Automated Identification of Libraries from Vulnerability Data

Yang Chen
Veracode
ychen@veracode.com

Asankhaya Sharma
Veracode
asharma@veracode.com

Andrew E. Santosa
Veracode
asantosa@veracode.com

David Lo
Singapore Management University
davidlo@smu.edu.sg

ABSTRACT

Software Composition Analysis (SCA) has gained traction in recent years with a number of commercial offerings from various companies. SCA involves vulnerability curation process where a group of security researchers, using various data sources, populate a database of open-source library vulnerabilities, which is used by a scanner to inform the end users of vulnerable libraries used by their applications. One of the data sources used is the National Vulnerability Database (NVD). The key challenge faced by the security researchers here is in figuring out which libraries are related to each of the reported vulnerability in NVD. In this article, we report our design and implementation of a machine learning system to help identify the libraries related to each vulnerability in NVD.

The problem is that of extreme multi-label learning (XML), and we developed our system using the state-of-the-art FastXML algorithm. Our system is iteratively executed, improving the performance of the model over time. At the time of writing, it achieves $F_1@k$ score of 0.53 with average $F_1@k$ score for $k = 1, 2, 3$ of 0.51 ($F_1@k$ is the harmonic mean of precision@k and recall@k). It has been deployed in Veracode as part of a machine learning system that helps the security researchers identify the likelihood of web data items to be vulnerability-related. In addition, we present evaluation results of our feature engineering and the FastXML tree number used.

Our work formulates and solves for the first time library name identification from NVD data as XML, and deploys the solution in a complete production system.

CCS CONCEPTS

• Security and privacy → Software security engineering; • Software and its engineering → Software maintenance tools.

KEYWORDS

application security, open source software, machine learning

ACM Reference Format:

1 INTRODUCTION

Open-source libraries are critical to modern information infrastructure, which relies heavily on software written using open-source dependencies, such as those in Maven central, npmjs.com, and PyPI. As with any software, however, open-source libraries may contain security vulnerabilities. Software Composition Analysis (SCA) automatically identifies vulnerable versions of the dependencies used in an application, so that developers can continue using open-source libraries with peace of mind. SCA has gained traction in recent years with a number of commercial offerings from various companies [1, 9–11]. The design of a state-of-the-art SCA product is discussed in a recent article by Foo et al. [20].

Figure 1 depicts a typical SCA workflow. SCA helps developers by discovering vulnerable libraries used by their application. This is done by matching the application’s dependencies with a database of vulnerable libraries. SCA importantly involves a vulnerability curation process where a team of security researchers populate the database with data from various sources. Most relevant to our work is the National Vulnerability Database (NVD) data source. Each NVD entry includes a unique Common Vulnerability Enumeration (CVE) identification number, a vulnerability description, Common Platform Enumeration (CPE) configurations, and references (web links). Each CPE configuration is a regular expression that identifies a set of CPE names. Each name in turn identifies an information technology system, software, or package related to the vulnerability. Unfortunately, these information may not explicitly identify the vulnerable library. For example, Figure 2 shows the words that are included in the report for CVE-2015-7318, that we extracted...
Our system has been deployed in production at Veracode as part of a larger system that helps the security researchers identify the likelihood of web data items to be vulnerability-related. The prediction facility is packaged as a web service, where the inputs are vulnerability description of the given CVE id, its CPE configurations, and its references, and it responds to an input with a ranked list of library names, with a score attached to each library name in the list. Based on the scores, we can select the top- \(k \) library names. The prediction results are made available via a web user interface as search suggestions, when the researchers query a library database for possible libraries that are related to an NVD entry (Figure 4).

We first provide some background in Section 2, including our vulnerability curation system for SCA, XML, and FastXML. We next describe our data gathering and feature engineering efforts in Section 3. We detail our core approach in Section 4, and present experimental evaluations of our approach in Section 5. We then discuss a model deployment case study in Section 6, followed by a discussion on the threats to validity in Section 7. We present related work in Section 8, and conclude our article in Section 9.

2 BACKGROUND

2.1 Software Composition Analysis

Vulnerability Curation System

As mentioned, SCA involves a vulnerability curation process where a team of security researchers populate a library vulnerability database using information they discover from internet sources, such as the NVD, Jira tickets, Bugzilla reports, Github issues, PRs, and commits, as well as emails (Figure 1). Veracode employs an automated system based on machine learning technology [55] to provide recommendation to the security researchers on input data items likely to be related to security vulnerabilities. As depicted in Figure 5, the internet data are first cleaned, and then after the feature extraction and selection process, existing machine learning models in production are used to perform prediction on the input data to decide whether each data item should be recommended to the security researchers or not. The security researchers review a recommended data item manually, and labels it as actually vulnerability-related or not, and then use it to manually populate a library vulnerability database. The new labeled data are then used to train new and more precise machine learning models for the next iteration. In this system, a new suite of models is trained monthly. The system employs \(k \)-fold stacking ensemble machine learning models which mitigate data imbalance issue, where there is a disproportionately large number of negative (vulnerability-unrelated) data compared to the positive (vulnerability-related) ones [55]. It is also enhanced

