating to Memory Form

We illustrate how the approximation function works by using the example

of a linked list.

data node { int val; node next }

ll〈root, S〉≡(root=null∧S={})

∨∃ d, q, Sq · (root7→node〈d, q〉∗ll〈q, Sq〉∧S=Sq∪{root})

mem S↪→(node〈@M,@M〉)

As an example consider the memory approximation of the following

93

predicate.

XMem(x7→node〈d, p〉 ∗ ll〈y, Sy〉)

We proceed by using the rules from figure 5.2 for the data node x and

predicate ll.

XMem(x7→node〈d, p〉) = ({x}, [node〈@M,@M〉])

XMem(ll〈y, Sy〉) = (Sy, [node〈@M,@M〉])

XMem(x7→node〈d, p〉∗ll〈y, Sy〉) = ({x}∪Sy, [node〈@M,@M〉])

As a consistency check on the memory specification, we use the predicate

definition to validate the user supplied memory specification. In case, the user

doesn’t provide a memory specification (e.g. when using the ∧∗ operator), we

automatically extend the predicate definition with set of addresses returned by

the XMem function.

We use an existing underlying [27] entailment procedure (denoted by `) to

discharge the entailment during validation of memory specifications. The rules

for checking the memory specification are given in figure 5.3. In the following

discussion for brevity, we represent a list of field annotations used in memory

specification (c(@u∗)∗) with L. We define a subtype(L1, L2) function on lists

of field annotations. The function returns true if all the field annotations of data

nodes in L1 have a corresponding node in L2 and their field annotations are in

the subtyping relation (as defined in figure 5.1).

subtype(L1, L2) =df ∀ c(@u∗1) in L1,∃ c(@u∗2) in L2

s.t. u1 <: u2

94

The subtype function is used to check the validity of the memory

specification by ensuring that the field annotations defined inside the predicate

are really subtype of those given by the memory specification. For a predicate

p(v∗) ≡ Φ mem S↪→L, the following judgment defines the validity of the

memory specification.

Φ `mem S↪→L

[CHECK−MEM]

Φ = ∃w∗·κ∧π
XMem(κ) = (Sx, Lx)

Φ`κV,I(S=Sx) ∗∆
subtype(L,Lx)∧subtype(Lx, L)

Φ `mem S↪→L
[CHECK−OR−MEM]

Φ1 = ∃w∗1·κ1∧π1 Φ2 = ∃w∗2·κ2∧π2
XMem(κ1) = (S1, L1) XMem(κ2) = (S2, L2)

Φ1`κV,I(S=S1) ∗∆ Φ2`κV,I(S=S2) ∗∆
subtype(L, union(L1, L2))∧subtype(union(L1, L2), L)

Φ1 ∨ Φ2 `mem S↪→L

Figure 5.3: Validating the Memory Specification

Rule [CHECK−MEM] is used when the Φ formula doesn’t contain a

disjunction, while the rule [CHECK−OR−MEM] is used for the disjunctive case.

The main difference in the disjunctive case is in the handling of list of field

annotations. For the set of addresses (S), we can approximate the heap in each

disjunctive formula. However, the field annotations have to be computed for

the entire predicate as the annotations may differ in different disjuncts. Since

memory specifications are essential to check compatibility in data structures,

we have machine checked the soundness proof of these rules and the XMem

function in Coq. Appendix B shows the details of the certified proof. For a

95

given formula in our specification language P , we prove that the XMem

transformation preserves the satisfiability of the formula.

SAT (P) =⇒ SAT (XMem(P))

Since the XMem function is similar to the XPure function from [27], we

have also checked the soundness of the XPure function in Coq. We prove the

following statement which signifies that the XPure transformation also

preserves the satisfiability of the formula.

SAT (P) =⇒ SAT (XPure(P))

We discovered a bug in the previous paper and pen proof given in [27] (a

missing extra condition, p 6= 0). Interestingly, this condition is also omitted

from the proof in [23].

5.3.1 Storage Model

The storage model is similar to classical separation logic [96], with the

difference that we support field annotations, memory specifications and sharing

operators. Accordingly, we define our storage model by making use of a

domain of heaps, which is equipped with a partial operator for gluing together

disjoint heaps. h0 · h1 takes the union of partial functions when h0 and h1 have

disjoint domains of definition, and is undefined when h0(l) and h1(l) are both

defined for at least one location l ∈ Loc.

To define the model, we assume sets Loc of locations (positive integer

values), Val of primitive values, with 0 ∈ Val denoting null, Var of variables

(program and logical variables), and ObjVal of object values stored in the heap,

96

with c[f1 7→ν1, .., fn 7→νn] denoting an object value of data type c where ν1, .., νn

are current values of the corresponding fields f1, .., fn. Each field has an

attached annotation from {M, I,A}. I means that the corresponding field value

cannot be modified, while M allows its mutation, and A denotes no access.

h ∈ Heaps =df Loc ⇀fin ObjVal × {M, I,A}

s ∈ Stacks =df Var→ Val∪Loc

Note that each heap h is a finite partial mapping while each stack s is a total

mapping, as in the classical separation logic [96, 47].

5.3.2 Semantic Model of the Specification Formula

The semantics of our separation heap formula is similar to the model given for

separation logic [96], except that we have extensions to handle our user-defined

heap predicates together with the field annotations and new sharing operators.

Let s, h |= Φ denote the model relation, i.e. the stack s and heap h satisfy

the constraint Φ. Function dom(f) returns the domain of function f . Now we

use 7→ to denote mappings, not the points-to assertion in separation logic. The

model relation for separation heap formulae is given in definition 2. The model

relation for pure formula s |= π denotes that the formula π evaluates to true in

s.

The last case in definition 2 is split into two cases: (1) c is a data node defined

in the program P; (2) c is a heap predicate defined in the program P. In the first

case, h has to be a singleton heap. In the second case, the heap predicate c may

be inductively defined. Note that the semantics for an inductively defined heap

predicate denotes the least fixpoint, i.e. for the set of states (s, h) satisfying the

predicate. The monotonic nature of our heap predicate definition guarantees the

97

Definition 2 (Model for Specification Formula).

s, h |=Φ1∨Φ2 iff s, h |= Φ1 or s, h |= Φ2

s, h |=∃v1..n·κ∧π iff ∃ν1..n·s[v1 7→ν1, .., vn 7→νn], h |= κ and
s[v1 7→ν1, .., vn 7→νn] |= π

s, h |=κ1∗κ2 iff ∃h1, h2 · h1⊥h2 and h = h1·h2 and
s, h1 |= κ1 and s, h2 |= κ2

s, h |=κ1∧κ2 iff s, h |= κ1 and s, h |= κ2
s, h |=κ1∧∗κ2 iff s, h |= κ1 and s, h |= κ2 and Compatible(κ1∧∗κ2)
s, h |=emp iff dom(h) = ∅
s, h |=c(x, v1..n@u1..n) iff data c {t1 f1, .., tn fn}∈P,

h=[s(x)7→r], dom(h) = {x}
and r=c[f1 7→w1s(v1), .., fn 7→wns(vn)] and ui<:wi
or (c〈x, v1..n〉≡Φ inv π)∈P and s, h |= [x/root]Φ

existence of the descending chain of unfoldings, thus the existence of the least

solution.

To define the overlaid conjunction operator (∧∗) we must first identify the

pairs of field annotations that are compatible. The following table can be used

to look up compatible field annotations.

Table 5.1: Compatible pairs of Field Annotations

u1 u2 CompatibleFA
@M @M false

@M @I false

@M @A true

@I @I true

@I @A true

@A @A true

Based on CompatibleFA, we can now give the definition for the overlaid

conjunction operator. As shown in definition 2 the case ∧∗ is similar to ∧, except

98

that the shared heaps must be compatible which can be checked using the

Compatible function given below.

Compatible(κ1∧∗κ2) =df

(S1, L1)=XMem(κ1) (S2, L2)=XMem(κ2)

∀ c(@u∗1) in L1, ∃ c(@u∗2) in L2 s.t. CompatibleFA(u1, u2)

∀ c(@u∗2) in L2, ∃ c(@u∗1) in L1 s.t. CompatibleFA(u2, u1)

The rest of the operators are defined in the standard way as in classical

separation logic.

5.4 Verification with Compatible Sharing

To verify programs with compatible sharing, we make use of an existing

entailment procedure for separation logic (denoted by ` [23]). The inference

rules for the entailment procedure are the same as in [23] and are reproduced

below (figures 5.4 and 5.5) for completeness.

The only additional operator we have is the overlaid conjunction. We first

describe the automatic translation used to eliminate ∧∗ operator.

As shown in figure 5.6, the [ELIM−OVER−CONJ] rule first checks for

compatible sharing of heaps (using Compatible function) and then uses the

XMem function to get the set of addresses S1 and S2 which are added to the

formula when ∧∗ operator is replaced with ∗. Thus for the process scheduler

example from section 5.2 we get the following.

al〈x, Sx〉 ∧∗ (rl〈y, Sy〉 ∗ sl〈z, Sz〉) ;

al〈x, Sx〉 ∧ (rl〈y, Sy〉 ∗ sl〈z, Sz〉)∧Sx=Sy∪Sz

99

[ENT−EMP]
ρ=[0/null]

XPuren(κ1∗κ)∧ρπ1)=⇒ρ∃V·π2
κ1∧π1`κV,Iπ2 ∗ (π1∧κ1)

[ENT−MATCH]
XPuren(p1::c〈v∗1〉∗κ1∗π1)=⇒p1=p2 ρ=[v∗1/v

∗
2]

κ1∧π1∧freeEqn(ρ, V)`κ∗p1::c〈v
∗
1〉

V−{v∗2}
ρ(κ2∧π2) ∗∆

p1::c〈v∗1〉∗κ1∧π1`κV,I(p2::c〈v∗2〉∗κ2∧π2) ∗∆

[ENT−FOLD]
IsPred(c2)∧IsData(c1)

(∆r, κr, πr)∈foldκ(p1::c1〈v∗1〉∗κ1∧π1, p2::c2〈v∗2〉)
XPuren(p1::c1〈v∗1〉∗κ1∗π1)=⇒p1=p2

(πa, πc)=split{v
∗
2}

V (πr) ∆r∧πa`κrV (κ2∧π2∧πc) ∗∆

p1::c1〈v∗1〉∗κ1∧π1`κV,I(p2::c2〈v∗2〉∗κ2∧π2) ∗∆

[ENT−UNFOLD]
XPuren(p1::c1〈v∗1〉∗κ1∗π1)=⇒p1=p2 IsPred(c1)∧IsData(c2)

unfold(p1::c1〈v∗1〉)∗κ1∧π1`κV,I(p2::c2〈v∗2〉∗κ2∧π2) ∗∆

p1::c1〈v∗1〉∗κ1∧π1`κV,I(p2::c2〈v∗2〉∗κ2∧π2) ∗∆

Figure 5.4: Entailment - Base Case

Figure 5.6 also lists some of the other rules required during entailment with

field annotations. These rules are based on the definition of field annotations

and the semantic model of the specification formula. Rule [DOWNCAST−FA]

says that we can always downcast a field annotation. It follows directly from

the last case in definition 2. This means that a write (@M) annotation can be

downcast to read (@I) and a read annotation to absent (@A). The following

examples illustrate how [DOWNCAST−FA] rule can be used to check validity of

entailments with field annotations.

100

[ENT−LHS−OR]
∆1`κV,I∆3 ∗∆1

∆2`κV,I∆3 ∗∆2

∆1∨∆2`κV,I∆3 ∗ (∆1∪∆2)

[ENT−RHS−OR]
∆1`κV,I∆i ∗∆R

i

∆1`κV,I(∆2∨∆3) ∗∆2 ∪∆R
i

i∈{2, 3}

[ENT−LHS−EX]
[w/v]∆1`κV,I∆2 ∗∆

fresh w
∃v ·∆1`κV,I∆2 ∗∆

[ENT−RHS−EX]
∆1`κV ∪{w}([w/v]∆2) ∗∆3

fresh w ∆=∃ w ·∆3

∆1`κV,I(∃ v ·∆2) ∗∆

Figure 5.5: Entailment - Inductive Cases

x7→node(v@M, p@I) ` x7→node(v@I, p@A) (Valid)

x7→node(v@I, p@I) ` x7→node(v@I, p@A) (Valid)

x7→node(v@M, p@A) ` x7→node(v@I, p@A) (Valid)

x7→node(v@A, p@I) ` x7→node(v@I, p@A) (Invalid)

x7→node(v@I, p@I) ` x7→node(v@M, p@A) (Invalid)

x7→node(v@M, p@I) ` x7→node(v@I, p@M) (Invalid)

The absent annotation can always be split off (or combined with) any other

annotation as shown in rule [SPLIT−COMBINE−FA]. Finally, as given in rule

[SPLIT−READ−FA] the read annotation can be split into two read annotations.

Together, these three set of rules allow exclusive write access and shared read

access to fields. Entailments showing the use of [SPLIT−COMBINE−FA] rule are

given below.

101

[ELIM−OVER−CONJ]

Compatible(κ1∧∗κ2)
(S1, L1)=XMem(κ1) (S2, L2)=XMem(κ2)

κ1∧∗κ2 ; κ1∧κ2 ∧ S1=S2

[DOWNCAST−FA]

x 7→c(v[@u]∗) =⇒u<:w x 7→c(v[@w]∗)

[SPLIT−COMBINE−FA]

x 7→c(v[@u]∗)⇐⇒ x 7→c(v[@u]∗) ∧ x 7→c(v[@A]∗)

[SPLIT−READ−FA]

x 7→c(v[@I]∗)⇐⇒ x 7→c(v[@I]∗) ∧ x 7→c(v[@I]∗)

Figure 5.6: Rules with Field Annotations

x7→node(v@M, p@I)`x7→node(v@I, p@I)∧x7→node(v@I, p@A)

x7→node(v@M, p@M)`x7→node(v@M, p@A)∧x7→node(v@A, p@M)

x7→node(v@I, p@A)`x7→node(v@I, p@A)∧x7→node(v@I, p@A)

x7→node(v@I, p@I)`x7→node(v@I, p@I)∧x7→node(v@I, p@A)

5.4.1 Forward Verification Rules

We now present the inference rules for Hoare’s triples used for forward

verification with compatible sharing. The rules below are reproduced from [23]

with modifications made to incorporate field annotations required for

compatible sharing. Verification of a method starts with each precondition, and

proves that the postcondition is guaranteed at the end.

