
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Automated Identification of Libraries from Vulnerability Data:
Can We Do Better?

Anonymous Author(s)

ABSTRACT
Software engineers depend heavily on software libraries and have
to update their dependencies once vulnerabilities are found in them.
Software Composition Analysis (SCA) helps developers identify
vulnerable libraries used by an application. A key challenge is the
identification of libraries related to a given reported vulnerability
in the National Vulnerability Database (NVD), which may not ex-
plicitly indicate the affected libraries. Recently, researchers have
tried to address the problem of identifying the libraries from an
NVD report by treating it as an extreme multi-label learning (XML)
problem, characterized by its large number of possible labels and
severe data sparsity. As input, the NVD report is provided, and as
output, a set of relevant libraries is returned.

In this work, we evaluated multiple XML techniques and per-
formed an analysis of different models proposed for XML classi-
fication. While previous work only evaluated a traditional XML
technique, FastXML, we trained four other traditional XML mod-
els (DiSMEC, Parabel, Bonsai, ExtremeText) as well as two deep
learning-based models (XML-CNN and LightXML). We compared
the performance in both their effectiveness and the time cost of
training and using the models for predictions. We find that other
than DiSMEC and XML-CNN, recent XML models outperform the
FastXML model by 3%–10% in terms of F1-scores on Top-k (k=1,2,3)
predictions. Furthermore, we observe significant improvements in
both the training and prediction time of these XML models, with
Bonsai and Parabel model achieving 627x and 589x faster training
time and 12x faster prediction time from the FastXML baseline.
From a deeper analysis, we discuss the implications of our experi-
mental results and highlight limitations that future work needs to
address.

CCS CONCEPTS
• Security and privacy → Software and application security;
• Computing methodologies→Machine learning; Supervised
learning; Natural language processing.

KEYWORDS
multi-label classification, machine learning, vulnerability report

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPC 2022, May 21–22, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: SoftwareCompositionAnalysis workflow. Security
researchers have to accurately analyze vulnerability reports
from NVD.

ACM Reference Format:
Anonymous Author(s). 2022. Automated Identification of Libraries from
Vulnerability Data: Can We Do Better?. In Proceedings of The 30th Interna-
tional Conference on Program Comprehension (ICPC 2022). ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Usage of third-party libraries is crucial in software development
as they help developers to build their applications by promoting
software reuse. However, the use of libraries also increases the
burden of software developers as they have to be aware of security
vulnerabilities found in them [2, 12, 17, 28, 34, 37, 38, 47].

Software Composition Analysis (SCA) has been proposed to auto-
matically identify vulnerable dependencies used by an application.
Figure 1 shows the SCA workflow, which involves matching an
application’s dependencies with a database of known vulnerable
libraries [11]. A team of security researchers maintains the data-
base by monitoring and curating vulnerability data from multiple
sources, including the National Vulnerability Database (NVD). A
vulnerability report typically consists of an identification number,
its CVE (Common Vulnerability Enumeration), a description of
the vulnerability, references related to the vulnerability, and a set
of CPE (Common Platform Enumeration) that correspond to the
packages and libraries that are related to the vulnerability.

While vulnerability reports do mention related libraries, most
vulnerability reports fail to include the full list of affected libraries.
As an example, consider CVE-2016-7046 shown in Figure 2. In
reality, the undertow framework, as well as the undertow-parent
package, is affected by the vulnerability. However, its CPE and
description of the vulnerability do not explicitly indicate them.
After analyzing 7,666 vulnerability reports (c.f. Section 3.1), we find
that 53.3% of the reports do not mention the affected libraries in

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICPC 2022, May 21–22, 2022, Pittsburgh, PA, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Figure 2: NVD entry for CVE-2016-7046. While the vulnera-
bility affects the Undertow library, the term “undertow” is
not explicitly mentioned in NVD.

their descriptions and CPE configurations. Human effort is needed
to manually identify the affected vulnerable libraries but is slow
and prone to errors. An automated approach that predicts relevant
libraries from given vulnerability reports would aid the process.

A recent study by Chen et al. [11] has framed the problem as
an XMTC (extreme multi-label text classification), also commonly
known as XML (extreme multi-label learning), task. Our task in-
volves the assignment of a set of relevant labels (i.e., affected li-
braries, manually curated by a team of security researchers) to a
given document (i.e., the vulnerability report) [19]. Our task in-
volves an extremely large number of labels (all possible libraries),
and each vulnerability report may be associated with multiple labels
(a vulnerability may affect multiple libraries). Indeed, our problem
shares many characteristics as the XML problem, including the data
sparsity problem, in which the majority of labels have only a few
training instances associated with them.