\[
\text{identify : NVD} \rightarrow \mathcal{P}(L) \quad (1)
\]
We initially approached our problem by directly associating library XML (or XMTC in natural language processing) is a classification of Jira tickets achieved precision of 0.78 for a recall of 0.54. Liu et al. summarizes the main challenges in XML: large number of labels. XML is also different from multi-class multi-label learning. names found in CPE configurations with library vulnerability data, library vulnerability database. And again, these data are then used for each new entry in the NVD. Again, the security researchers ther by having it automatically recommends related library names. This achieves validation time complexity sublinear in the size of the label space. However, FastXML has much less training costs than MLRF or LPSR [28]. The main difference of FastXML vs. other tree-based methods. Agrawal et al. [12] show that using multi-label random forest (MLRF) classifier results in significantly better bid phrase recommendations than ranking-based techniques. Label partitioning for sublinear ranking (LPSR) approach partitions the input space and assigns labels to the partitions taking into account the ranking provided by an original scorer of the label assignment. This achieves validation time complexity sublinear in the size of the label space [42]. However, FastXML has much less training costs than MLRF or LPSR [28]. The main difference of FastXML to MLRF and LPSR is in the tree node partitioning: The use of nDCG in FastXML leads to more accurate predictions over tree-based methods. FastXML generally perform better than embedding-based methods. More importantly, because of data sparsity [24, 34], the critical assumption that the training label matrix is low-rank, is violated in almost all real world applications [14]. This entails a heavy loss of information in the compression. Tree-based methods such as FastXML generally perform better than embedding-based methods.

2.2 XML and FastXML

We initially approached our problem by directly associating library names found in CPE configurations with library vulnerability data, however, the performance is low (Section 5.3), hence we considered machine learning and modeled our problem as an XML instance. XML (or XMTC in natural language processing) is a classification of input data with multiple tags or labels [14]. XML is different from normal multi-label learning (ML) because it involves an extremely large number of labels. XML is also different from multi-class classification [44] because a data item can be labeled with multiple labels [14]. Liu et al. summarizes the main challenges in XML [24]:

(1) **Severe data sparsity.** The majority of the labels have very few training instances associated with them, making it difficult to learn the dependency patterns among labels reliably.

(2) **Computational costs.** The costs of both training and testing of independent multi-class classifiers (i.e., the binary relevance (BR) method [26]) is prohibitive due to the large number of labels, possibly reaching millions.

For our work we use the state-of-the-art tree-based algorithm FastXML [28], which is often used in the literature for comparison with other approaches [24, 52]. In a tree-based method, the input or label space is arranged in a tree hierarchy, where the root usually represents the whole dataset. FastXML’s tree node partitioning formulation directly optimizes a rank sensitive loss function called normalized DCG (nDCG) over all the labels. DCG (discounted cumulative gain) is a measure to quantify the quality of ranking. Given a rank \(p \) of an item, its DCG is \(DCG(p) \) [40]. Normalized DCG (nDCG) is \(DCG(p) \) normalized to \([0, 1]\) using an ideal DCG (IDCG), which is the maximum of the DCG(p). That is, \(nDCG(p) = \frac{DCG(p)}{IDCG(p)} \).

We next compare FastXML with the various other approaches to XML in the literature.

FastXML vs. embedding methods. Embedding methods perform compression to reduce the dimensionality of the label vector space. The approaches in this category include WSABIE [41], SLEEC [14], and AnnexML [34]. SLEEC is reported to slightly outperform FastXML on LSHTC4, a large-scale benchmark for text classification using Wikipedia dataset [27]. In an embedding method, however, the models can be costly to train [41] and the prediction can also be slow even for small embedding dimensions [14], as it requires to decompress a prediction to the labels in the original vector space. More importantly, because of data sparsity [24, 34], the critical assumption that the training label matrix is low-rank, is violated in almost all real world applications [14]. This entails a heavy loss of information in the compression. Tree-based methods such as FastXML generally perform better than embedding-based methods.

FastXML vs. deep learning. Deep learning approaches include that of Liu et al. [24], You et al. [49], and Zhang et al. [52]. Shah et al. report the application of the fastText [23] deep learning approach to XML (product matching problem), demonstrating that the approach is efficient to train [31]. Deep learning has been shown to have competitive results compared to FastXML [24, 52], but deep learning is not applicable to our problem since we have a small labeled data size of only about more than 7,000 items (see Tables 1 and 7).

