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ABSTRACT
The Scaled Agile Framework (SAFe) is a popular realisation of the
agile methodology for large organisations. It is widely adopted
but challenging to implement. We describe a new tool which auto-
mates aspects of the SAFe PI Planning process to enable continuous
planning and facilitate collaboration between remote teams.

1 INTRODUCTION & MOTIVATION
The Agile Manifesto, originally designed for small, colocated teams
[3], is used today even in large organizations of 20,000+ people,
78% of the time with multiple distributed teams [1]. This has led to
a multitude of frameworks around agile practices in the large, the
most popular [1] being the Scaled Agile Framework (SAFe) [2].

SAFe is challenging to implement, especially in a large-scale,
distributed setting [8]. Large projects require significant coordina-
tion between teams [6] and cross-team dependencies cause huge
communication overhead [7]. SAFe’s solution is to wrangle these de-
pendencies during Program Increment (PI) Planning sessions: large,
centralized meetings, which are fundamentally unable to scale or
serve remote teams. Continuous Planning [4] is one way to bridge
this gap: enabling global visibility into a continuously-updating
plan and automating away the overhead would free time for actual
collaboration. We implement a tool, Sapling, to realize this.

2 APPROACH
Sapling1 is a web application (Figure 1) which implements the
planning workflow that teams follow. It is intended to be used
concurrently by teams during a PI Planning session.

A given feature team begins PI Planning with a prioritized list of
epics: high-level business objectives to meet at the end of each PI.
Depending on the length of the PI, their time is divided into sprints.
The team then breaks each epic into atomic user stories and assigns
them a story point value representing how much effort the story
will require. Depending on the number of people in the feature
team, each sprint is given a capacity representing how many story
points’ worth of work the team can take on. The stories are then
assigned to sprints respecting the weight-capacity constraints, as
well as unstated ones such as dependencies between stories.

Much of PI Planning is wrangling cross-team dependencies
(which is why SAFe recommends that teams be colocated while
planning): it is common to walk over to another team, hand them
1https://sapling.netlify.com
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Figure 1: Sapling’s main view
a sticky note representing a story, and have them fit it into their
plan somehow. Sapling codifies this, allowing teams to add stories
to each other’s plans and preview the result before accepting.

To enable this, Sapling automates the assignment of stories to
sprints using an answer set solver [5]. One might recognize story
assignment with weights and capacities as the 0-1 Knapsack Prob-
lem; an answer set solver is well-suited to such NP-hard problems.
Sapling supports domain-specific constraints such as story depen-
dencies, fixed story-sprint assignments, epic priority, as well as
optimization criteria such maximizing story parallelism.

Using a solver in this manner and making it easy to add con-
straints enables an interactive, iterative planning workflow: one
simply lists the stories for a particular epic, refines the plan with
constraints, and is always up to date on the feasibility of the plan.
Conversations between teams are no longer punctuated by having
to mitigate the ripple effect of having to pack in unforeseen work.

3 DISCUSSION
Feedback has been positive: stakeholders appreciate the increased
visibility and planning sessions proceed more smoothly. Future
work will focus on the user experience of solver decisions.
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