102

[FV−[METH]]

V={vm..vn} W=prime(V)

∀i = 1, .., p · (` {Φi
pr∧nochange(V)} e {Ψi

1}

(∃W·Ψi
1)`κV,IΦi

po ∗Ψi
2 Ψi

2 6={})

` t0 mn((ref tj vj)
m−1
j=1 , (tj vj)

n
j=m) {requires Φi

pr ensures Φi
po}

p
i=1 {e}

[FV−[CALL]]

t0 mn((ref tj vj)
m−1
j=1 , (tj vj)

n
j=m) {requires Φi

pr ensures Φi
po}

p
i=1 {e} ∈ P

ρ=[v′j/vj]
n
j=m ∆`κV,IρΦi

pr ∗Ψi ∀i=1, .., p

Ψ =
⋃p
i=1 Φi

po ∗Ψi Ψ 6= {}
` {∆}mn(v1..vn) {Ψ}

The verification is formalized in the rule [FV−[METH]]:

• function prime(V) returns {v′ | v ∈ V }.

• predicate nochange(V) returns
∧
v∈V (v = v′). If V = {},

nochange(V)=true.

• ∃W ·Ψ returns {∃W ·Ψi|Ψi ∈ Ψ}.

At a method call, each of the method’s precondition is checked,

∆`κV,IρΦi
pr ∗Ψi, where ρ represents a substitution of vj by v′j , for all j = 1, .., n.

The combination of the residue Ψi and the postcondition is added to the

poststate. If a precondition is not entailed by the program state ∆, the

corresponding residue is not added to the set of states. The test Ψ6={} ensures

that at least one precondition is satisfied. Note that we use the primed notation

for denoting the latest value of a variable. Correspondingly, [v′0/vi] is a

substitution that replaces the value vi with the latest value of v′0. We need to

modify the rules related reading and updating of fields to the following.

103

[FV−[FIELD−READ]]

∆`κV,Iv′ 7→c〈v1@A, v2@A, .., vi@I, .., vn@A〉 ∗Ψ1 fresh v1..vn Ψ1 6={}

Ψ2=∃v1..vn · (∆∧res=vi)

` {∆}v.fi{Ψ2}

[FV−[FIELD−UPDATE]]

∆`κV,Iv′ 7→c〈v1@A, v2@A, .., vi@M, .., vn@A〉 ∗Ψ1 fresh v1..vn Ψ1 6={}

Ψ2=∃v1..vn · (∆ ∗ [v′0/vi]v
′ 7→c〈v1@A, v2@A, .., vi@M, .., vn@A〉)

` {∆}v.fi:=v0{Ψ2}

Whenever there is a field access (read or update), the current state, ∆, must

contain the node to be dereferenced. For [FV−[FIELD−READ]] only the field that

is been read is marked with @I annotation. In case of [FV−[FIELD−UPDATE]]

the field that is updated is marked with the mutable annotation (@M). As shown

in the EntailFA rule from section 5.4 entailing a @I or @M field from RHS with

a corresponding node on LHS will consume the field from LHS. Hence, we

discard the residue from the entailment (Ψ1) and instead keep the original field

annotation on LHS (∆) so as prevent it from getting consumed.

5.4.2 Soundness

The soundness of rules given in figure 5.6 can be established using the semantic

model and the definition of field annotations. We now present the proof of

soundness of these rules, we start first with the rules for field annotations.

The downcast rule can be proven directly from the semantic model as a

points-to assertion valid in the current heap is also valid in a weaker heap as

defined by the subtyping relation between the annotations. The split-combine

104

rule can be proven using the fact that for all field annotations it is always the

case that they are a subtype of the absent (@A) annotation. And finally for the

read rule of field annotations we use the fact that immutable (@I) annotation is

a subtype of itself.

Using the rules for field annotations we then prove the soundness of the

elimination rule. Since, there are two ways of splitting the overlaid heaps, we

have two cases to prove - in the first case we use the [SPLIT−COMBINE−FA] to

combine them back as the fact that they are in compatible sharing means that

the field annotations can only be from the pairs given in table for CompatibleFA

in section 5.3.2 and we prove the second case similarly using the

[SPLIT−READ−FA] rule.

Rule [DOWNCAST−FA]:

s, h |= x 7→c(v[@u]∗)

⇐⇒ h=[s(x)7→r]∧r=c[f 7→ws(v)]∗∧u<:w (definition 2)

=⇒ h′=[s(x) 7→r]∧r=c[f 7→ws(v)]∗∧h′⊂h (weakening)

⇐⇒ s, h′ |= x 7→c(v[@w]∗)∧h′⊂h (definition 2)

⇐⇒ s, h |= x 7→c(v[@w]∗)

Thus , x7→c(v[@u]∗) =⇒u<:w x 7→c(v[@w]∗) �

105

Rule [SPLIT−COMBINE−FA]:

s, h |= x 7→c(v[@u]∗)

⇐⇒ h=[s(x)7→r]∧r=c[f 7→ws(v)]∗∧u<:w (definition 2)

⇐⇒ h′=[s(x)7→r]∧r=c[f 7→@As(v)]∗∧h′⊂h (∀u · u<:@A)

⇐⇒ s, h′ |= x 7→c(v[@A]∗)∧h′⊂h (definition 2)

⇐⇒ s, h′ |= x 7→c(v[@A]∗)∧h′⊂h

∧s, h |= x 7→c(v[@u]∗)

⇐⇒ s, h |= x 7→c(v[@A]∗)∧x 7→c(v[@u]∗) (definition 2)

Thus , x7→c(v[@u]∗)⇐⇒

x 7→c(v[@u]∗) ∧ x 7→c(v[@A]∗) �

Rule [SPLIT−READ−FA]:

s, h |= x 7→c(v[@I]∗)

⇐⇒ h=[s(x)7→r]∧r=c[f 7→ws(v)]∗∧I<:w (definition 2)

⇐⇒ h′=[s(x)7→r]∧r=c[f 7→@Is(v)]∗∧h′⊂h (@I<:@I)

⇐⇒ s, h′ |= x 7→c(v[@I]∗)∧h′⊂h (definition 2)

⇐⇒ s, h′ |= x 7→c(v[@I]∗)∧h′⊂h

∧s, h |= x 7→c(v[@I]∗)

⇐⇒ s, h |= x 7→c(v[@I]∗)∧x 7→c(v[@I]∗) (definition 2)

Thus , x7→c(v[@I]∗)⇐⇒

x 7→c(v[@I]∗) ∧ x 7→c(v[@I]∗) �

106

Rule [ELIM−OVER−CONJ]:

s, h |= κ1∧∗κ2∧(S1, L1)=XMem(κ1)

∧(S2, L2)=XMem(κ2)

⇐⇒ s, h |= κ1∧s, h |= κ2∧

Compatible(κ1∧∗κ2)∧s |= S1=S2(=h) (definition 2)

case [SPLIT−COMBINE−FA] :

⇐⇒ h=[s()7→r]∧r=c[f 7→us()]∗∧

h′=[s()7→r]∧r=c[f 7→@As()]∗∧h′⊂h∧

Compatible(κ1∧∗κ2)∧s |= S1=S2

⇐⇒ s, h |= κ1∧s, h′ |= κ2∧h′⊂h

∧s |= S1=S2 (CompatibleFA)

=⇒ s, h |= κ1∧κ2∧S1=S2 (definition 2)

case [SPLIT−READ−FA] :

⇐⇒ h=[s()7→r]∧r=c[f 7→@Is()]∗∧

h′=[s()7→r]∧r=c[f 7→@Is()]∗∧h′⊂h∧

Compatible(κ1∧∗κ2)∧s |= S1=S2

⇐⇒ s, h |= κ1∧s, h′ |= κ2∧h′⊂h

∧s |= S1=S2 (CompatibleFA)

=⇒ s, h |= κ1∧κ2∧S1=S2 (definition 2)

Thus , κ1∧∗κ2 ; κ1∧κ2 ∧ S1=S2 �

Soundness of the underlying entailment procedure (as shown in [23]) and

the soundness of the rules given in figure 5.6 together establish the soundness

107

of verification with compatible sharing.

5.5 Experiments

We have built a prototype system using Objective Caml called HIPComp1. The

web interface of HIPComp allows testing the examples without downloading or

installing the system. The proof obligations generated by HIPComp are

discharged using off-the-shelf constraint solvers (Omega Calculator [55] and

Mona [56]). In addition to the examples presented in this chapter we can do

automated verification of a number of challenging data structures with complex

sharing. The examples are hard to reason with separation logic due to inherit

sharing and aliasing in heap. For each of these examples, we verify methods

that insert, find and remove nodes from the overlaid data structure. We use

overlaid conjunction (∧∗) to concisely capture safety properties of programs, as

seen by the following invariants verified in our experiments. The key invariant

of the overlaid data structure can also be a composite structure which

intermixes ∗ and ∧∗ operators. It is essential to reason about compatible sharing

when specifying and verifying such programs.

al〈x〉 ∧∗ (rl〈y〉 ∗ sl〈z〉) //Process Scheduler

llnext〈x〉 ∧∗ lldown〈y〉 //Doubly Circular List

ll〈x〉 ∧∗ tree〈t〉 //LL (Linked List) and Tree

ll〈x〉 ∧∗ sll〈y〉 //LL and SortedLL

(ll〈x〉 ∧∗ tree〈t〉) ∗ ll〈y〉 //Disk IO Scheduler

The following table summarizes the suite of examples verified by HIPComp. All

experiments were done on a 3.20GHz Intel Core i7-960 processor with 16GB

1http://loris-7.ddns.comp.nus.edu.sg/˜project/HIPComp/

108

http://loris-7.ddns.comp.nus.edu.sg/~project/HIPComp/

memory running Ubuntu Linux 10.04. The first column gives the name of the

program, second column lists the lines of code (including specifications) in the

program. The annotation burden due to specifications is about 30% of the total

number of lines of code. In the third column we show the sharing degree, it

is defined as the percentage of specifications that use compatible sharing using

field annotations. The sharing degree varies across examples depending on the

percentage of methods that use overlaid conjunction in their specifications.

As is clear from our benchmark programs, the ability to specify sharing is

important to verify these data structures. The last column (Comp) is the

percentage of total entailments generated that make use of compatible sharing.

The compatibility percentage depends on the number of entailments that make

use of the [ELIM−OVER−CONJ] rule to eliminate the overlaid conjunction. The

compatibility check is essential to verify sharing in these programs.

Table 5.2: Verification with Compatible Sharing

Program LOC Time [s] Sharing Comp
Parameterized List 30 0.28 100 40
Compatible Pairs 12 0.09 100 25
LL and SortedLL 175 0.61 22 22

LL and Tree 70 0.24 16 7
Doubly Circular List 50 0.41 50 32
Process Scheduler 70 0.47 33 23
Disk IO Scheduler 88 1.3 16 27

5.6 Comparative Remarks and Summary

The problem of sharing has also been explored in the context of concurrent

data structures and objects [31, 112]. Our work is influenced by them but for a

sequential setting, indeed the notion of self-stable concurrent abstract predicates

109

is analogous to our condition for compatibility. However, since we are focused

on sequential programs, we avoid the use of environment actions and instead

focus on checking compatibility between shared predicates. Regional logic [5]

also uses set of addresses as footprint of formulas. These regions are used with

dynamic frames to enable local reasoning of programs. Memory layouts [37] are

used by Gast, as a way to formally specify the structure of individual memory

blocks. A grammar of memory layouts enables distinguishing between variable,

array, or other data structures. This shows that when dealing with shared regions

of memory, knowing the layout of memory can be quite helpful for reasoning.

We use field annotations to specify access to memory in shared and overlaid

data structures.

Similarly, the recent work of Dragoi et al. [34] considers only the shape

analysis of overlaid lists. We extend these separation logic based techniques by

going beyond shape properties and handling arbitrary data structures. Our

proposal is built on top of user defined predicates with shape, size and bag

properties that can express functional properties (order, sorting, height balance

etc.) of overlaid data structures. A separation logic based program analysis has

been used to handle non-linear data structures like trees and graphs [20]. In

order to handle cycles, they keep track of the nodes which are already visited

using multi-sets.

We have proposed a specification mechanism to express different kinds of

sharing and aliasing in data structures. The specifications can capture

correctness properties of various kinds of programs using compatible sharing.

We present an automated verification system which can be used to reason about

sharing in data structures. We have implemented a prototype based on our

approach. An initial set of experiments with small but challenging programs

have confirmed the usefulness of our method. For future work, we want to

110

explore the use of memory regions and field annotations to enable automated

verification of other intrinsic shared data structures that do not satisfy

compatible sharing (like DAGs and graphs).

111

112

Chapter 6

Automated Verification of

Ramifications in Separation Logic

We present an automated entailment procedure that can reason with ramified

updates. We show, how to calculate ramifications for predicates representing

different sharing and aliasing scenarios. We have implemented our approach

and verified a small but comprehensive benchmark of challenging programs

with significant heap sharing. Our experiments show that we can verify many

different sharing scenarios using automated ramifications.

6.1 Introduction

Data structures with heap sharing are widely used in system software. Sharing

enables more efficient use of memory and allows programmers to write

compact programs. However, it can be challenging to formally reason about

such programs. In addition, certain data structures like acyclic and cyclic

graphs have intrinsic sharing. Sharing makes it harder to reason about different

parts of the structure in isolation.

113

Many common data structures can be represented using the separating

conjunction. For example, in a linked list the head of the list is separated from

the rest of the list and in a binary tree the left and right children are separated.

However, there are many data structures (like graphs) where it is not always

possible to isolate them using separating conjunction. Data structures like

graphs involve unrestricted sharing, the left and right children of a binary DAG

(directed acyclic graph) may point into each other. Recently, Hobor and Villard

[46] designed a new proof technique called ramification to deal with such

cases.

The Ramification procedure presented in [46] is proven sound but is not

currently handled by automated verification. Ramifications in separation logic

can be represented using septraction (−−#∗ [113]) operator. However automated

reasoning with the septraction operator has been known to be challenging. In

this chapter, we present the first automated procedure to calculate ramifications

and enable verification of programs using DAGs and graphs. To support

automated ramifications, we use an extended form of separation logic with two

additional conjunction operators, ?∪ and ∧, that express different degrees of

sharing and aliasing. While these operators are not new, we have formulated a

new sound method 6.3 to reason with them which enables us to automatically

verify several programs (using DAGs, graphs and overlapping structures) that

have so far evaded compositional proofs. Our key contributions include:

• An entailment procedure to automatically reason with ramified updates.

• Use of lemmas to handle reasoning with the septraction operator.

• A prototype implementation of our approach and its evaluation on a

benchmark of programs with complex heap sharing.

114

The rest of the chapter is structured as follows. In section 6.2, we start with

some motivating examples which illustrate our method. Section 6.3 introduces

the formal notion and entailment with logical operators in our system. The

implementation details and experiments are presented in section 6.4. Finally,

we compare with related work and conclude in section 6.5.