FastXML vs. other tree-based methods. Agrawal et al. [12] show that using multi-label random forest (MLRF) classifier results in significantly better bid phrase recommendations than ranking-based techniques. Label partitioning for sublinear ranking (LPSR) approach partitions the input space and assigns labels to the partitions taking into account the ranking provided by an original scorer of the label assignment. This achieves validation time complexity sublinear in the size of the label space [42]. However, FastXML has much less training costs than MLRF or LPSR [28]. The main difference of FastXML to MLRF and LPSR is in the tree node partitioning: The use of nDCG in FastXML leads to more accurate predictions over MLRF’s Gini index or LPSR’s clustering error.

FastXML uses an efficient alternating minimization algorithm to optimize nDCG(p) that converges in a finite number of iterations. Jain et al. proposes PfastXML that improves FastXML by replac- ing optimization of nDCG with minimization of propensity-scored loss precision@k or nDCG@k [22]. They also propose PfastreXML which further re-ranks the predictions of PfastXML using classifiers that take into account tail labels which occur infrequently.
3 INPUT DATA

3.1 Data Sources

The data that we use for model training come from two sources: the NVD and the SCA library vulnerability database. We implement a script to automatically download JSON data files from NVD [6] from 2002 to 2019. Each entry in the JSON file corresponds to an NVD web page [7], and has a unique CVE id. We note that the content of each file may be different when downloaded at different times due to updates to the NVD. We use this data to construct the function \(f_{\text{NVD}} : \text{NVD} \rightarrow \tilde{X} \), where NVD, as in Equation 1, is the set of CVE ids, and \(\tilde{X} \) is the set of all input feature vectors.

From the SCA vulnerability database we obtain the mapping of CVE ids to library names. Each library name in the vulnerability database is a pair of coordinates. The SCA vulnerability database provides an API which, given a CVE id, returns the coordinates of all libraries already identified to be related. The coordinates of a library consist of a first coordinate (coordinate1), and an optional second coordinate (coordinate2). For example, a Maven Java library such as Jackson Databind has its group identifier `com.fasterxml.jackson.core` and its artifact identifier `jackson-databind` as respectively the first and second coordinates.

Here, as the library name we use "coordinate1 coordinate2", which for our Jackson Databind case is "com.fasterxml.jackson.core jackson-databind." Some libraries, however, only have the first coordinate, which is directly used as its name. One CVE id may be mapped to a multiple of library names. More formally, when \(L \) is the set of all library names, the SCA vulnerability database defines \(f_{\text{SCA}} : \text{NVD} \rightarrow \mathcal{P}(L) \), which is a function that maps the CVE ids in the NVD to the subsets of library names. We note that the support of \(f_{\text{SCA}} \) in reality is some subset of NVD, because Veracode SCA has a limited focus on open-source libraries and a number of programming languages. Given \(id \in \text{NVD} \), \(\{f_{\text{SCA}}(id)\} \) is typically orders of magnitude smaller than \(|L| \). We combine \(f_{\text{NVD}} \) and \(f_{\text{SCA}} \) by matching CVE ids to build our training data. Using \(f_{\text{NVD}} \) and \(f_{\text{SCA}} \), we define \(f_{\text{NVD-SCA}} : \tilde{X} \rightarrow \mathcal{P}(L) \), a function that directly maps the input feature vectors to the subset of labels, as the following set:

\[
\{(\tilde{x}, D) \mid \exists id \in \text{NVD} : \tilde{x} = f_{\text{NVD}}(id) \land D = f_{\text{SCA}}(id)\}
\]

Finally, our training dataset is the finite function \(d_{\text{train}} : \tilde{X} \rightarrow \tilde{Y} \) defined as the set

\[
\{(\tilde{x}, \tilde{y}) \mid D = f_{\text{NVD-SCA}}(\tilde{x}) \land (\forall l \leq i \leq |l| : \tilde{y}_i = 1_d(L_i))\}
\]

Here, \(1_d : L \rightarrow \{0, 1\} \) is an indicator function such that \(1_d(L_i) = 1 \) if and only if the input \(\tilde{x} \) is labeled with the library name \(L_i \in D^1 \).

We also note that for any \((\tilde{x}, \tilde{y}) \in d_{\text{train}} \), \(|\tilde{y}| = |L| \) (this equals 4,682 for our experiments dataset of Section 5). As an example for \((\tilde{x}, \tilde{y}) \in d_{\text{train}} \) for the CVE-2015-7318, \(\tilde{x} \) is the vectorization of the input text in Figure 2 while \(\tilde{y} \) encodes the set \(D = \{\text{zope2, plone}\} \) of library names, with \(\tilde{y}_i = 1 \) if and only if \(i \) is the index of zope2 or plone in \(L \). We input \(d_{\text{train}} \) to FastXML [28] to train new models.

