
Automating Continuous Planning in SAFe
Darius Foo

dfoo@veracode.com
Veracode

Jonah Dela Cruz
jdelacruz@veracode.com

Veracode

Subashree Sekar
ssekar@veracode.com

Veracode

Asankhaya Sharma
asharma@veracode.com

Veracode

ABSTRACT
The Scaled Agile Framework (SAFe) is a popular realisation of the
agile methodology for large organisations. It is widely adopted
but challenging to implement. We describe a new tool which auto-
mates aspects of the SAFe PI Planning process to enable continuous
planning and facilitate collaboration between remote teams.

1 INTRODUCTION & MOTIVATION
The Agile Manifesto, originally designed for small, colocated teams
[3], is used today even in large organizations of 20,000+ people,
78% of the time with multiple distributed teams [1]. This has led to
a multitude of frameworks around agile practices in the large, the
most popular [1] being the Scaled Agile Framework (SAFe) [2].

SAFe is challenging to implement, especially in a large-scale,
distributed setting [8]. Large projects require significant coordina-
tion between teams [6] and cross-team dependencies cause huge
communication overhead [7]. SAFe’s solution is to wrangle these de-
pendencies during Program Increment (PI) Planning sessions: large,
centralized meetings, which are fundamentally unable to scale or
serve remote teams. Continuous Planning [4] is one way to bridge
this gap: enabling global visibility into a continuously-updating
plan and automating away the overhead would free time for actual
collaboration. We implement a tool, Sapling, to realize this.

2 APPROACH
Sapling1 is a web application (Figure 1) which implements the
planning workflow that teams follow. It is intended to be used
concurrently by teams during a PI Planning session.

A given feature team begins PI Planning with a prioritized list of
epics: high-level business objectives to meet at the end of each PI.
Depending on the length of the PI, their time is divided into sprints.
The team then breaks each epic into atomic user stories and assigns
them a story point value representing how much effort the story
will require. Depending on the number of people in the feature
team, each sprint is given a capacity representing how many story
points’ worth of work the team can take on. The stories are then
assigned to sprints respecting the weight-capacity constraints, as
well as unstated ones such as dependencies between stories.

Much of PI Planning is wrangling cross-team dependencies
(which is why SAFe recommends that teams be colocated while
planning): it is common to walk over to another team, hand them
1https://sapling.netlify.com

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7963-2/20/05.
https://doi.org/10.1145/3387940.3391536

Figure 1: Sapling’s main view
a sticky note representing a story, and have them fit it into their
plan somehow. Sapling codifies this, allowing teams to add stories
to each other’s plans and preview the result before accepting.

To enable this, Sapling automates the assignment of stories to
sprints using an answer set solver [5]. One might recognize story
assignment with weights and capacities as the 0-1 Knapsack Prob-
lem; an answer set solver is well-suited to such NP-hard problems.
Sapling supports domain-specific constraints such as story depen-
dencies, fixed story-sprint assignments, epic priority, as well as
optimization criteria such maximizing story parallelism.

Using a solver in this manner and making it easy to add con-
straints enables an interactive, iterative planning workflow: one
simply lists the stories for a particular epic, refines the plan with
constraints, and is always up to date on the feasibility of the plan.
Conversations between teams are no longer punctuated by having
to mitigate the ripple effect of having to pack in unforeseen work.

3 DISCUSSION
Feedback has been positive: stakeholders appreciate the increased
visibility and planning sessions proceed more smoothly. Future
work will focus on the user experience of solver decisions.

REFERENCES
[1] [n.d.]. State of Agile Survey. https://www.stateofagile.com. Accessed: 2019-12-26.
[2] Mashal Alqudah and Rozilawati Razali. 2016. A review of scaling agile methods in

large software development. International Journal on Advanced Science, Engineering
and Information Technology 6, 6 (2016), 828–837.

[3] Barry Boehm and Richard Turner. 2005. Management challenges to implementing
agile processes in traditional development organizations. IEEE software 22, 5
(2005), 30–39.

[4] Breno Bernard Nicolau De França, Rachel Vital Simões, Valéria Silva, and Guil-
herme Horta Travassos. 2017. Escaping from the time box towards continuous
planning: an industrial experience. In 2017 IEEE/ACM 3rd International Workshop
on Rapid Continuous Software Engineering (RCoSE). IEEE, 43–49.

[5] Martin Gebser, Benjamin Kaufmann, Roland Kaminski, Max Ostrowski, Torsten
Schaub, and Marius Schneider. 2011. Potassco: The Potsdam answer set solving
collection. Ai Communications 24, 2 (2011), 107–124.

[6] Deepti Mishra and Alok Mishra. 2011. Complex software project development:
agile methods adoption. Journal of Software Maintenance and Evolution: Research
and Practice 23, 8 (2011), 549–564.

[7] Maria Paasivaara and Casper Lassenius. 2016. Scaling scrum in a large globally
distributed organization: A case study. In 2016 IEEE 11th International Conference
on Global Software Engineering (ICGSE). IEEE, 74–83.

[8] Abheeshta Putta, Maria Paasivaara, and Casper Lassenius. 2018. Benefits and
challenges of adopting the scaled agile framework (safe): Preliminary results
from a multivocal literature review. In International Conference on Product-Focused
Software Process Improvement. Springer, 334–351.

https://sapling.netlify.com
https://doi.org/10.1145/3387940.3391536
https://www.stateofagile.com

	Abstract
	1 Introduction & Motivation
	2 Approach
	3 Discussion
	References