6.2 Motivating Examples

6.2.1 Updates on Shared Heaps

To illustrate the effect updates can have on shared heaps, we make use of a

simple example of the single data node cell. It can be represented by the

following data structure.

data cell { int val }

Consider two cells x and y which may be aliased with each other. In our

specification logic we can represent them using the ?∪ operator as follows.

x7→cell〈f〉?∪y7→cell〈s〉

Since the operator ?∪ represents may aliasing an update to val field of one

of the cells may possibly effect the other cell. This can lead to problems when

calculating post conditions during verification. As an example consider the

following precondition and a command that updates val.

{x7→cell〈f〉?∪y7→cell〈s〉∧f6=1∧s6=1}

x.val = 1;

{?}

Since x and y may be aliased we cannot ignore the effect of update to x on

115

y. We need to be able to calculate the effect updating x has on y. We note that

this is not a problem in case of separation logic using only ∗ operator, as we can

give the following pre/post conditions to the command.

{x7→cell〈f〉∗y7→cell〈s〉∧f6=1∧s6=1}

x.val = 1;

{x7→cell〈1〉∗y7→cell〈s〉∧s6=1}

Sharing and aliasing leads to indirect consequences for local actions. We

use the −−#∗ operator [46] for specifying the update to the shared region. The

−−#∗ operator can help in capturing state which may be missing some heap, it is

defined as follows.

s, h |=κ1−−#∗κ2 iff ∃h1, h2 h2 = h1 · h

s, h1 |= κ1 and s, h2 |= κ2

And we can use it to express the fact that update to x may affect y as well.

{x7→cell〈f〉?∪y7→cell〈s〉∧f6=1∧s6=1}

x.val = 1;

{x7→cell〈f〉−−#∗(x7→cell〈f〉?∪y7→cell〈s〉)∗x7→cell〈1〉∧f6=1∧s6=1}

We split the update into two parts, first we take away the original cell

from precondition using −−#∗ and then we add the updated cell back. As

shown in [46] this indeed is the strongest postcondition. In general, it is quite

difficult to reason with −−#∗ operator directly so we try to eliminate it by

explicitly calculating its effect. For this example we can do a may alias case

analysis to reduce the formula to one without −−#∗ as shown below.

116

{(x7→cell〈f〉−−#∗x7→cell〈f〉?∪y7→cell〈s〉)∗x7→cell〈1〉∧f6=1∧s6=1}

// Fresh t

{(x7→cell〈f〉−−#∗x7→cell〈f〉?∪y7→cell〈s〉)∗x7→cell〈t〉∧t=1∧f6=1∧s6=1}

// Eliminate −−#∗

{(y7→cell〈t〉?∪x7→cell〈1〉)∧(t=s∨t=1)∧s6=1}

// Simplify

{(y7→cell〈t〉?∪x7→cell〈1〉)∧(t=1∨t6=1)}

// Eliminate t

{(y7→cell〈 〉?∪x7→cell〈1〉)}

We use a fresh variable t to represent the val field of y. If x and y were to be

aliased after update to x, the val field of y will also be updated and we capture

this fact by the pure formula t=s. If x and y were not aliased, then the val field

of y remains unchanged, so t=1. We remove the −−#∗ operator and connect x

and y with the ?∪ operator to denote that they may be shared (or aliased), while

we add the condition (t=s∨t=1) to the formula. This in turn can be further

simplified to the formula at the end. With this, we can now give concise post-

condition to the command from our example, as follows.

{x7→cell〈f〉?∪y7→cell〈s〉∧f6=1∧s6=1}

x.val = 1;

{x7→cell〈1〉?∪y7→cell〈 〉}

Thus, the user only needs to provide concise pre/post specification using

the three conjunction operators, while we automatically calculate the

ramifications required to verify them. A key distinguishing feature of our

system when compared to [46] is that we automatically handle ramifications

117

during entailment. The user doesn’t need to know or use the −−#∗ operator in the

specification for verifying sharing with ramifications. This example shows how

we ramify with a singleton heap. For each field we do an alias analysis for

calculating the effect of the update. In case ∧ operator we ramify using must

alias analysis while in case of ?∪ operator we do a may alias analysis. Hence if

x and y cells were specified using ∧, we would have the following.

{x7→cell〈f〉∧y7→cell〈s〉∧f6=1∧s6=1}

x.val = 1;

{x7→cell〈1〉∧y7→cell〈1〉}

6.2.2 Septraction Lemmas

In case of inductive predicates, unrestricted updates made on the shared heap

can malign the shape of the structure. An example of this kind of update can be

deletion of a node from a predicate using the sharing operators. In order to

capture the change of shape, we allow users to relate predicates beyond their

definitions by means of lemmas. In this section, we introduce a new kind of

lemma called septraction lemma that can aid in verifying such algorithms.

Septraction lemmas are based on a general approach described in [83] where

lemmas are user-supplied, but automatically proven and systematically applied.

Consider the example of deleting a node from the following overlapping

structure.

cache7→node〈 , p〉?∪ll〈x, S〉

Suppose, we have a function, delete(x) that removes the node x from the

list. We are interested in verifying the following.

118

{cache7→node〈 , p〉?∪ll〈x, S〉}

delete(cache);

{?}

The difficulty in verifying this method is that the deletion of node may affect

the linked list since the node may be aliased with the linked list. In that case the

ll will not capture the broken list and we need another predicate lseg to capture

a list segment. The list segment can be defined by the following predicate.

data node { int val; node next }

lseg〈root, p, S〉≡(root=p∧S={}

∨∃ q · (root7→node〈 , q〉∗lseg〈q, p, Sq〉)

∧S=Sq∪{root}

We can use the lseg predicate to capture the deletion of a node in the middle

of the list ll. For the delete function when we know that the cache node is

inside the list we can do the following.

{cache7→node〈 , p〉?∪ll〈x, S〉 ∧ cache∈S}

delete(cache);

{lseg〈x, cache, S1〉 ∗ ll〈p, S2〉 ∧ S=S1∪S2∪{cache}}

The removal of the node from the middle of the list leaves a list segment

from the beginning to that node and the rest of the list after the node. To enable

this kind of reasoning automatically during the entailment, we allow users to

specify lemmas using the −−#∗ operator. For this example we use the following

septraction lemma

119

Septraction Lemma

(p7→node〈 , q〉−−#∗ll〈root, S〉)∧p∈S→

lseg〈root, p, S1〉 ∗ ll〈q, S2〉∧S=S1∪S2∪{p}

To check the postcondition at the end of the method we use the given

septraction lemma. The septraction lemma application is guided by a potential

match with the lseg predicate from the body of the lemma. After the

septraction lemma is applied entailment proving can verify the method. The

septraction lemma itself can be proven by the same entailment procedure by

applying the lemma as an instance of cyclic proof following the general

approach given in [83].

6.3 Verification with Ramifications

In this section, we use the same specification language as used in section 5.3. In

addition, the entailment procedure and inference rules for Hoare’s triple are the

same as given in section 5.4.

The use of septraction lemma allows us to precisely capture the behavior

using −−#∗ operator. We extend the existing lemma mechanism from [83] to the

one shown in figure 6.1.

We add a new kind of lemma (called septraction lemma) that uses the −−#∗

operator in the specification. Septraction lemmas are of the form (E−−#∗H) ∧

G → B, where E denotes the heap that is taken away from H and G is a pure

formula which specifies the condition under which we can apply the lemma.

Septraction lemmas are proved and applied to support sound proof search by

the entailment prover. Since the proof of a septraction lemma may apply the

lemma itself inductively, we first present the proof rule that applies the lemmas

120

lemma (L) ::= H ∧G ./ B | (E−−#∗H) ∧G→ B
head (H) ::= [root ::]c(v∗)
body (B) ::= Φ
extra (E) ::= κ
guard (G) ::= π
./ ::= → | ← | ↔
where c is a data type name; p is a predicate name;

v, w are variable names;

Figure 6.1: Septraction Lemma Syntax

:

[L−LEFT−RAMIFY]

isPred(c1)

ρ=match(E−−#∗H, p2::c2〈v∗2〉−−#∗p1::c1〈v∗1〉)

(p2::c2〈v∗2〉−−#∗p1::c1〈v∗1〉)∗κ1∧π1`ρG

(ρB)∗κ1∧π1`
κ∗(p2::c2〈v∗2 〉−−#∗p1::c〈v∗1〉)
V,I (κ2∧π2) ∗Ψ

(p2::c2〈v∗2〉−−#∗p1::c1〈v∗1〉)∗κ1∧π1`κV,I(κ2∧π2) ∗Ψ

The septraction lemma can be applied to only the antecedent and is treated

as an unfolding. Its application is formalized below which says that the lemma

is applied if we can find a substitution ρ that matches H to p1::c1〈v∗1〉, E to

p2::c2〈v∗2〉 and satisfies the guard. Entailment Φ`π checks if the guard π holds

under Φ, and match function is defined as:

match(p2::c2〈v∗2〉−−#∗p1::c1〈v∗1〉, p4::c4〈v∗4〉−−#∗p3::c3〈v∗3〉)

=df [p1 7→p3, p2 7→p4, v∗1 7→v∗3, v∗2 7→v∗4]

For a goal-directed lemma application, we shall only apply this rule when

there exists a predicate in the consequent that would (subsequently) match up

121

via aliasing with a predicate in the RHS of lemma ρB. To prevent

non-termination during application of septraction lemmas, we assign a history

to each heap constraint (κ). The history is a set of predicate names which are

transitively written to κ. Lemma application is possible only if it does not

rewrite a predicate to some predicate already in the history. Folding and

unfolding of predicate instances pass the history on to the predicate instances

in the body. A detailed worked out example of lemma proof and application is

provided in section 6.3.1.

Septraction lemmas increase the precision of our entailment prover. That is,

the verification succeeds in more cases than before. In addition, they are

essential to verify certain algorithms. Correctness of septraction lemmas is

automatically proven by our system via the entailment prover. To prove a

septraction lemma, we need to show that the predicate in the head of the lemma

entails the body. During this entailment proving, the lemma being proven can

be soundly used in the proof itself as an instance of cyclic proof. Formally

proving a septraction lemma amounts to discharging the following proof

obligation:

unfold(E−−#∗H∧G, root)`unfold(B, root)∗emp

At the start of lemma proving, we always unfold the head predicate in the

antecedent and consequent. This ensures that infinite descent occurs for the

resulting cyclic proof which guarantees a progress condition needed for sound

induction. During the lemma proving, the septraction lemma being proven may

be applied to the unfolded formulas as an instance of cyclic proving.

Furthermore, we also check that the entailment derives an empty residual heap.

This ensures that both side of the lemma cover the same heap region.

To handle the −−#∗ operator during lemma proving we cannot use the

122

septraction rewriting rules, since during the proof we will not have an updated

heap to ramify with. Instead the septraction operator is handled by doing a case

analysis and checking the resulting entailments. The rules for doing the case

splits during lemma proving are given in figure 6.2.

[CASE−SPLIT∗]

Se, Le=XMem(E) S1, L1=XMem(κ1) S2, L2=XMem(κ2)
(E−−#∗κ1)∗κ2∧Se⊂S1∧Se 6⊂S2∧G ` B∗emp
κ1∗(E−−#∗κ2)∧Se 6⊂S1∧Se⊂S2∧G ` B∗emp

E−−#∗(κ1∗κ2)∧G ` B∗emp

[CASE−SPLIT∧]

Se, Le=XMem(E) S1, L1=XMem(κ1) S2, L2=XMem(κ2)
(E−−#∗κ1)∧(E−−#∗κ2)∧Se⊂S1∧Se⊂S2∧G ` B∗emp

E−−#∗(κ1∧κ2)∧G ` B∗emp

[CASE−SPLIT?∪]

Se, Le=XMem(E) S1, L1=XMem(κ1) S2, L2=XMem(κ2)
(E−−#∗κ1)?∪(E−−#∗κ2)∧Se⊂S1∧Se⊂S2∧G ` B∗emp

(E−−#∗κ1)?∪κ2∧Se⊂S1∧Se 6⊂S2∧G ` B∗emp
κ1?∪(E−−#∗κ2)∧Se 6⊂S1∧Se⊂S2∧G ` B∗emp

κ1?∪κ2∧Se 6⊂S1∧Se 6⊂S2∧G ` B∗emp
E−−#∗(κ1?∪κ2)∧G ` B∗emp

Figure 6.2: Case Analysis for Septraction Lemma Proving

The cases depend on the sharing operators used in the unfolded predicates

from the head of the lemma. We assume that the head of the lemma H is

unfolded into a heap κ1]κ2, where] is one of the following three conjunction

operators : ∗,∧, ?∪. We express the different cases using memory specifications

via the XMem function. We use the set of addresses captured as part of the

memory specifications to cover all possible cases for various sharing operators.

Each case split has to be verified in order to prove the given septraction lemma.

In addition, we also use the following axioms. The basic axioms can be

123

instantiated with any data node (d7→c〈v∗〉) or any predicate (cp〈p, S, v∗〉) with

memory specifications. These axioms can be proven semantically from the

definitions and are applied directly in our system. We use the septraction

lemma to be proven, basic axioms, case splitting rules and the entailment

prover to generate a cyclic proof by infinite descent. An illustration of the

cyclic proof of a lemma is given in the section 6.3.1.

Basic Axioms

emp−−#∗d7→c〈v∗〉 → d7→c〈v∗〉

emp−−#∗c〈p, S, v∗〉 → c〈p, S, v∗〉

d7→c〈v∗〉−−#∗emp→ emp

c〈p, S, v∗〉−−#∗emp→ emp

d2 7→c〈v∗〉−−#∗d1 7→c〈v∗〉∧d1=d2 → emp

d2 7→c〈v∗〉−−#∗d1 7→c〈v∗〉∧d1 6=d2 → d1 7→c〈v∗〉

c〈p, S, v∗〉−−#∗d7→cd〈v∗d〉∧d∈S → emp

c〈p, S, v∗〉−−#∗d7→cd〈v∗d〉∧d 6∈S → d7→cd〈v∗d〉

d7→cd〈v∗d〉−−#∗c〈p, S, v∗〉∧d 6∈S → c〈p, S, v∗〉

c2〈p2, S2, v
∗
2〉−−#∗c1〈p1, S1, v

∗
1〉∧S1∩S2={}

→ c1〈p1, S1, v
∗
1〉

6.3.1 Proof of a Septraction Lemma

Septraction lemmas are proven automatically by the entailment prover

(SLEEK) using cyclic proof. We illustrate this process using the following

detailed example.