3.2 Data Cleaning

Before using collected data for model training, we need to clean them. We perform the following three steps:

1. In the first basic cleaning we remove non-alphanumeric characters except exclamation and question marks, and we expand apostrophes. Figure 6 shows the Python procedure.

2. We remove non-noun words that our data collection system can recognize automatically using the NLTK Python package [3] (Figure 7). Using only nouns have been found to be effective for bug assignment recommendation [32]. Our non-noun filtering actually improves model performance, signifying the importance of the focus on nouns in prediction quality (see the experimental results in Section 5.5).

3. We also remove the words which appear in more than 30% of the NVD vulnerability data, since they are common words which are likely to not help in identifying library names. These are not only stop words, but also include words like “security,” which appears in most of the NVD entries. Such words reduce the performance as they are not specific to a particular CVE or set of libraries. This is done using the CountVectorizer API of scikit-learn 0.20 [8]. We chose the 30% frequency limit due to its more favorable results when compared with other limits (see Section 5.5).
We show experimentally how our data cleaning approaches improve model performance in Section 5.5.

3.3 Feature Engineering and Selection

From each NVD entry we select description, CPE configurations, and references for our model training since the other features are unlikely to help in identifying library names. These other features include management data such as data format, version, timestamp, and dates. They also encompass codified problem type including a Common Weakness Enumeration (CWE) id, and also impact data which include Common Vulnerability Scoring System (CVSS) information, severity level, exploitability and impact scores. We clean the description as explained in Section 3.2. The CPE configurations are important features to predict the related library names, as each is made up from vendor name and product name which are very close to library coordinates. There are different versions of CPE formats, but here we consider only the latest version 2.3 at the time of writing. For a given NVD vulnerability entry, there can be multiple CPE configurations. We extract vendor name and product name from each configuration and treat the pair as one unit of text. For example, for the CPE configuration

cpe:2.3:a:arastta:ecommerce:1.6.2:**:**:**:**:**

we extract arastta (vendor name) and ecommerce (product name), and consider them as a text “arastta ecommerce.” Finally we get a list of “vendor product” for each NVD entry without duplication. There are also multiple reference web links for each NVD entry. From each link, we remove the protocol part (http, https, or ftps) and replace the characters in the set /=&? with a white space.

3.4 Matchers

Initially we use the combination of all selected NVD entry features including description, CPE configurations, and references into a single textual feature. Our tests show, however, that for some entries, even though the description or the CPE configurations contain the exact coordinate1 or coordinate2 (see Section 3.1) for the library, the model fails to map the feature vector to the corresponding library name when used in prediction. This led us to use the product name in a CPE configuration to search for all of the matched library coordinates and use these matched coordinates as another input feature. Here, we search all the library entries in the SCA vulnerability database to find those whose coordinate1 or coordinate2 equals the product name in a CPE configuration. We then add the name (“coordinate1 coordinate2” pair) of this library, called the matchers, to our input text data. We note that although one may be tempted to use the matchers alone for matching an NVD entry with vulnerable libraries, we experimentally show in Sections 5.3 and 5.4 that the performance of this approach has actually been discouraging.

In summary, there are four features making up the input used to train the models (S, J, S, S of Section 3.1), including the cleaned vulnerability description (nouns only), a list of “vendor product” pairs from the CPE configurations, cleaned reference links, and the matchers. We concatenate all features into one contiguous string for each NVD entry. This is how we build the fnvd function of Section 3.1.

4 CORE APPROACH

4.1 Using FastXML

Consider a domain \(\mathbb{Q}[^{|L|}] \) of rational vectors of length \(|L|\) (recall that \(L\) is the set of labels). For any \(z \in \mathbb{Q}[^{|L|}]\), \(z_i\) is called a score. The higher the score \(z_i\), the more “relevant” it is a label \(L_1\) given \(z\). The FastXML [28] algorithm produces a model, which is a function with signature \(X \rightarrow \tilde{Q}[^{|L|}]\) given a finite function with signature \(X \rightarrow \mathbb{Y}\), which is the training dataset of Equation 2 of Section 3.1. That is, it is a function:

\[
\text{train}_{\text{FastXML}}: (X \rightarrow \mathbb{Y}) \rightarrow (X \rightarrow \tilde{Q}[^{|L|}]).
\]

Given a training dataset \(d_{\text{train}}\) of Equation 2, the model produced by the FastXML algorithm is \(\text{train}_{\text{FastXML}}(d_{\text{train}})\).