124

Septraction Lemma

(p7→node〈 , q〉−−#∗ll〈root, S〉)∧p∈S→

lseg〈root, p, S1〉 ∗ ll〈q, S2〉∧S=S1∪S2∪{p}

In order to prove the above septraction lemma, we need to check the

entailment given below.

p7→node〈 , q〉−−#∗((root=null∧S={})

∨∃ q · (root7→node〈 , q〉∗ll〈q, Sq〉)

∧S=Sq∪{root}∧p∈S)

` lseg〈root, p, S1〉 ∗ ll〈q, S2〉∧S=S1∪S2∪{p}

After pushing the guard of lemma into the terms of disjunctions we get

p7→node〈 , q〉−−#∗((root=null∧S={}∧p∈S)

∨∃ q · (root7→node〈 , q〉∗ll〈q, Sq〉)

∧S=Sq∪{root}∧p∈S)

` lseg〈root, p, S1〉 ∗ ll〈q, S2〉∧S=S1∪S2∪{p}

The detailed derivation tree of the cyclic proving done in SLEEK is given

on the next page. In the proof, the [CASE−SPLIT∗] rule is used by the entailment

prover (SLEEK) to do a case analysis. Then, the lemma is applied inductively

as an instance of cyclic proof by infinite descent. The leaves of the proof tree

show how some entailments are decided using basic axioms and others use the

MATCH and FOLD rules of the underlying entailment prover SLEEK

(described in [83, 23]).

125

V
a
li

d

r
o
o
t
=
n
u
l
l
∧
S
=
{}
∧
p
∈
S

`
l
s
e
g
〈r
o
o
t
,p
,S

1
〉∗

l
l
〈q
,S

2
〉

∧
S
=
S
1
∪
S
2
∪
{p
}

F
O

LD

p
7→

n
o
d
e
〈
,q
〉−−

#∗e
m
p

∧
r
o
o
t
=
n
u
l
l
∧
S
=
{}
∧
p
∈
S

`
l
s
e
g
〈r
o
o
t
,p
,S

1
〉∗

l
l
〈q
,S

2
〉

∧
S
=
S
1
∪
S
2
∪
{p
}

B
as

ic
A

xi
om

V
a
li

d

r
o
o
t
=
p
∧
p
6∈
S
q

∧
S
=
S
q
∪
{r

o
o
t
}∧

p
∈
S

`
l
s
e
g
〈r
o
o
t
,p
,S

1
〉∗

l
l
〈q
,S

2
〉

∧
S
=
S
1
∪
S
2
∪
{p
}

F
O

LD

p
7→

n
o
d
e
〈
,q
〉−−

#∗r
o
o
t
7→

n
o
d
e
〈
,q
〉

∧
r
o
o
t
=
p
∧
p
6∈
S
q

∧
S
=
S
q
∪
{r

o
o
t
}∧

p
∈
S

`
l
s
e
g
〈r
o
o
t
,p
,S

1
〉∗

l
l
〈q
,S

2
〉

∧
S
=
S
1
∪
S
2
∪
{p
}

B
as

ic
A

xi
om

V
a
li

d

l
s
e
g
〈q
,p
,S

3
〉∗

l
l
〈r
,S

4
〉

∧
S
q
=
S
3
∪
S
4
∪
{p
}

∧
r
o
o
t
6=
p
∧
p
∈
S
q

∧
S
=
S
q
∪
{r

o
o
t
}∧

p
∈
S

`
l
s
e
g
〈r
o
o
t
,p
,S

1
〉∗

l
l
〈q
,S

2
〉

∧
S
=
S
1
∪
S
2
∪
{p
}

M
AT

C
H

p
7→

n
o
d
e
〈
,q
〉−−

#∗l
l
〈q
,S

q
〉

∧
r
o
o
t
6=
p
∧
p
∈
S
q

∧
S
=
S
q
∪
{r

o
o
t
}∧

p
∈
S

`
l
s
e
g
〈r
o
o
t
,p
,S

1
〉∗

l
l
〈q
,S

2
〉

∧
S
=
S
1
∪
S
2
∪
{p
}

A
pp

ly
Le

m
m

a

p
7→

n
o
d
e
〈
,q
〉−−

#∗(
r
o
o
t
7→

n
o
d
e
〈
,q
〉∗
l
l
〈q
,S

q
〉)

∧
S
=
S
q
∪
{r

o
o
t
}∧

p
∈
S

`
l
s
e
g
〈r
o
o
t
,p
,S

1
〉∗

l
l
〈q
,S

2
〉

∧
S
=
S
1
∪
S
2
∪
{p
}

C
A

SE
-S

P
LI

T

p
7→

n
o
d
e
〈
,q
〉−−

#∗(
(r
o
o
t
=
n
u
l
l
∧
S
=
{}
∧
p
∈
S
)

∨
∃
q
·(
r
o
o
t
7→

n
o
d
e
〈
,q
〉∗
l
l
〈q
,S

q
〉)
∧
S
=
S
q
∪
{r

o
o
t
}∧

p
∈
S
))

`
l
s
e
g
〈r
o
o
t
,p
,S

1
〉∗

l
l
〈q
,S

2
〉∧

S
=
S
1
∪
S
2
∪
{p
}

LH
S-

O
R

D
er

iv
at

io
n

Tr
ee

fo
r

Se
pt

ra
ct

io
n

L
em

m
a

Pr
ov

in
g

126

6.4 Experiments

We have implemented automated reasoning with ramifications in our prototype

HIPComp. Preliminary experiments were conducted by testing our system on a

suite of examples as shown in table 6.1. In addition to all the examples presented

in this chapter we can do automated verification with ramifications for a number

of challenging data structures with sophisticated sharing.

The first example (Ramified Cells) in the experiments is the same as the

first motivating example from section 6.2. The second example is similar to the

first one but using pairs instead of single cells. The example with Node and LL

is the second motivating example from section 6.2. The last two examples are

of a binary acyclic graph or DAG. A binary DAG can be specified using the ?∪

operator as follows:

data node { int val; node left; node right }

dag〈root, S〉≡root=null∧S={}∨∃ d, l, r · (root7→node〈d, l, r〉

∗dag〈l, Sl〉?∪dag〈r, Sr〉∧S={root}∪Sl∪Sr)

For the experiment, we verify the memory safety (shape) of a method that

marks the DAG recursively. In case of the DAG (V alues) example, we also

check the property that after calling the method, the DAG only contains values

that are marked (in additional to the memory safety property).

Table 6.1: Experiments with Automated Ramifications

Program LOC LOS Timings[secs] Sharing[%] Ramification[%]
Ramified Cells 46 8 0.14 100 48
Ramified Pairs 22 2 0.27 100 66
Node and LL 112 20 0.71 45 27

DAG 53 6 2.06 100 42
DAG (V alues) 53 6 1.96 100 56

Total 286 42 5.14 89 47.8

127

The first column in table 6.1 gives the name of the program, second column

lists the lines of code. While the third column shows the lines of specifications.

On average there is about 13% annotation burden on the user. In the fifth

column we show the sharing degree, it is defined as the percentage of

specifications that use sharing operators (∧ and ?∪) introduced in this chapter.

As is clear from our benchmark programs that ability to specify sharing is

important to verify these data structures. The last column is the percentage of

total entailments generated that have to be ramified to eliminate the −−#∗

operator during entailment. Ramifications are essential to verify sharing in

these programs. We have validated our approach and found it to be useful for

verifying programs using sharing (with ramifications) in data structures.

In terms of the limitations of the current approach, since we provide

automated proofs of ramifications using septraction lemmas, we require the

user to supply the lemmas along with the pre and post conditions of the

method. These lemmas are used to eliminate the −−#∗ operator during the proof.

In addition, the current technique only works for lightweight shape proofs. In

future we hope to extend the mechanism to enable verification of more

functional properties by integrating automated proving using lemmas in the

verifier with interactive proofs done in Coq. The appendix A provides fully

worked out detailed examples of how this can be achieved.

6.5 Comparative Remarks and Summary

Our sharing and aliasing logic is inspired by work of Hobor and Villard [46].

They present the RAMIFY rule of separation logic and show how to

mechanically reason with graphs, DAGs and overlaid structures using their

ramification library. Our work can be seen as a specific instance where we seek

128

to automatically do verification of programs with ramifications. The operator

of overlapping conjunction (?∪) is used in [46] to specify shared heaps between

two predicates. As discussed in Sec 6.2, we also use two other operators (∧ and

?∪) that characterize must and may aliasing scenarios to support concise

specification with automated reasoning.

The use of new operators for handling sharing is further motivated by

recent discovery of sepish operator by Gardner et al. [36] in the context of

verification of JavaScript programs. However, they also present only the logic

and do not provide an automated system for reasoning. The concept of

ramification was introduced in [60] for verifying event-driven programs. They

show how to calculate ramified frames in a domain specific logic with

particular semantics. Other formalisms to reason with shared structures include

logics for reasoning with graphs [17] and views [49].

The problem of sharing has also been explored in the context of concurrent

data structures and objects [31, 112]. Our work is influenced by them but for a

sequential setting. Regional logic [5] also uses a notion of set of addresses as

footprint of formulas. These regions are used with dynamic frames to enable

local reasoning of programs. Memory layouts [37] were used by Gast, to

formally specify the structure of individual memory blocks. A grammar of

memory layouts enable distinguishing between variable, array, or other data

structures. When dealing with shared regions of memory, knowing layout of

memory is helpful for reasoning.

Shape analysis for other composite and complex structures has been done

through the use of higher-order predicates [6] and abstract modeling of

containers [30]. These approaches cannot handle unrestricted sharing and

aliasing across containers. In [41] Hawkins et al. describe a high level

relational algebra based specification mechanism to specify complex sharing,

129

which is then used to generate the physical data structure that has sharing.

They extend their approach in [42] to generate data representation as well as

the code to query the data structure in form of relational queries. In their paper

they identify the challenge of specifying invariants on multiple overlapping

data structures and mention that existing verification techniques are insufficient

to reason about them. Our work is an attempt to provide a specification and

verification mechanism for such shared structures.

We have proposed a specification mechanism to express different kinds of

sharing and aliasing in data structures. The specifications can capture

correctness properties of various kinds of programs using ramifications. Our

entailment procedure provides the first such mechanism to deal with

ramifications in an automated manner. We present an automated verification

system which can be used to reason about sharing in data structures. We have

implemented a prototype based on our approach. An initial set of experiments

with small but challenging programs have confirmed the usefulness of our

method.

130

Chapter 7

Conclusions

In this thesis, we introduced certified reasoning as a mechanism to improve the

correctness and expressivity of automated verification. We present a certified

decision procedure (chapter 3), a certified program (chapter 4) and a certified

proof (chapter 5) that improves an existing program verifier (HIP). We have

benchmarked out approach on a set of example programs and shown that the

overhead from certified reasoning is small in practice. Careful construction of

certified proof and certified program provides a good balance between

scalability and expressivity.

We also present a logic to specify different kinds of sharing and aliasing in

data structures. We show that our specifications can capture correctness

properties of various kinds of programs using unrestricted sharing. We present

an automated verification system which can be used to reason about sharing in

data structures. Our method can work with a large class of user defined

inductive predicates and user specified lemmas. We implement a prototype

HIPComp based on our approach. An initial set of experiments with small but

challenging programs confirm the usefulness of our method.

131

7.1 Results

Certified Decision Procedure. In chapter 3, we presented Omega++, a sound

and complete decision procedure for Presburger arithmetic with infinities

(including arbitrary quantifier use). Omega++ does not sacrifice any of the

computational advantage normally gained by restricting to Presburger

arithmetic, despite the addition of infinities. Omega++ is written in the Coq

theorem prover [1], allowing us to formally certify it (modulo the correctness

of Omega itself, which we utilize as our backend). We extract our

performance-tuned Coq implementation into OCaml and package it as a

library, which we benchmarked using the HIP/SLEEK verification toolset [23].

The additional of infinity adds to our specification framework’s readability and

conciseness. We also apply the notion of quantifier elimination in Presburger

arithmetic with infinities to infer pure (non-heap) properties of programs.

Certified Program. In chapter 4, we formalized the traits and mixins

hierarchies in Scala as required for checking subtyping. We presented an

approach based on entailment in separation logic to verify subtyping. We

design a domain specific language (SLEEK DSL) which is embedded in Scala

and can support verified subtyping with traits and mixins. The SLEEK DSL

extends the Scala language and allows programmers to insert separation logic

entailments in their code. We apply our technique to the Scala standard library

and verify subtyping in 67% of mixins. This shows that even though mixins do

not enforce subtyping, 67% of usage of mixins is in conformance with

behavior subtyping.

Certified Proof. In chapters 5 and 6, we provided a specification mechanism to

express different kinds of sharing and aliasing scenarios. We enhanced

automated reasoning in separation logic with new operators (?∪, ∧ and ∧∗). We

132

showed how to check for non interference for data structures with sharing. This

enables the automated verification of programs using overlaid data structures.

We certify the correctness of key functions used in compatible sharing by

proving them in Coq. We found an error in the paper and pen proof of XPure

function as given in [23]. In addition, for interfering data structures we provide

a method to do automated ramifications. Automated ramifications support

unrestricted sharing in data structures. Our entailment procedure preserves the

principle of local reasoning which ensures scalability during modular

verification. We have implemented our procedure in a prototype (HIPComp)

and applied to a small benchmark of programs using data structures with

complex sharing.

7.2 Future Work

For future work we are looking at certified reasoning for functional

correctness. It will allow us to provide more natural predicate definitions and

proofs for programs manipulating graphs and DAGs. As an example consider

the following definition of a graph predicate which includes a mathematical

graph G. This definition is much more natural and close to the definition of a

standard tree predicate in separation logic.

data node { int val; node left; node right }

graph〈root, G〉≡root=null∨∃ d, l, r · (root7→node〈d, l, r〉

?∪graph〈l, G〉?∪graph〈r, G〉 ∧ lookup(x, d, l, r, G))

This definition allows us to provide concise and natural specifications for

programs like mark which manipulate such graphs. The pre and post condition

133

of the following function illustrates that the specification matches user intention

naturally.

void mark(node x)

requires graph〈x, G〉

ensures graph〈x, G1〉 ∧ mark(G, x, G1)

{node l, r;

if(x == null) return;

else {if(x.val == 1) return;

l = x.left; r = x.right;

x.val = 1; mark(l); mark(r); }}

We seek to use our framework of certified reasoning to be able to certify

mathematical functions like mark(G, x, G1) in Coq. The automated verification

system can use lemmas to relate different predicates while the mathematical

reasoning is relegated to the proof assistant. This will allow a clean separation

between spatial and mathematical aspect of the proof. This kind of reasoning is

essential for paper and pen proof of ramifications.

Another application of our approach is to handle incomplete and complex

domains for pure properties like sequences, trees and maps. Reasoning over

such domains is typically axiomatized in the program verifier. However the

correctness of those axioms are not proven. By certifying the axioms in Coq

we can provide end to end guarantees for the proof. Such domains can help

in proving full functional correctness using an automated verifier. Appendix

A presents two fully worked out examples (fibonacci and abstract lists) that

illustrate the use of certified reasoning for proving functional properties.