Now, our objective is to use the FastXML algorithm for prediction, which in our case is library identification. When NVD, \(L\), and \(Q\) are respectively the sets of CVE ids, library names, and library numbers, our library identification function can be formally specified as:

\[
\text{identify}_{\text{FastXML}}: \text{NVD} \rightarrow (L \rightarrow \mathbb{Q}).
\]

By virtue of the finiteness of \(L\), \(L \rightarrow \mathbb{Q}\) is finite. We first define a function \(\tau: \mathbb{Q}[^{|L|}] \rightarrow (L \rightarrow \mathbb{Q})\) that transforms a finite rational vector of length \(|L|\) into the function \(L \rightarrow \mathbb{Q}\) as follows:

\[
\tau(z) = \{(l_i, z_i) \mid 1 \leq i \leq |L|\}.
\]

Using \(\tau\), we define \(\text{identify}_{\text{FastXML}}\) as:

\[
\text{identify}_{\text{FastXML}}(id) = \tau(\text{train}_{\text{FastXML}}(d_{\text{train}})(\text{fnvd}(id))).
\]

We can sort the elements of the finite \(S: L \rightarrow \mathbb{Q}\) (the output of \(\text{identify}_{\text{FastXML}}\)) in descending order of their right components:

\[
\text{sort}(S) = (l_1, n_1), \ldots, (l_{|S|}, n_{|S|})
\]

where \(n_i \geq n_j\) whenever \(i < j\). Now, the top-\(k\) elements of \(S\) is:

\[
\text{top}_k(S) = \{(l_1, n_1), \ldots, (l_k, n_k)\}
\]

when \(\text{sort}(S) = (l_1, n_1), \ldots, (l_k, n_k), (l_{k+1}, n_{k+1}), \ldots, (l_{|S|}, n_{|S|})\). Given a fixed \(k\), we define our implementation as the function:

\[
\text{identify}_k(id) = \text{top}_k(\text{identify}_{\text{FastXML}}(id))
\]

It is easy to see that using \(\text{identify}_k\) as \(\text{identify}\) satisfies Equation 1 of Section 1.

4.2 Model Evaluation

We use the prediction result to help our security researchers to map CVE ids to library names to save their manual research effort. As usual in evaluating multi-label learning approaches, we use precision@k, recall@k, and their harmonic mean \(F_1@k\) as validation metrics. precision@k is the precision of the top-\(k\) prediction results, where recall@k is the recall of the top-\(k\) prediction results. These metrics focus on the positive labels only, and are therefore suitable for use in XML due to the number of positive labels for an input data item is very small compared to the irrelevant negative labels (less than ten vs. thousands for our typical case). This characteristic renders other methods such as Hamming loss inappropriate [22, 28]. Weston et al. show for the first time the utility of optimizing precision@k for an XML application in image recognition [41]. The metrics have also found applications in machine...
learning approaches for software engineering such as in library recommendation [35, 53], in finding analogical libraries [15], and in tag recommendation [33, 38, 39, 46, 50, 54], essentially where the number of positive labels is magnitudes smaller than the number of negative labels. We define the metrics in this section.

We assume that the results of a manual labeling of CVE id with library names by the security researchers is given by the function:

\[
identify_{\text{manual}} : \text{NVD} \rightarrow \mathcal{P}(L)
\]

This is indeed the validation dataset. Given a prediction \(identify_k(id)\) under the bound \(k\), we define the precision@\(k\) and recall@\(k\) for a given CVE id as follows:

\[
\text{precision}@k(id) = \frac{|identify_k(id) \cap identify_{\text{manual}}(id)|}{k}
\]

\[
\text{recall}@k(id) = \frac{|identify_k(id) \cap identify_{\text{manual}}(id)|}{|identify_{\text{manual}}(id)|}
\]

precision@\(k(id)\) here is therefore the proportion of the correctly-predicted names among the maximum \(k\) of predicted names for a given id, whereas recall@\(k(id)\) here is the proportion of the correctly-predicted names among all correct names for a given id. We care about maximizing precision@\(k(id)\) since we want to save the manual effort of confirming that the CVE id is actually related to the predicted library name. We also care about maximizing recall@\(k(id)\) since we want our results to cover as many of the related library names as possible.

Given NVD, the subset of NVD CVE ids that we use for validation, the metrics precision@\(k\) and recall@\(k\) that we actually use for validation are as follows:

\[
\text{precision}@k = \frac{\text{avg}}{id \in \text{NVD}} \text{precision}@k(id)
\]

\[
\text{recall}@k = \frac{\text{avg}}{id \in \text{NVD}} \text{recall}@k(id)
\]

with \(\text{avg}\) denoting arithmetic mean. We use these metrics or their harmonic mean \(F_1@k\) to evaluate our models.