In addition, we will also like to be able to do lightweight shape analysis

of graphs, DAGs etc. without the need of specifications for full correctness.

134

Our extended logic captures various sharing and aliasing scenarios, we would

want to infer shape predicates for programs using such structures. Aliasing and

deep sharing are challenging problems for current shape analysis tools. We can

capture more precise shape predicates using the various sharing operators (?∪, ∧

and ∧∗) described in this thesis.

The formulation of logic in this thesis is focused on heaps but we also seek to

apply our logic for reasoning about other shared resources. Another interesting

future direction is to explore the use and interpretation of ∧, ?∪ and ∧∗ operators

in concurrent separation logic.

135

136

Appendix

A Certified Reasoning Coq Examples

In chapter 3, we presented a certified decision procedure for Presburger

arithmetic with infinity. The following two examples show how Coq can be

used to support certified reasoning for arbitrary properties. These include

theories that are not decidable (like abstract lists) and functional properties of

recursive functions (like fibonacci).

A.1 Fibonacci

In this section, we show how we can use certified reasoning with an entailment

prover like SLEEK. We use the example of the fibonacci function that can be

defined recursively as follows :

fib(n) = if (n<=0) then return 0

else if(1<=n<=2) then return 1

else return fib(n-1) + fib(n-2)

This definition can be axiomatized in SLEEK using an uninterpreted relation

(fib) with the following axioms :

relation fib(int n, int f).

axiom n<=0 ==> fib(n,0).

137

axiom 1<=n<=2 ==> fib(n,1).

axiom n>0 & fib(n,f1) & fib(n+1,f2) ==> fib(n+2,f1+f2).

The following entailments about the fib relation are valid, but SLEEK fails to

prove them automatically as it requires induction over the fib relation.

//1

checkentail fib(1,n) & fib(2,m) |- n = m.

//2

checkentail fib(n,p) & fib(n+1,m) & n = 1 |- m = p.

In order to prove these entailments we generate the Coq module type MFIB from

the SLEEK file. The MFIB module type parameterizes the logical operators

and specifies the fib relation with axioms (1, 2 and 3). In Coq, we provide an

implementation for the MFIB type using the MFIBIMPL module. This module

provides a certified implementation of the fib relation in Coq. This enables us

to prove entailments 1 and 2 from above in Coq. Thus, completing the end to

end proof of the entailment which starts from SLEEK and is certified in Coq.

Module Type MFIB.

Parameter formula : Type.

Parameter valid : formula→ Prop.

Parameter and : formula→ formula→ formula.

Parameter imp : formula→ formula→ formula.

Parameter not : formula→ formula.

Parameter leq : Z→ Z→ formula.

Parameter fib : Z→ Z→ formula.

Axiom axiom 1 : ∀ n, valid (imp (leq n 0) (fib n 0)).

Axiom axiom 2 : ∀ n, valid (imp (and (leq 1 n) (leq n 2)) (fib n 1)).

138

Z.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Numbers.BinNums
Z.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Numbers.BinNums
Z.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Numbers.BinNums
Z.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Numbers.BinNums

Axiom axiom 3 : ∀ n f1 f2, valid (imp (and (not (leq n 0)) (and (fib n f1)

(fib (n+1) f2))) (fib (n+2) (f1+f2))).

Axiom entail 1 : ∀ n m, valid (imp (and (fib 1 n) (fib 2 m)) (and (leq n m)

(leq m n))).

Axiom entail 2 : ∀ n m p, valid (imp (and (and (leq n 1) (leq 1 n)) (and

(fib n p) (fib (n+1) m))) (and (leq m p) (leq p m))).

End MFIB.

Module MFIBIMPL <: FIB.MFIB.

Inductive PF : Type :=

| F and : PF→ PF→ PF

| F imp : PF→ PF→ PF

| F not : PF→ PF

| F leq : Z→ Z→ PF

| F fib : Z→ Z→ PF.

Definition formula := PF.

Definition and := F and.

Definition imp := F imp.

Definition not := F not.

Definition leq := F leq.

Definition fib := F fib.

Fixpoint FIB nat n : nat :=

match n with

0⇒ 0

| (S p)⇒

match p with

0⇒ 1

139

:Z scope:x '+' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.ZArith.BinInt
:Z scope:x '+' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.ZArith.BinInt
:Z scope:x '+' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.ZArith.BinInt
:Z scope:x '+' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.ZArith.BinInt
Z.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Numbers.BinNums
Z.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Numbers.BinNums
Z.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Numbers.BinNums
Z.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Numbers.BinNums
nat.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
S.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes

| (S m)⇒ plus (FIB nat p) (FIB nat m)

end

end.

Definition FIB (n:Z) : Z := Z.of nat (FIB nat (Z.to nat n)).

Lemma plus 1 Sn :

∀ n:nat, n + 1 = S n.

Lemma plus 2 SSn :

∀ n:nat, n + 2 = S (S n).

Lemma FIB nat 2 : ∀ n, (FIB nat (n+2)) = (FIB nat (n)) + (FIB nat

(n+1)) .

Fixpoint satis (f :formula) : Prop :=

match f with

| F and f1 f2⇒ satis f1 ∧ satis f2

| F imp f1 f2⇒ satis f1→ satis f2

| F not f ⇒ ˜(satis f)

| F leq n1 n2⇒ (Z.le n1 n2)

| F fib n f ⇒ f = (FIB n)

end.

Definition valid (f :formula) := satis f.

Lemma axiom 1 : ∀ n, valid (imp (leq n 0) (fib n 0)).

Lemma axiom 2 : ∀ n, valid (imp (and (leq 1 n) (leq n 2)) (fib n 1)).

Lemma axiom 3 : ∀ n f1 f2, valid (imp (and (not (leq n 0)) (and (fib n f1) (fib

(n+1) f2))) (fib (n+2) (f1+f2))).

Lemma entail 1 : ∀ n m, valid (imp (and (fib 1 n) (fib 2 m)) (and (leq n m)

(leq m n))).

140

S.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
plus.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Peano
Z.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Numbers.BinNums
Z.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Numbers.BinNums
Z.of nat.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.ZArith.BinInt
Z.to nat.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.ZArith.BinInt
nat.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
:nat scope:x '+' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Peano
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
S.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
nat.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
:nat scope:x '+' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Peano
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
S.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
S.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:nat scope:x '+' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Peano
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:nat scope:x '+' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Peano
:nat scope:x '+' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Peano
:nat scope:x '+' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Peano
:nat scope:x '+' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Peano
:nat scope:x '+' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Peano
:nat scope:x '+' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Peano
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:'x7E' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:'x7E' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
Z.le.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.ZArith.BinInt
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:Z scope:x '+' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.ZArith.BinInt
:Z scope:x '+' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.ZArith.BinInt
:Z scope:x '+' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.ZArith.BinInt

Lemma entail 2 : ∀ n m p, valid (imp (and (and (leq n 1) (leq 1 n)) (and (fib

n p) (fib (n+1) m))) (and (leq m p) (leq p m))).

End MFIBIMPL.

A.2 LinkedList

In this section, we show how to enable certified reasoning with an automated

verified like HIP. We use the example of the abstract lists along with separation

logic to illustrate how certified reasoning about theories that are not decidable

can be integrated in HIP. Consider the following definition about linked lists in

HIP which also uses the abstract list L.

ll<L> == self=null & isempty(L)

or self::node<v, p> * p::ll<Lp> & cons(L,v,Lp)

inv (self=null & isempty(L) |

self!=null & !(isempty(L)));

The abstract list L, is itself defined recursively using the following uninterpreted

relations and axioms.

relation cons(abstract L, int v, abstract Lt).

relation reverse(abstract L, abstract L1).

relation append(abstract L, abstract L1, abstract L2).

relation isempty(abstract L).

axiom cons(L,v,Lp) ==> !(isempty(L)).

axiom isempty(L) ==> append(L1,L,L1).

axiom isempty(L) ==> reverse(L,L).

axiom cons(L,v,Lt) & reverse(Tr,Lt) ==>

exists (Le: exists (Lv: exists (Lr: append(Lr,Tr,Lv)

& reverse(Lr,L) & cons(Lv,v,Le) & isempty(Le)))).

141

:Z scope:x '+' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.ZArith.BinInt

In order to certify the correctness of these axioms we automatically generate

the Coq module type MLL from the HIP file. The MLL module type

parameterizes the operators of separation logic and specifies the axioms about

abstract lists. In Coq, we provide an implementation of the MLL type using the

MLLIMPL module. We give a certified implementation of separation logic and

use the standard list library in Coq to prove the axioms about abstract lists.

This completes the end to end proof for reasoning with abstract lists in HIP.

Module Type MLL.

Parameter formula : Type.

Parameter valid : formula→ Prop.

Parameter node : Type.

Parameter null node : node.

Parameter ptto node : node→ Z→ node→ formula.

Parameter A : Type.

Parameter ll : node→ A→ formula.

Parameter star : formula→ formula→ formula.

Parameter and : formula→ formula→ formula.

Parameter imp : formula→ formula→ formula.

Parameter not : formula→ formula.

Parameter eq : node→ node→ formula.

Parameter isempty : A→ formula.

Parameter append : A→ A→ A→ formula.

Parameter reverse : A→ A→ formula.

Parameter cons : A→ node→ A→ formula.

Axiom axiom 1 : ∀ Lt Tr L v,∃ Le Lv Lr, valid (imp (and (cons L v Lt)

(reverse Tr Lt)) (and (and (and (append Lr Tr Lv) (reverse Lr L)) (cons

Lv v Le)) (isempty Le))).

142

Z.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Numbers.BinNums
:type scope:'exists' x '..' x ',' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:'exists' x '..' x ',' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic

Axiom axiom 2 : ∀ L, valid (imp (isempty L) (reverse L L)).

Axiom axiom 3 : ∀ L L1, valid (imp (isempty L) (append L1 L L1)).

Axiom axiom 4 : ∀ v Lp L, valid (imp (cons L v Lp) (not (isempty L))).

End MLL.

Module MLLIMPL <: LL.MLL.

Definition A := list nat.

Definition node := nat.

Definition null node := 0.

Inductive HF : Type :=

| H emp : HF

| H ptto : nat→ Z→ nat→ HF

| H star : HF→ HF→ HF

| H and : HF→ HF→ HF

| H imp : HF→ HF→ HF

| H not : HF→ HF

| H eq : nat→ nat→ HF

| H cons : A→ nat→ A→ HF

| H reverse : A→ A→ HF

| H append : A→ A→ A→ HF

| H isempty : A→ HF

| H ll : nat→ A→ HF.

Definition formula := HF.

Definition star := H star.

Definition and := H and.

Definition imp := H imp.

Definition not := H not.

143

list.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
nat.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
nat.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
nat.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
Z.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Numbers.BinNums
nat.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
nat.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
nat.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
nat.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
nat.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes

Definition eq := H eq.

Definition ptto node := H ptto.

Definition cons := H cons.

Definition reverse := H reverse.

Definition append := H append.

Definition isempty := H isempty.

Definition ll := H ll.

Definition heap := Ensemble nat.

Definition empty heap := Empty set nat.

Definition heap union h1 h2 := Union nat h1 h2.

Definition heap is disjoint h1 h2 := Disjoint nat h1 h2.

Inductive LL (n:nat) (l:A) : heap→ Prop :=

| NIL LL : LL n l empty heap

| CONS LL : ∀ h h1 h2 n1 n2, h = heap union h1 h2

→ heap is disjoint h1 h2

→ n1 > 0→ n1 = (hd 0 l)

→ LL n2 (tl l) h1→ LL n l h.

Fixpoint satis (f :formula) (h:heap) :Prop :=

match f with

| H emp⇒ h = empty heap

| H ptto n ⇒ n > 0

| H star f1 f2⇒ ∃ h1 h2, h = heap union h1 h2 ∧ heap is disjoint h1 h2

∧ satis f1 h1 ∧ satis f2 h2

| H and f1 f2⇒ satis f1 h ∧ satis f2 h

| H imp f1 f2⇒ satis f1 h→ satis f2 h

| H not f ⇒ ˜(satis f h)

144

Ensemble.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Sets.Ensembles
nat.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
Empty set.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Sets.Ensembles
nat.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
Union.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Sets.Ensembles
nat.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
Disjoint.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Sets.Ensembles
nat.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
nat.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:nat scope:x '>' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Peano
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
hd.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Lists.List
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
tl.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Lists.List
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:nat scope:x '>' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Peano
:type scope:'exists' x '..' x ',' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:'exists' x '..' x ',' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:'x7E' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:'x7E' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic

| H eq n1 n2⇒ n1 = n2

| H cons l n l1⇒ l = n::l1

| H reverse l l1⇒ l = (rev l1)

| H append l l1 l2⇒ l = l1 ++ l2

| H isempty l⇒ l = nil

| H ll n l⇒ LL n l h

end.

Definition valid (f :formula) := ∀ h, satis f h.

Lemma axiom 1 : ∀ Lt Tr L v,∃ Le Lv Lr, valid (imp (and (cons L v Lt)

(reverse Tr Lt)) (and (and (and (append Lr Tr Lv) (reverse Lr L)) (cons Lv

v Le)) (isempty Le))).

Lemma axiom 2 : ∀ L, valid (imp (isempty L) (reverse L L)).

Lemma axiom 3 : ∀ L L1, valid (imp (isempty L) (append L1 L L1)).

Lemma axiom 4 : ∀ v Lp L, valid (imp (cons L v Lp) (not (isempty L))).

End MLLIMPL.

B Certified Reasoning for Separation Logic

In chapter 5, we presented an extension to separation logic that allows us to

specify and verify compatible sharing in data structures. As part of the

compatible sharing extension to separation logic we formalized and certified

the proof of correctness of XPure and XMem functions in Coq.

B.1 Reduction to PA (XPure)

The XPure function checks the satisfiability of a formula in separation logic by

reducing it to Presburger arithmetic (PA). While proving this procedure in Coq

145

:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:list scope:x '::' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
rev.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Lists.List
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:list scope:x '++' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
nil.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
:type scope:'exists' x '..' x ',' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:'exists' x '..' x ',' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic

we identified an error in the previous paper and pen proof given by Chin et. al.

in [23].

Module Type STRVAR <: VARIABLE.

Parameter var : Type. Parameter var eq dec : ∀ v1 v2 : var , {v1

= v2} + {v1 6= v2}.

Parameter var2string : var → string.

Parameter string2var : string→ var .

Parameter freshvar : var .

Axiom var2String2var : ∀ v, string2var (var2string v) = v.

Axiom String2var2String : ∀ s, var2string(string2var s) = s.

End STRVAR.

Module HEAPSOLVER(sv:STRVAR).

Module PA := ARITHSEMANTICS PURENAT SV.

Inductive HF : Type :=

| H Emp : HF

| H Ptto : PA.ZExp→ PA.ZExp→ HF

| H Star : HF→ HF→ HF

| H List : PA.ZExp→ HF

| H List Size : PA.ZExp→ nat→ HF

| H Exists : var → HF→ HF

| H And : HF→ PA.ZF→ HF

| H Pure : PA.ZF→ HF.

Definition heap := Ensemble nat.

Definition empty heap := Empty set nat.

Definition single heap e := Singleton nat (PA.dexp2ZE e).

146

:type scope:'x7B' x 'x7D' '+' 'x7B' x 'x7D'.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Specif
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:'x7B' x 'x7D' '+' 'x7B' x 'x7D'.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Specif
:type scope:'x7B' x 'x7D' '+' 'x7B' x 'x7D'.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Specif
:type scope:'x7B' x 'x7D' '+' 'x7B' x 'x7D'.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Specif
:type scope:x '<>' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:'x7B' x 'x7D' '+' 'x7B' x 'x7D'.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Specif
string.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Strings.String
string.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Strings.String
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
nat.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
Ensemble.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Sets.Ensembles
nat.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
Empty set.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Sets.Ensembles
nat.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
Singleton.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Sets.Ensembles
nat.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes

Definition heap union h1 h2 := Union nat h1 h2.

Definition heap is disjoint h1 h2 := Disjoint nat h1 h2.

Inductive LL (e:PA.ZExp) : heap→ Prop :=

| NIL LL : LL e empty heap

| CONS LL : ∀ h h1 h2 e1, h = heap union h1 h2

→ heap is disjoint h1 h2

→ h1 = single heap e

→ LL e1 h2→ LL e h.

Inductive LLSIZE (e:PA.ZExp) (n: nat) : heap→ Prop :=

|NIL LLSIZE : (PA.dexp2ZE e) = 0→ n = 0→ LLSIZE e n empty heap

| CONS LLSIZE : ∀ h h1 h2 e1 n1, h = heap union h1 h2

→ heap is disjoint h1 h2

→ h1 = single heap e

→ (PA.dexp2ZE e) > 0

→ n = n1 + 1

→ LLSIZE e1 n1 h2→ LLSIZE e n h.

Theorem LLSIZE implies LL: ∀ e h n, LLSIZE e n h→ LL e h.

Fixpoint subs (p : var × PureNat.N.A) (form : HF) : HF :=

match form with

| H Emp⇒ form

| H Ptto e1 e2⇒ H Ptto (PA.subst exp p e1) (PA.subst exp p e2)

| H Star f1 f2⇒ H Star (subs p f1) (subs p f2)

| H List e⇒ H List (PA.subst exp p e)

| H List Size e n⇒ H List Size (PA.subst exp p e) n

| H Exists v g ⇒ if var eq dec (fst p) v then form else H Exists v

(subs p g)

147

Union.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Sets.Ensembles
nat.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
Disjoint.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Sets.Ensembles
nat.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
nat.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:nat scope:x '>' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Peano
:nat scope:x '>' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Peano
:nat scope:x '>' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Peano
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:nat scope:x '+' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Peano
:type scope:x '*' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
fst.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes

| H And f g⇒ H And (subs p f) (PA.substitute p g)

| H Pure g⇒ H Pure (PA.substitute p g)

end.

Fixpoint length hform (form : HF) : nat :=

match form with

| H Exists v g⇒ S (length hform g)

| H Star f1 f2⇒ S (length hform f1 + length hform f2)

| H And f g⇒ S (length hform f)

| ⇒ 1

end.

Lemma length hform gteq one: ∀ f, length hform f ≥ 1.

Fixpoint dvalid hform’ (form: HF) (h:heap) (c:nat): Prop :=

match c with

0⇒ False

| S c’⇒ match form with

H Emp⇒ h = empty heap

| H Ptto e1 e2⇒ h = (single heap e1) ∧ (PA.dexp2ZE e1) >

O

| H Star f1 f2⇒ ∃ h1 h2,

(dvalid hform’ f1 h1 c’)∧ (dvalid hform’

f2 h2 c’)

∧ (heap is disjoint h1 h2) ∧ h =

(heap union h1 h2)

| H List e⇒ LL e h

| H List Size e n⇒ LLSIZE e n h

| H Exists v g⇒ ∃ x, dvalid hform’ (subs (v,x) g) h c’

148

nat.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
S.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
S.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
:nat scope:x '+' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Peano
S.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
:nat scope:x '>=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Peano
nat.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
False.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
S.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:nat scope:x '>' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Peano
:nat scope:x '>' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Peano
:nat scope:x '>' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Peano
O.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
:type scope:'exists' x '..' x ',' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:'exists' x '..' x ',' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:'exists' x '..' x ',' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:'exists' x '..' x ',' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes

| H And f g⇒ (dvalid hform’ f h c’) ∧ (PA.dvalid zform g)

| H Pure g⇒ (PA.dvalid zform g)

end

end.

Definition dvalid hform f h := dvalid hform’ f h (length hform f).

Lemma pure valid in all heap: ∀ h g, (dvalid hform (H Pure g) h) ↔

PA.dvalid zform g.

Lemma subs length inv : ∀ f x v, length hform f = length hform (subs

(v, x) f).

Lemma large c holds : ∀ f h c1 c2, c1 ≥ length hform f → c2 ≥

length hform f →

(dvalid hform’ f h c1 ↔

dvalid hform’ f h c2).

Definition unfold list pure (e: PA.ZExp) : PA.ZF :=

(PA.ZF Or (PA.ZF BF (PA.ZBF Eq e (PA.ZExp Const

PureNat.N.Const0)))

(PA.ZF BF (PA.ZBF Gt e (PA.ZExp Const PureNat.N.Const0))))

.

Definition unfold list size pure (e: PA.ZExp) (n: nat) : PA.ZF :=

(PA.ZF Or (PA.ZF And

(PA.ZF BF (PA.ZBF Eq e (PA.ZExp Const PureNat.N.Const0)))

(PA.ZF BF (PA.ZBF Eq (PA.ZExp Const n) (PA.ZExp Const

PureNat.N.Const0))))

(PA.ZF And

(PA.ZF BF (PA.ZBF Gt e (PA.ZExp Const PureNat.N.Const0)))

149

:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '<->' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '<->' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '<->' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
:nat scope:x '>=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Peano
:nat scope:x '>=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Peano
:type scope:x '<->' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
nat.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes

(PA.ZF BF (PA.ZBF Gt (PA.ZExp Const n)(PA.ZExp Const

PureNat.N.Const0)))))

.

Fixpoint xpure’ (form: HF) : PA.ZF :=

match form with

| H Emp⇒ PA.ZF BF (PA.ZBF Const true)

|H Ptto e1 e2⇒PA.ZF BF (PA.ZBF Gt e1 (PA.ZExp Const

PureNat.N.Const0))

| H Star f1 f2⇒ PA.ZF And (xpure’ f1) (xpure’ f2)

| H List e⇒ (unfold list pure e)

| H List Size e n⇒ (unfold list size pure e n)

| H Exists v g⇒ PA.ZF Exists v tt (xpure’ g)

| H And f g⇒ PA.ZF And (xpure’ f) g

| H Pure g⇒ g

end

.

Definition xpure f := H Pure (xpure’ f).

Lemma PA dexp2ZE always positive: ∀ e, (PA.dexp2ZE e) ≥ 0.

Lemma xpure length gt : ∀ f, (length hform f) ≥ length hform (xpure f).

Lemma xpure length one : ∀ f, (length hform (xpure f)) = 1.

Lemma substitute xpure’ eq xpure’ subs : ∀ v x f,

PA.substitute (v, x) (xpure’ f) =

xpure’ (subs (v, x) f).

Theorem xpure valid: ∀ f h,

(dvalid hform f h)→ dvalid hform (xpure f) h.

150

true.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
tt.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
:nat scope:x '>=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Peano
:nat scope:x '>=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Peano
:nat scope:x '>=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Peano
:nat scope:x '>=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Peano
:nat scope:x '>=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Peano
:nat scope:x '>=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Peano
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes

Definition entail P Q := ∀ h, (dvalid hform P h)→ (dvalid hform Q h).

End HEAPSOLVER.

B.2 Compatible Sharing (XMem)

The XMem function is used to check compatible sharing in data structures, it

reduces a separation logic formula to a constraint on sets of addresses. The

validity of the resulting set formula can be checked using monadic second order

logic (MONA).

Module Type STRVAR <: VARIABLE.

Parameter var : Type. Parameter var eq dec : ∀ v1 v2 : var , {v1

= v2} + {v1 6= v2}.

Parameter var2string : var → string.

Parameter string2var : string→ var .

Parameter freshvar : var .

Axiom var2String2var : ∀ v, string2var (var2string v) = v.

Axiom String2var2String : ∀ s, var2string(string2var s) = s.

End STRVAR.

Module HEAPSOLVER(sv:STRVAR).

Definition heap := Ensemble nat.

Definition empty heap := Empty set nat.

Definition single heap n := Singleton nat n.

Definition heap union h1 h2 := Union nat h1 h2.

Definition heap is disjoint h1 h2 := Disjoint nat h1 h2.

Inductive SE : Type :=

| H Set Union : SE→ SE→ SE

151

:type scope:'x7B' x 'x7D' '+' 'x7B' x 'x7D'.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Specif
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:'x7B' x 'x7D' '+' 'x7B' x 'x7D'.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Specif
:type scope:'x7B' x 'x7D' '+' 'x7B' x 'x7D'.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Specif
:type scope:'x7B' x 'x7D' '+' 'x7B' x 'x7D'.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Specif
:type scope:x '<>' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:'x7B' x 'x7D' '+' 'x7B' x 'x7D'.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Specif
string.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Strings.String
string.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Strings.String
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
Ensemble.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Sets.Ensembles
nat.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
Empty set.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Sets.Ensembles
nat.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
Singleton.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Sets.Ensembles
nat.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
Union.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Sets.Ensembles
nat.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
Disjoint.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Sets.Ensembles
nat.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes

| H Set : heap→ SE

| H Set Single : nat→ SE

| H Set Emp : SE.

Inductive SF : Type :=

| H Set Eq : SE→ SE→ SF

| H Set Disj : SE→ SE→ SF

| H Set And : SF→ SF→ SF.

Inductive HF : Type :=

| H Emp : HF

| H Ptto : nat→ nat→ HF

| H Star : HF→ HF→ HF

| H List : nat→ heap→ HF.

Fixpoint SE2Set (s:SE) : heap :=

match s with

| H Set Emp⇒ empty heap

| H Set h⇒ h

| H Set Single n⇒ single heap n

| H Set Union s1 s2⇒ heap union (SE2Set s1) (SE2Set s2)

end.

Inductive LL (e:nat) : heap→ Prop :=

| NIL LL : LL e empty heap

| CONS LL : ∀ h h1 h2 e1, h = heap union h1 h2

→ heap is disjoint h1 h2

→ h1 = single heap e

→ LL e1 h2→ LL e h.

Inductive LLSET (n:nat) (S: heap): Prop :=

152

nat.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
nat.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
nat.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
nat.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
nat.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
nat.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Datatypes

| NIL LLSET : S = empty heap→ LLSET n S

| CONS LLSET : ∀ S1 S2 n1, S = heap union S1 S2

→ heap is disjoint S1 S2

→ S1 = single heap n

→ LLSET n1 S2→ LLSET n S.

Theorem LL is same as LLSET: ∀ h e, LLSET e h↔ LL e h.

Fixpoint valid (form: HF) (h:heap) : Prop :=

match form with

H Emp⇒ h = empty heap

| H Ptto n1 ⇒ h = (single heap n1)

| H Star f1 f2⇒ ∃ h1 h2, (valid f1 h1) ∧ (valid f2 h2)

∧ (heap is disjoint h1 h2) ∧ h = (heap union h1

h2)

| H List n h⇒ LLSET n h

end.

Fixpoint set valid (form: SF) : Prop :=

match form with

H Set Eq s1 s2⇒ (SE2Set s1) = (SE2Set s2)

| H Set And f1 f2⇒ set valid f1 ∧ set valid f2

| H Set Disj s1 s2⇒ heap is disjoint (SE2Set s1) (SE2Set s2)

end.

Fixpoint XMem (f : HF) : SE :=

match f with

| H Emp⇒ H Set Emp

| H Ptto n1 ⇒ (H Set Single n1)

| H List n h⇒ H Set h

153

:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '<->' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:'exists' x '..' x ',' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:'exists' x '..' x ',' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic

| H Star f1 f2⇒ H Set Union (XMem f1) (XMem f2)

end.

Fixpoint XMem Form (f : HF) x : Prop :=

match f with

| H Star f1 f2⇒

∃ x1 x2 x3 x4, (set valid

(H Set And

(H Set Disj (H Set x1) (H Set x2))

(H Set Eq (H Set x) (H Set Union (H Set x1) (H Set x2)))))

∧ (XMem Form f1 x3) ∧ (XMem Form f2 x4)

| ⇒ set valid (H Set Eq (H Set x) (XMem f))

end.

Theorem valid xmem form: ∀ f, (∃ h, (valid f h))

→ (∃ x, (XMem Form f x)).

End HEAPSOLVER.

154

:type scope:'exists' x '..' x ',' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:'exists' x '..' x ',' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:'exists' x '..' x ',' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:'exists' x '..' x ',' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:'exists' x '..' x ',' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:'exists' x '..' x ',' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:'exists' x '..' x ',' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:'exists' x '..' x ',' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:'exists' x '..' x ',' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic
:type scope:'exists' x '..' x ',' x.html#http://coq.inria.fr/distrib/8.4pl5/stdlib/Coq.Init.Logic

Glossary

Automated Verification An alternative to testing wherein a formal

(mathematical) model of a system is built

and analyzed, algorithmically, with respect to

logical specifications, 2

Certified Reasoning Use of proof assistants like Coq to specify and

verify reasoning algorithms, 8

Code Synthesis A form of automatic programming where the

goal is to construct automatically a program

that provably satisfies a given high-level

specification, 13

Compatible Sharing A form of heap sharing where the operations

defined on the data structure do not interfere, 8

DAG Directed Acyclic Graph, 7

DSL Domain-Specific Language, 10

Functional Correctness It refers to the input-output behaviour of the

algorithm (i.e., for each input it produces the

correct output), 2

155

JML Java Modeling Language, 17

Local Reasoning A form of reasoning where specifications and

proofs concentrate on the portion of memory

used by a program component, and not the

entire global state of the system, 3

OO Object Oriented, 66

PA Presburger Arithmetic, 34

PAI Presburger Arithmetic with Infinity, 48

PAInf Presburger Arithmetic with positive and

negative infinities, 34

PAL Pointer Assertion Logic, 20

QE Quantifier Elimination, 39

QFBAPA Quantifier Free Boolean Algebra with

Presburger Arithmetic, 62

Ramification The ramification problem is concerned with the

indirect consequences of an action or how to

represent what happens implicitly due to an

action, 8

SAT Satisfiability, 49

156

Septraction The existential magic wand (−−#∗) operator from

separation logic, 114

Septraction Lemma A lemma relating two formulas in separation

logic that makes use of the septraction (−−#∗)

operator, 118

SMT Satisfiability Modulo Theories, 76

TVLA Three Valued Logic Analysis Engine, 20

157

158

Bibliography

[1] The Coq Proof Assistant. http://coq.inria.fr/. 12, 32, 63, 132

[2] IEEE Standard for Floating-Point Arithmetic. IEEE Standard 754-2008,

pages 1–70, Aug 2008. 44

[3] Andrew W Appel. Verismall: Verified smallfoot shape analysis. In

Certified Programs and Proofs, pages 231–246. Springer, 2011. 22

[4] Michael Backes, Cătălin Hriţcu, and Thorsten Tarrach. Automatically

verifying typing constraints for a data processing language. In Certified

Programs and Proofs, pages 296–313. Springer, 2011. 76

[5] Anindya Banerjee, David A. Naumann, and Stan Rosenberg. Regional

logic for local reasoning about global invariants. In European Conference

on Object-Oriented Programming, pages 387–411, 2008. 26, 110, 129

[6] J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. W. O’Hearn, T. Wies,

and H. Yang. Shape analysis for composite data structures. In

International Conference on Computer-Aided Verification, pages 178–

192, 2007. 28, 129

[7] J. Berdine, C. Calcagno, and P. W. O’Hearn. A Decidable Fragment of

Separation Logic. In 24th International Conference on Foundations of

Software Technology and Theoretical Computer Science, pages 97–109.