5 EXPERIMENTS

5.1 Research Questions

We experimented with various aspects of our design and report the performance results in this section. We conduct the experiments to answer the following research questions:

- **RQ1** What is the performance of using only matchers without machine learning?
- **RQ2** What is the performance of using only matchers as inputs?
- **RQ3** Does adding description, CPE configurations, and references of NVD entries improve the model performance?
- **RQ4** Do non-noun and frequent-words removal improve model performance?
- **RQ5** What is the number of the FastXML trees that results in the best performance?

5.2 Dataset and Setup

Table 1 shows the sizes of our input data. Other than the NVD and SCA library vulnerability database, we also retrieve SCA library data, containing data on libraries that may not currently be associated with any CVE id. We use the SCA library data to build the matchers. Our final labeled dataset contains 7,696 records, which is only about 6% of the total number of NVD entries. This is because our SCA databases have a limited focus on open-source projects and a number of supported languages.

Table 3 shows the average and distribution of the number of labels in the labeled dataset. The distribution is skewed, where more than 60% of the entries only have one label. This agrees with the sparsity characteristic of the XML problems. We conduct all experiments on Amazon EC2 instance running Ubuntu 18.04 with 32 GB RAM and 16-core 3 GHz Intel(R) Xeon(R) Platinum 8124M CPU. We use the default parameters for FastXML excluding two:

- We changed the number of trees from the default 1 to 64.
- We changed the number of parallel jobs to the number of detected CPUs (16).

Table 2 summarizes the FastXML parameter values for parameters that affect our experiments. The FastXML implementation that we use has other parameters (see the constructor of PfastreXML class in the source code [2]). They are for training classifiers for PfastreXML node re-splitting, however, since we do not use this feature (in Table 2 we set the re-split count to 0), we do not list them in Table 2. We also exclude parameters that are not actually used and those that are only used for reporting purposes.

Our standard approach, unless indicated otherwise, is to randomly select 75% of our labeled dataset to train the models and the remaining 25% for testing. When presenting performance results here and in Section 6, we use geometric average unless otherwise indicated [19]. We note that our problem is time-agnostic, where the identification of libraries are not affected by the timestamps of the NVD entries. Our dataset is therefore not sorted based on
time, and this removes the necessity of using sliding window-based validation techniques.

5.3 Using Matchers Without Machine Learning
Matchers (Section 3.4) alone can be used for prediction without machine learning. Since matchers have no scores (Section 4), @k performance values are irrelevant. Assuming \(\text{identify}_{\text{matcher}}(id) \) to be the set of matchers computed from the CPE configurations of \(id \) in NVD (Section 3.4), we can compute the performance metrics for matchers alone as follows:

\[
\text{precision}(id) = \frac{\left| \text{identify}_{\text{matcher}}(id) \cap \text{identify}_{\text{manual}}(id) \right|}{\left| \text{identify}_{\text{matcher}}(id) \right|}
\]

\[
\text{recall}(id) = \frac{\left| \text{identify}_{\text{matcher}}(id) \cap \text{identify}_{\text{manual}}(id) \right|}{\left| \text{identify}_{\text{manual}}(id) \right|}
\]

with \(F_{@k}(id) \) to be the harmonic mean of the two. The computed arithmetic averages for the precision, recall, and \(F_{@k} \) score from our labeled data and the values are respectively 0.24, 0.28, and 0.24, thereby answering RQ1. We note that the performance is very low, necessitating a better prediction technique. The reasons are the following two:

1. CPE configurations may not identify all relevant libraries. There are possibly more relevant libraries than the “vendor product” pairs identified in the CPE configuration, lowering the recall.

2. CPE configurations do not identify the most relevant libraries. Libraries that are not specified in the CPE configurations may have higher relevance, lowering the precision.

5.4 Using Only Matchers as Inputs
We perform an experiment to determine the performance when only matchers are included in the input. The results are shown in Table 4. As most of the NVD entries are associated with one or two labels (Table 3), we evaluate the top-k labels from the prediction results, for \(k = 1, 2, \) or 3. It is easy to see the answer to RQ2, that the prediction performances are low when only matchers are included in the input, with average \(F_{@k}(id) \) of only 0.41. Here we also observe that \(\text{precision}@k \) decreases with the increase of \(k \). This is because the majority of data are labeled with only one or two libraries, as can be seen from Table 3. Such observation holds true for all \(\text{precision}@k \) results we report in this article.