Springer-Verlag, December 2004. 19, 62

159

http://coq.inria.fr/

[8] J. Berdine, C. Calcagno, and P. W. O’Hearn. Symbolic Execution with

Separation Logic. In Asian Symposium on Programming Languages and

Systems, volume 3780, pages 52–68. Springer-Verlag, November 2005.

19

[9] J. Berdine, C. Calcagno, and P. W. O’Hearn. Smallfoot: Modular

automatic assertion checking with separation logic. In International

Symposia on Formal Methods for Components and Objects, Springer

LNCS 4111, pages 115–137, 2006. 2, 3, 19

[10] Merrie Bergmann. An introduction to many-valued and fuzzy logic:

semantics, algebras, and derivation systems. Cambridge University

Press, 2008. 44

[11] Yves Bertot and Pierre Casteran. Interactive Theorem Proving and

Program Development. SpringerVerlag, 2004. 62

[12] Gavin M. Bierman, Andrew D. Gordon, Cătălin Hriţcu, and David

Langworthy. Semantic subtyping with an smt solver. In The ACM

SIGPLAN International Conference on Functional Programming, pages

105–116, 2010. 76

[13] Bernard Boigelot, Sébastien Jodogne, and Pierre Wolper. An effective

decision procedure for linear arithmetic over the integers and reals. ACM

Transactions on Computational Logic, 6(3):614–633, July 2005. 62

[14] John Tang Boyland. Semantics of fractional permissions with

nesting. ACM Transactions on Programming Languages and Systems,

32(6):22:1–22:33, August 2010. 28, 29, 84

[15] Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. Ernst, Joseph R.

Kiniry, Gary T. Leavens, K. Rustan M. Leino, and Erik Poll. An overview

of jml tools and applications. International Journal on Software Tools for

Technology Transfer, 7(3):212–232, June 2005. 17

160

[16] Cristiano Calcagno, Hongseok Yang, and PeterW. OHearn.

Computability and complexity results for a spatial assertion language for

data structures. In FST TCS 2001: Foundations of Software Technology

and Theoretical Computer Science, volume 2245 of Lecture Notes in

Computer Science, pages 108–119. Springer Berlin Heidelberg, 2001.

62

[17] Luca Cardelli, Philippa Gardner, and Giorgio Ghelli. A spatial logic for

querying graphs. In Automata, Languages and Programming, volume

2380 of Lecture Notes in Computer Science, pages 597–610. Springer

Berlin Heidelberg, 2002. 25, 129

[18] Patrice Chalin. Improving jml: For a safer and more effective language.

In FME 2003: Formal Methods, volume 2805 of Lecture Notes in

Computer Science, pages 440–461. Springer Berlin Heidelberg, 2003. 17

[19] Yang Chen, Alex Groce, Chaoqiang Zhang, Weng-Keen Wong, Xiaoli

Fern, Eric Eide, and John Regehr. Taming compiler fuzzers. In

Proceedings of the 34th ACM SIGPLAN conference on Programming

language design and implementation, pages 197–208. ACM, 2013. 22

[20] Renato Cherini, Lucas Rearte, and Javier Blanco. A shape analysis

for non-linear data structures. In Proceedings of the 17th International

Conference on Static Analysis, SAS’10, pages 201–217, Berlin,

Heidelberg, 2010. Springer-Verlag. 28, 110

[21] Wei-Ngan Chin, Cristina David, and Cristian Gherghina. A hip and sleek

verification system. In Proceedings of the ACM International Conference

Companion on Object Oriented Programming Systems Languages and

Applications Companion, OOPSLA ’11, pages 9–10, New York, NY,

USA, 2011. ACM. 19, 70, 73

161

[22] Wei-Ngan Chin, Cristina David, Huu Hai Nguyen, and Shengchao Qin.

Enhancing modular oo verification with separation logic. In Proceedings

of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL ’08, pages 87–99, New York, NY, USA,

2008. ACM. 20, 66, 69, 76

[23] Wei-Ngan Chin, Cristina David, Huu Hai Nguyen, and Shengchao Qin.

Automated verification of shape, size and bag properties via user-defined

predicates in separation logic. Science of Computer Programming,

77(9):1006 – 1036, 2012. 2, 3, 12, 19, 33, 34, 58, 91, 96, 99, 102, 107,

125, 132, 133, 146

[24] Wei-Ngan Chin, Cristian Gherghina, Rzvan Voicu, QuangLoc Le, Florin

Craciun, and Shengchao Qin. A specialization calculus for pruning

disjunctive predicates to support verification. In Computer Aided

Verification, volume 6806 of Lecture Notes in Computer Science, pages

293–309. Springer Berlin Heidelberg, 2011. 19

[25] Andreea Costea, Asankhaya Sharma, and Cristina David. Hipimm:

verifying granular immutability guarantees. In Proceedings of the

ACM SIGPLAN 2014 workshop on Partial evaluation and program

manipulation, PEPM 2014, January 20-21, 2014, San Diego, California,

USA, pages 189–194, 2014. 19

[26] Ferruccio Damiani, Johan Dovland, EinarBroch Johnsen, and Ina

Schaefer. Verifying traits: an incremental proof system for fine-grained

reuse. volume 26, pages 761–793. Springer London, 2014. 76

[27] Cristina David and Wei-Ngan Chin. Immutable specifications for more

concise and precise verification. In Proceedings of the 2011 ACM

International Conference on Object Oriented Programming Systems

Languages and Applications, OOPSLA ’11, pages 359–374, New York,

NY, USA, 2011. ACM. 84, 94, 96

162

[28] Leonardo de Moura and Nikolaj Bjørner. Model-based theory

combination. Electronic Notes in Theoretical Computer Science,

198(2):37–49, May 2008. 62

[29] Edsger W. Dijkstra. Notes on Structured Programming. circulated

privately, April 1970. 1

[30] Isil Dillig, Thomas Dillig, and Alex Aiken. Precise reasoning for

programs using containers. In Proceedings of the 38th Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL ’11, pages 187–200, New York, NY, USA, 2011.

ACM. 28, 129

[31] Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner, MatthewJ.

Parkinson, and Viktor Vafeiadis. Concurrent abstract predicates. In

European Conference on Object-Oriented Programming, volume 6183,

pages 504–528. Springer Berlin Heidelberg, 2010. 25, 109, 129

[32] Dino Distefano and Matthew J. Parkinson J. jstar: Towards practical

verification for java. In Proceedings of the 23rd ACM SIGPLAN

Conference on Object-oriented Programming Systems Languages and

Applications, OOPSLA ’08, pages 213–226, New York, NY, USA, 2008.

ACM. 20, 66

[33] Johan Dovland, Einar Broch Johnsen, Olaf Owe, and Martin Steffen.

Incremental reasoning with lazy behavioral subtyping for multiple

inheritance. Science of Computer Programming, 76(10):915 – 941, 2011.

77

[34] Cezara Drgoi, Constantin Enea, and Mihaela Sighireanu. Local shape

analysis for overlaid data structures. In Static Analysis, volume 7935

of Lecture Notes in Computer Science, pages 150–171. Springer Berlin

Heidelberg, 2013. 110

163

[35] Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärli, Roel Wuyts, and

Andrew P. Black. Traits: A mechanism for fine-grained reuse. ACM

Transactions on Programming Languages and Systems, 28(2):331–388,

2006. 65

[36] Philippa Anne Gardner, Sergio Maffeis, and Gareth David Smith.

Towards a program logic for javascript. In Proceedings of the 39th Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL ’12, pages 31–44, New York, NY, USA, 2012. ACM.

24, 129

[37] Holger Gast. Reasoning about memory layouts. In FM 2009: Formal

Methods, volume 5850 of Lecture Notes in Computer Science, pages

628–643. Springer Berlin Heidelberg, 2009. 27, 110, 129

[38] Cristian Gherghina, Cristina David, Shengchao Qin, and Wei-Ngan Chin.

Structured specifications for better verification of heap-manipulating

programs. In FM 2011: Formal Methods, volume 6664 of Lecture Notes

in Computer Science, pages 386–401. Springer Berlin Heidelberg, 2011.

2

[39] Alexey Gotsman, Josh Berdine, and Byron Cook. Interprocedural shape

analysis with separated heap abstractions. In Static Analysis, volume

4134 of Lecture Notes in Computer Science, pages 240–260. Springer

Berlin Heidelberg, 2006. 2, 62

[40] Brian Hackett and Radu Rugina. Region-based shape analysis with

tracked locations. In Proceedings of the 32Nd ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL ’05, pages

310–323, New York, NY, USA, 2005. ACM. 20

[41] Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, and Mooly

Sagiv. Data structure fusion. In Programming Languages and Systems,

164

volume 6461 of Lecture Notes in Computer Science, pages 204–221.

Springer Berlin Heidelberg, 2010. 29, 30, 129

[42] Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, and Mooly

Sagiv. Data representation synthesis. In Proceedings of the 32Nd

ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI ’11, pages 38–49, New York, NY, USA, 2011.

ACM. 30, 130

[43] Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, and Mooly

Sagiv. Concurrent data representation synthesis. In Proceedings of the

33rd ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI ’12, pages 417–428, New York, NY, USA, 2012.

ACM. 30

[44] C. A. R. Hoare. An axiomatic basis for computer programming.

Communications of the ACM, 12(10):576–580, October 1969. 2

[45] Tony Hoare and Jay Misra. Verified software: Theories, tools,

experiments vision of a grand challenge project. In Verified Software:

Theories, Tools, Experiments, volume 4171 of Lecture Notes in Computer

Science, pages 1–18. Springer Berlin Heidelberg, 2008. 3

[46] Aquinas Hobor and Jules Villard. The ramifications of sharing in data

structures. In Proceedings of the 40th Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL ’13, pages

523–536, New York, NY, USA, 2013. ACM. 7, 23, 114, 116, 117, 128,

129

[47] Samin S. Ishtiaq and Peter W. O’Hearn. Bi as an assertion language

for mutable data structures. In Proceedings of the 28th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL

’01, pages 14–26, New York, NY, USA, 2001. ACM. 2, 34, 97

165

[48] Bart Jacobs, Jan Smans, and Frank Piessens. A quick tour of the

verifast program verifier. In Proceedings of the 8th Asian Conference

on Programming Languages and Systems, APLAS’10, pages 304–311,

Berlin, Heidelberg, 2010. Springer-Verlag. 18, 29

[49] Jonas Braband Jensen, Lars Birkedal, and Peter Sestoft. Modular

verification of linked lists with views via separation logic. Journal of

Object Technology, 10:2: 1–20, 2011. 25, 129

[50] C. Jones, P. O’Hearn, and J. Woodcock. Verified Software: A Grand

Challenge. IEEE Computer, 39(4):93–95, April 2006. 3

[51] Cliff B. Jones. Systematic software development using VDM (2nd ed.).

Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1990. 62

[52] Deepak Kapur. Automatically generating loop invariants using

quantifier elimination. In Deduction and Applications, number

05431 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2006.

Internationales Begegnungs- und Forschungszentrum für Informatik

(IBFI), Schloss Dagstuhl, Germany. 39

[53] Deepak Kapur, Zhihai Zhang, Matthias Horbach, Hengjun Zhao,

Qi Lu, and ThanhVu Nguyen. Automated reasoning and mathematics.

chapter Geometric Quantifier Elimination Heuristics for Automatically

Generating Octagonal and Max-plus Invariants, pages 189–228.

Springer-Verlag, Berlin, Heidelberg, 2013. 39

[54] Matt Kaufmann and J. S. Moore. An industrial strength theorem prover

for a logic based on common lisp. IEEE Transactions on Software

Engineering, 23(4):203–213, April 1997. 62

[55] P. Kelly, V. Maslov, W. Pugh, and et al. The Omega Library Version 1.1.0

Interface Guide, November 1996. 32, 47, 63, 108

166

[56] N. Klarlund and A. Moller. MONA Version 1.4 - User Manual. BRICS

Notes Series, January 2001. 108

[57] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,

David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal

Kolanski, Michael Norrish, et al. sel4: Formal verification of an os kernel.

In Proceedings of the ACM SIGOPS 22nd symposium on Operating

systems principles, pages 207–220. ACM, 2009. 22

[58] Ali Sinan Köksal, Viktor Kuncak, and Philippe Suter. Scala to the power

of Z3: integrating smt and programming. In International Conference on

Automated Deduction, pages 400–406, 2011. 76

[59] Nikolaevich Andrey Kolmogorov. ”Infinity.” Encyclopaedia of

Mathematics: An Updated and Annotated Translation of the Soviet

”Mathematical Encyclopaedia,”, volume 3. Reidel, 1995. 33

[60] Neel Krishnaswami, Lars Birkedal, and Jonathan Aldrich. Verifying

event-driven programs using ramified frame properties. In ACM

SIGPLAN Workshop on. Types in Language Design and Implementation,

pages 63–76, 2010. 25, 129

[61] Viktor Kuncak, Patrick Lam, and Martin Rinard. Role analysis.

In Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, POPL ’02, pages 17–32, New

York, NY, USA, 2002. ACM. 20

[62] Viktor Kuncak, Huu Hai Nguyen, and Martin Rinard. An algorithm for

deciding bapa: Boolean algebra with presburger arithmetic. In 20th

International Conference on Automated Deduction (CADE’05), pages

260–277, Tallinn, Estonia, Jul 2005. 62

[63] Viktor Kuncak and Martin Rinard. Towards efficient satisfiability

checking for boolean algebra with presburger arithmetic. In International

167

Conference on Automated Deduction, volume 4603 of Lecture Notes in

Computer Science, pages 215–230. Springer Berlin Heidelberg, 2007. 62

[64] Aless Lasaruk and Thomas Sturm. Effective quantifier elimination for

presburger arithmetic with infinity. In Computer Algebra in Scientific

Computing, volume 5743 of Lecture Notes in Computer Science, pages

195–212. Springer Berlin Heidelberg, 2009. 43, 48, 59, 60, 62

[65] Quang Loc Le, Asankhaya Sharma, Florin Craciun, and Wei-Ngan Chin.

Towards complete specifications with an error calculus. In NASA Formal

Methods, 5th International Symposium, NFM 2013, Moffett Field, CA,

USA, May 14-16, 2013. Proceedings, pages 291–306, 2013. 19

[66] TonChanh Le, Cristian Gherghina, Aquinas Hobor, and Wei-Ngan Chin.

A resource-based logic for termination and non-termination proofs. In

Formal Methods and Software Engineering, volume 8829 of Lecture

Notes in Computer Science, pages 267–283. Springer International

Publishing, 2014. 38

[67] Xuan Bach Le, Cristian Gherghina, and Aquinas Hobor. Decision

procedures over sophisticated fractional permissions. In Asian

Symposium on Programming Languages and Systems, pages 368–385,

2012. 84, 91

[68] Oukseh Lee, Hongseok Yang, and Rasmus Petersen. Program analysis for

overlaid data structures. In International Conference on Computer-Aided

Verification, pages 592–608, 2011. 7, 27, 81

[69] K. Rustan M. Leino, Peter Müller, and Jan Smans. Verification of

concurrent programs with chalice. In Foundations of Security Analysis

and Design, pages 195–222, 2009. 18, 29

[70] Xavier Leroy. Formal certification of a compiler back-end or:

Programming a compiler with a proof assistant. In Conference Record

168

of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL ’06, pages 42–54, New York, NY, USA,

2006. ACM. 22

[71] Barbara Liskov. Keynote address - data abstraction and hierarchy. In

Addendum to the Proceedings on Object-oriented Programming Systems,

Languages and Applications (Addendum), OOPSLA ’87, pages 17–34,

New York, NY, USA, 1987. ACM. 68

[72] Barbara H. Liskov and Jeannette M. Wing. A behavioral notion

of subtyping. ACM Trans. Program. Lang. Syst., 16(6):1811–1841,

November 1994. 68

[73] Rüdiger Loos and Volker Weispfenning. Applying linear quantifier

elimination. Computer Journal, 36(5):450–462, 1993. 63

[74] Haohui Mai, Edgar Pek, Hui Xue, Samuel Talmadge King, and

Parthasarathy Madhusudan. Verifying security invariants in expressos. In

Proceedings of the Eighteenth International Conference on Architectural

Support for Programming Languages and Operating Systems, ASPLOS

’13, pages 293–304, New York, NY, USA, 2013. ACM. 61

[75] Z. Manna and C. G. Zarba. Combining decision procedures. In Formal

Methods at the Cross Roads: From Panacea to Foundational Support,

volume 2757 of Lecture Notes in Computer Science, pages 381–422.

Springer, 2003. 62

[76] M. Marcus and A. Pnueli. Using ghost variables to prove refinement.

In Algebraic Methodology and Software Technology, volume 1101 of

Lecture Notes in Computer Science, pages 226–240. Springer Berlin

Heidelberg, 1996. 61

[77] Scott McPeak and George C. Necula. Data structure specifications

via local equality axioms. In Proceedings of the 17th International

169

Conference on Computer Aided Verification, CAV’05, pages 476–490,

Berlin, Heidelberg, 2005. Springer-Verlag. 61, 62

[78] Edward James McShane. Unified integration, volume 107. Academic

Press, 1983. 33

[79] Anders Møller and Michael I. Schwartzbach. The pointer assertion logic

engine. In Proceedings of the ACM SIGPLAN 2001 Conference on

Programming Language Design and Implementation, PLDI ’01, pages

221–231, New York, NY, USA, 2001. ACM. 20

[80] David Monniaux. A quantifier elimination algorithm for linear real

arithmetic. In Logic for Programming, Artificial Intelligence, and

Reasoning, volume 5330 of Lecture Notes in Computer Science, pages

243–257. Springer Berlin Heidelberg, 2008. 62

[81] Karl Naden, Robert Bocchino, Jonathan Aldrich, and Kevin Bierhoff.

A type system for borrowing permissions. In Proceedings of the

39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL ’12, pages 557–570, New York, NY,

USA, 2012. ACM. 29

[82] Greg Nelson and Derek C. Oppen. Simplification by cooperating decision

procedures. ACM Transactions on Programming Languages and Systems,

1:245–257, October 1979. 62

[83] HuuHai Nguyen and Wei-Ngan Chin. Enhancing program verification

with lemmas. In Aarti Gupta and Sharad Malik, editors, Computer Aided

Verification, volume 5123 of Lecture Notes in Computer Science, pages

355–369. Springer Berlin Heidelberg, 2008. 19, 118, 120, 125

[84] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof

Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

62, 63

170

[85] Tobias Nipkow. Linear quantifier elimination. In Automated Reasoning,

volume 5195 of Lecture Notes in Computer Science, pages 18–33.

Springer Berlin Heidelberg, 2008. 62

[86] Michael Norrish. Complete integer decision procedures as derived rules

in hol. In Theorem Proving in Higher Order Logics, volume 2758

of Lecture Notes in Computer Science, pages 71–86. Springer Berlin

Heidelberg, 2003. 62

[87] Martin Odersky, Philippe Altherr, Vincent Cremet, Iulian Dragos, Gilles

Dubochet, Burak Emir, Sean McDirmid, Stphane Micheloud, Nikolay

Mihaylov, Michel Schinz, Erik Stenman, Lex Spoon, and Matthias

Zenger. An overview of the scala programming language. Technical

report, EPFL, 2006. 69

[88] Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. Local

reasoning about programs that alter data structures. In Proceedings of

the 15th International Workshop on Computer Science Logic, CSL ’01,

pages 1–19, London, UK, UK, 2001. Springer-Verlag. 3

[89] Matthew Parkinson and Gavin Bierman. Separation logic and abstraction.

In Proceedings of the 32Nd ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, POPL ’05, pages 247–258, New

York, NY, USA, 2005. ACM. 20

[90] Matthew J. Parkinson and Gavin M. Bierman. Separation logic,

abstraction and inheritance. In Proceedings of the 35th Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL ’08, pages 75–86, New York, NY, USA, 2008. ACM.

20, 66

[91] Ruzica Piskac and Viktor Kuncak. Decision procedures for multisets

with cardinality constraints. In Proceedings of the 9th International

171

Conference on Verification, Model Checking, and Abstract Interpretation,

VMCAI’08, pages 218–232. Springer-Verlag, Berlin, Heidelberg, 2008.

62

[92] Ruzica Piskac and Viktor Kuncak. Linear arithmetic with stars. In

Computer Aided Verification, volume 5123 of Lecture Notes in Computer

Science, pages 268–280. Springer Berlin Heidelberg, 2008. 62

[93] Mojzesz Presburger. Über die Vollständigkeit eines gewissen Systems der

Arithmetik ganzer Zahlen, in welchen die Addition als einzige Operation

hervortritt. 1929. 11, 32, 62

[94] Xiaokang Qiu, Pranav Garg, Andrei Ştefănescu, and Parthasarathy

Madhusudan. Natural proofs for structure, data, and separation. In

Proceedings of the 34th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI ’13, pages 231–242, New

York, NY, USA, 2013. ACM. 62

[95] John C. Reynolds. The craft of programming. Prentice Hall International

series in computer science. Prentice Hall, 1981. 61, 62

[96] John C. Reynolds. Separation logic: A logic for shared mutable data

structures. In Proceedings of the 17th Annual IEEE Symposium on Logic

in Computer Science, LICS ’02, pages 55–74, Washington, DC, USA,

2002. IEEE Computer Society. 2, 11, 32, 34, 96, 97

[97] K. Rustan and M. Leino. Developing verified programs with dafny. In

Verified Software: Theories, Tools, Experiments, volume 7152 of Lecture

Notes in Computer Science, pages 82–82. Springer Berlin Heidelberg,

2012. 17

[98] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape

analysis via 3-valued logic. In Proceedings of the 26th ACM SIGPLAN-

172

SIGACT Symposium on Principles of Programming Languages, POPL

’99, pages 105–118, New York, NY, USA, 1999. ACM. 20

[99] Asankhaya Sharma. Towards a verified cardiac pacemaker. Technical

report, NUS, 2010. available at http://www.comp.nus.edu.sg/∼asankhs/pdf/

Towards Verified Cardiac Pacemaker.pdf. 21

[100] Asankhaya Sharma. Building extensible parsers with camlp4. Technical

report, NUS, 2011. available at http://www.comp.nus.edu.sg/∼asankhs/pdf/

BuildingExtensibleParserswithCamlp4.pdf. 19

[101] Asankhaya Sharma. A critical review of dynamic taint analysis and

forward symbolic execution. Technical report, NUS, 2012. available at

http://www.comp.nus.edu.sg/∼asankhs/pdf/

ACriticalReviewofDynamicTaintAnalysisandForwardSymbolicExecution.pdf.

15

[102] Asankhaya Sharma. An empirical study of path feasibility queries. CoRR,

abs/1302.4798, 2013. 15

[103] Asankhaya Sharma. End to end verification and validation with SPIN.

CoRR, abs/1302.4796, 2013. 21

[104] Asankhaya Sharma. A refinement calculus for promela. In 2013 18th

International Conference on Engineering of Complex Computer Systems,

Singapore, July 17-19, 2013, pages 75–84, 2013. 21

[105] Asankhaya Sharma. Exploiting undefined behaviors for efficient

symbolic execution. In 36th International Conference on Software

Engineering, ICSE ’14, Companion Proceedings, Hyderabad, India, May

31 - June 07, 2014, pages 727–729, 2014. 15

[106] Asankhaya Sharma. Verified subtyping with traits and mixins. In

Proceedings 2nd French Singaporean Workshop on Formal Methods and

173

Applications, FSFMA 2014, Singapore, 13th May 2014., pages 45–51,

2014. 12

[107] Asankhaya Sharma, Aquinas Hobor, and Wei-Ngan

Chin. Specifying compatible sharing in data structures.

Technical report, NUS, 2013. available at http://loris-

7.ddns.comp.nus.edu.sg/∼project/HIPComp/HIPComp.pdf. 12

[108] Asankhaya Sharma, Shengyi Wang, Andreea Costea, Aquinas

Hobor, and Wei-Ngan Chin. Certified reasoning with infinity.

Technical report, NUS, 2014. available at http://loris-

7.ddns.comp.nus.edu.sg/∼project/SLPAInf/SLPAInf.pdf. 11, 58

[109] Robert E. Shostak. Deciding combinations of theories. Journal of the

ACM, 31(1):1–12, January 1984. 62

[110] Gordon Stewart, Lennart Beringer, and Andrew W. Appel. Verified heap

theorem prover by paramodulation. In Proceedings of the 17th ACM

SIGPLAN International Conference on Functional Programming, ICFP

’12, pages 3–14, New York, NY, USA, 2012. ACM. 22

[111] Jun Sun, Yang Liu, Jin Song Dong, and Jun Pang. PAT: towards

flexible verification under fairness. In Computer Aided Verification, 21st

International Conference, CAV 2009, Grenoble, France, June 26 - July 2,

2009. Proceedings, pages 709–714, 2009. 21

[112] Aaron Joseph Turon and Mitchell Wand. A separation logic for refining

concurrent objects. In Proceedings of the 38th Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL

’11, pages 247–258, New York, NY, USA, 2011. ACM. 25, 109, 129

[113] Viktor Vafeiadis and Matthew Parkinson. A marriage of rely/guarantee

and separation logic. In CONCUR 2007 Concurrency Theory, volume

174

4703 of Lecture Notes in Computer Science, pages 256–271. Springer

Berlin Heidelberg, 2007. 114

[114] Volker Weispfenning. The complexity of linear problems in fields.

Journal of Symbolic Computation, 5(1/2):3–27, 1988. 63

[115] Volker Weispfenning. Quantifier elimination for real algebra - the

quadratic case and beyond. Applicable Algebra in Engineering,

Communication and Computing, 8(2):85–101, 1997. 63

[116] Volker Weispfenning. Mixed real-integer linear quantifier elimination.

In Proceedings of the 1999 International Symposium on Symbolic and

Algebraic Computation, ISSAC ’99, Vancouver, B.C., Canada, July 29-

31, 1999, pages 129–136, 1999. 63

175

	Summary
	List of Tables
	List of Figures
	Introduction
	Thesis Objectives
	Contributions of the Thesis
	Outline

	Related Work
	Certified Programs and Proofs
	Logics and Verification
	Program Analysis and Type Systems
	Data and Code Synthesis

	Certified Reasoning with Infinity
	Introduction
	Motivation
	Orientation
	Infinities enable Concise Specifications
	Infinities increase Compositionality
	Infinities support (Non-)Termination Reasoning
	Infinities support Analysis via Quantifier Elimination

	Syntax and Parameterized Semantics
	Reasoning with Infinity
	Normalization and Simplification

	Implementation
	Experiments
	Comparative Remarks and Summary
	Ghost Variables
	Decision Procedures
	Summary

	Verified Subtyping with Traits and Mixins
	Introduction
	Verified Subtyping
	Implementation with SLEEK DSL
	SLEEK DSL
	SLEEK Interactive Mode

	Experiments
	Comparative Remarks and Summary

	Specifying Compatible Sharing in Data Structures
	Introduction
	Motivating Examples
	From Separation to Sharing
	Shared Process Scheduler
	Comparison with Fractional Permissions

	Syntax and Semantics
	Storage Model
	Semantic Model of the Specification Formula

	Verification with Compatible Sharing
	Forward Verification Rules
	Soundness

	Experiments
	Comparative Remarks and Summary

	Automated Verification of Ramifications in Separation Logic
	Introduction
	Motivating Examples
	Updates on Shared Heaps
	Septraction Lemmas

	Verification with Ramifications
	Proof of a Septraction Lemma

	Experiments
	Comparative Remarks and Summary

	Conclusions
	Results
	Future Work

	Appendix
	Certified Reasoning Coq Examples
	Fibonacci
	LinkedList

	Certified Reasoning for Separation Logic
	Reduction to PA (XPure)
	Compatible Sharing (XMem)

	Glossary
	Bibliography