5.5 Experiments with Data Cleaning
We perform experiments to measure the effect of our data preparation approaches to the model performance. Table 5 shows the \(\text{precision}@k, \text{recall}@k, F_{@k} \) results for \(k = 1 \) and 3, and the training and validation times (using the 75% and 25% labeled data). When we compare Table 5 with Table 4, we can answer RQ3 in the affirmative, that the addition of description, CPE configurations, and references of NVD entries does improve the model performance. Comparing the minimum 0.50 average \(F_{@k} \) of Table 5 and the average \(F_{@k} \) of 0.41 of Table 4, we get the minimum improvement in average \(F_{@k} \) to be 21.95%. The best performance in Table 5 is for the configuration with non-noun and 30% frequent words removal. We use this configuration in production. Here we answer RQ4 in the affirmative: non-noun removal and frequent-words removal improve the prediction performance, albeit by a small amount. Although the difference in average \(F_{@k} \) score for our production configuration compared to others is very small, non-noun and frequent-words removal still reduce training and validation times.

5.6 Experiments with Tree Sizes
FastXML uses trees, where each one represents a distinct hierarchy over the feature space. We perform an experiment which varies the number of trees among 32, 64, and 128, and summarize the results.
in Table 6. We also include the time measurement results, both for training and validation, on respectively the 75% and 25% of the labeled data. For RQ3, we confirm that the number of FastXML trees that result in the best performance is 128. However, the difference in average $F_1@k$ between 64 and 128 is very small, and since the 64 trees configuration requires only half the training time, we use it for our production system.

6 DEPLOYMENT CASE STUDY

We want to confirm that a newly-trained model has a better performance than the model in production before replacing the production model. In this section we discuss the two steps of validation that we perform for this purpose via a case study. In this case study, for the data preparation we use basic cleaning, non-noun removal, and with 30% frequent words removal. We add matchers into the input. For the number of FastXML trees, we use 64. We use the same system setup as the one mentioned in Section 5.2.

6.1 Evaluation Using Training-Time Datasets

The first step is to ensure that the new model has a better performance than the production model, at the moment each one is trained. For our case study, the production model is trained on 18 July 2019 and the new model is trained on 27 September 2019 (70 days difference). In training and validating the production model, the sizes of the datasets that we use are shown in Table 7. For the new model, the sizes of the datasets that we use are presented in Table 1. We note that each dataset of Table 7 is a subset of its counterpart in Table 1. We show the label number average and distribution for the labeled dataset of Table 7 in Table 8. We observe that the numbers are characteristically similar to that of Table 3.

For this step, we use 75% of the data for training and 25% for testing, for both the production and the new models. Columns 3–5 of Table 9 show the results for the production and new models. Although the new model shows a decrease in precision, the average $F_1@k$ still improves by 1.09%, hence deploying the new model as a replacement for the production model is still acceptable.

6.2 Evaluation Using the Same Dataset

For the second evaluation, we randomly select 50% of the labeled data from the labeled dataset of the time we train the new model. We build this dataset from 25% labeled data used for testing the new model and a third of the remaining 75% labeled data used for training the new model. We test the new model and the production model on this same dataset. Columns 6–7 of Table 9 show the performance comparison between the production and the new models. All metrics $Precision@k$, $Recall@k$, and $F_1@k$ show significant improvements by the new model, providing us with more confidence in deploying the new model. We note that in this second evaluation, the performance numbers are higher when compared to the evaluating using training-time datasets. This is caused by overfitting: half of the data in the dataset for the same-dataset evaluation are used in the training of the new model as well.

6.3 Training and Prediction Times

Table 10 shows the training and prediction times of our production and new models and their averages. The prediction times are from the evaluation using the same dataset (see Section 6.2), which is 50% of all the labeled dataset used in the training and validation of the new model. Table 10 shows that both the training and prediction times are fast, roughly about 2.5 minutes and 1 minute, respectively. This means that prediction finishes on each data item on average in 8.17 ms. This demonstrates that our approach is highly practical.

7 THREATS TO VALIDITY

7.1 Internal Threats to Validity

We identify two kinds of internal threats of validity. Firstly, our results are exposed to human error from our manually-built data sources, including NVD and our SCA vulnerable library database. It is possible that the SCA vulnerability library identifies more or less library as related to an NVD entry than it should. This threat
is mitigated by the updates to the NVD by the security community and the proven commercial usage of the SCA vulnerable library database. Secondly, our results may also be affected by the possible bugs and errors in our implementation. This is partly mitigated by using widely-used standard library packages for machine learning, including pandas 0.23.4, scikit-learn 0.20, and FastXML 2.0.

7.2 External Threats to Validity
There are two threats to the generalizability of our study. Firstly, as mentioned, SCA vulnerable library database is curated manually, from which we build our input feature vector. This manual curator highly dependent on the skills of the security researchers. Secondly, we are only interested in the NVD entries that are related with open source projects and whose languages are supported by the Veracode SCA, so the final size of the labeled dataset for producing the models is only about 6% of the total number of NVD entries (see Tables 1 and 7).

8 RELATED WORK

8.1 Machine Learning for SCA
Our work is part of a framework for software composition analysis (SCA), which has gained widespread industrial usage. Machine learning is extensively used in SCA to identify vulnerable libraries, which are vulnerabilities that are known by some (e.g., developers making the vulnerability fix), yet not explicitly declared, such as via the NVD. Wijayasekara et al. [43] point to the criticality of such vulnerabilities, whose number has increased in Linux kernel and MySQL by 53% and 10% respectively from 2006 to 2011. Zhou and Sharma [55] explore the identification of vulnerabilities in commit messages and issue reports/PRs using machine learning. Their approach discovers hidden vulnerabilities in more than 5,000 projects spanning over six programming languages. Sabetta and Bezzi propose feature extraction also from commit patches in addition to commit messages [30]. Wan considers vulnerability identification from commit messages using deep learning [37]. Compared to these, our work solves a different problem, that of the vulnerable library identification from NVD data.

8.2 Library Recommendation
Close to our work is the area of library recommendation. Thung et al. propose an approach that recommends other third-party libraries to use, given the set of third-party libraries currently used by the application or similar applications [35]. The approach uses a combination of association rule mining and collaborative filtering. Zhao et al. propose an improvement using the application’s description text features and the text features obtained from the libraries themselves, using NLP technique and collaborative filtering [53]. Compared to Thung et al. which relies on the Maven dependency information, this makes Zhao et al.’s approach language agnostic. Chen et al. considers a related problem, which is that of finding analogous libraries [15, 16]. Here, the problem is in discovering libraries that are related to a target library. To build this relation, they treat the tags of StackOverflow question (which may include library names) as a sentence and apply word embedding. The solutions to library recommendation problem take advantage of the intuition that applications can be categorized according to the libraries they use. Both the library recommendation and analogous libraries problems can be considered as XML instances. However, the library recommendation problem is amenable to methods that narrow down the possible recommendations. This is less applicable in our setting since the correlation between vulnerabilities and the set of libraries having them is weaker, or even possibly nonexistent. Compared to the analogous libraries problem, in our case CPE configurations can be considered as tags, however, we cannot take them at face value to identify libraries: We need to also identify libraries not mentioned in the CPE configurations.

8.3 Multi-Label Classification for Software Engineering
Multi-label (ML) classification has found many uses in the area of software engineering. Prana et al. proposes eight-label classifier to categorize the sections of Github README files [29]. The solution combines BR with support-vector machine (SVM) as the base classifier. It achieves F_1 score of 0.746. Feng and Chen maps execution traces to types of faults using ML-KNN [51] ML algorithm [17]. Xia et al. improves Feng and Chen’s results using MLL-GA [21] algorithm instead [45]. Feng et al. provide a comparison of various ML algorithms [18]. Xia et al. propose TagCombine, which models tag recommendation in software information sites such as StackOverflow as ML classification problem [46]. Short et al. confirm that by adding information about the network of the StackOverflow posts, results can be improved [33]. EnTagRec [38] and subsequently EnTagRec++ [39] improve TagCombine by using a mixture model that considers all tags together instead of building one classifier for each tag (BR). Zhou et al. propose a scalable solution that considers only a subset of posts data to build the recommendation [54]. Their approach also improves $F_1@10$ score by 8.05% when compared to EnTagRec. Zavou applies deep learning to the tag recommendation problem and demonstrates improvements over TagCombine for AskUbuntu data [50]. SOTagger approach considers the related problem of tagging the posts using intent rather than the technology [36]. Our problem cannot be categorized as multi-label classification problem, as we consider thousands of libraries (labels) in total. In particular, the usual ML approach using BR is not applicable.

9 CONCLUSION AND FUTURE WORK
Predicting related libraries for NVD CVE entries is an important step in SCA to save manual research effort in the identification of vulnerable libraries. In this article, we present the design and implementation of a system that performs data collection, feature engineering, model training, validation and prediction automatically, and its experimental evaluations. We model our problem as an instance of XML, and use tree-based FastXML [28] algorithm to build prediction models. At the time of writing, our system achieves $F_1@1$ score of 0.53 with average $F_1@k$ score for $k = 1, 2, 3$ of 0.51 ($F_1@k$ is the harmonic mean of precision@k and recall@k, all of which are defined in Section 4.2). Applying deep learning is a possible future work, once more training data becomes available.
ACKNOWLEDGMENT
We thank Jonah De La Cruz for providing Figure 4 and Abhishek Sharma for commenting on our draft. The last author is supported by Ministry of Education (MOE) Academic Research Fund (AcRF) Tier 2 grant (MOE2019-T2-1-193).

REFERENCES