Chen et al. [11] explored and evaluated the use of a traditional
XML model, FastXML [40], on this task. They achieved an average
F1@k score of 0.51 for k=1,2,3. Their FastXML model has been
deployed within Veracode to help security researchers identify the
libraries affected by vulnerability reports. Their successful experi-
ments motivate us to apply more sophisticated models to the task.
However, Chen et al. discussed the challenge of the lack of training
data for the application of data-hungry techniques, such as deep-
learning models. While the FastXML model considerably improves
over using just the CPE configuration (average F1@k score for
k=1,2,3 of 0.41) to identify libraries, we investigate and analyze the
performance of multiple XML approaches, including deep-learning
based approaches to better understand the applicability of XML
to the problem. We also investigate the efficiency of these XML
techniques to assess their feasibility for practical usage.

In this study, we conduct an investigation and experiments on
the application of multiple recent XML techniques for automated

library identification from vulnerability reports. Specifically, we
investigate the following research question:

• RQ1: Do deep learning-based models and other recent XML
models outperform FastXML in identifying libraries affected
by a vulnerability?

• RQ2: How efficient are the different XML techniques?
To answer these questions, we identify six XML models that

were recently proposed and have outperformed FastXML in other
XML tasks. Four of them build on traditional approaches that
take either a one-vs-all approach [3, 55, 56] or a tree-based ap-
proach [21, 26, 39, 40], while two models [23, 29] use deep learning.
We experiment using these XML techniques in our task of auto-
mated library identification. We use the same dataset as Chen et
al. [11], which contains 7,696 vulnerability reports with 4,682 labels
that are collected from the NVD (National Vulnerability Database)
and SCA (Software Composition Analysis) vulnerability database.
To compare the effectiveness of the models, we use the samemetrics
as Chen et al.’s study, which are precision, recall, and F1 score at
k=1,2,3. To compare the efficiency of the models, we compare the
training and prediction time of all the XML techniques.

Our experiments highlight that more sophisticated XML tech-
niques can outperform FastXML. Specifically, LightXML, a transfor-
mer-basedmodel, achieves 10% F1 improvement in the top-k (k=1,2,3)
predictions. Bonsai, a tree-based model, achieves up to 8% F1 im-
provement in the top-k (k=1,2,3) predictions while improving the
training and prediction efficiency by 589x and 12x, respectively
compared to FastXML. These results highlight that many XML
techniques, including deep learning-based approaches, outperform
FastXML. Despite the differences in their approach (tree-based vs.
deep learning), they achieve similarly strong performance.

We also conduct a qualitative analysis of the XMLmodels and the
dataset. We compare the differences in predictions between the top-
performing model and the baseline model. We also investigate why
the existing XML techniques achieve strong performance despite
the problem of the long tail, where many labels appear uncommonly
(e.g., less than 5 times). Based on our analysis, we highlight the
limitations of XML models and suggest directions for future work.

The main contributions of our work are as follows:
(1) We evaluate four traditional and two deep learning XML

models on their effectiveness and efficiency on the problem
of library identification from vulnerability reports. In terms
of effectiveness, our results reveal that both a deep-learning
based model, LightXML, and a tree-based model, Bonsai,
outperform the baseline FastXML model. We find that all
considered XMLmodels are sufficiently efficient for practical
usage, taking an average of less than 100 milliseconds to
predict the affected libraries of a single vulnerability report.

(2) We discuss the experimental results, including a discussion
of the unexpectedly strong performance of XML models
on vulnerability reports with labels that do not have many
training examples, known to be a problem for XML tasks.

(3) We highlight limitations of XML techniques for the library
identification task, including the lack of discriminating fea-
tures that can be extracted from vulnerability reports. Based
on our analysis, we identify challenges for future work to
address.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Automated Identification of Libraries from Vulnerability Data: Can We Do Better? ICPC 2022, May 21–22, 2022, Pittsburgh, PA, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

The rest of this paper is organized as follows. Section 2 intro-
duces the background of our work, including XML models and
existing work identifying libraries from vulnerability reports. Sec-
tion 3 presents the methodology used in our study. Section 4 shows
our experimental results. Section 5 discusses our findings and the
lessons learnt. Finally, Section 6 concludes the paper and mentions
future work.

2 BACKGROUND
2.1 Extreme Multi-Label Classification
Extreme Multi-label Learning (XML) models classify documents
with relevant labels from an extremely large label space. Recent
XML models can be categorized into four categories:

One-vs-all Classifiers. One-vs-all classifiers split the problem
of multi label classification into multiple binary classification tasks
that are independent of one another. Each binary classifier learns
to distinguish a label from other labels. Classifiers in this category
typically achieve good performance for XML. However, they suffer
from computational and resource constraints, as they require the
training of as many binary classifiers as the number of labels. One-
vs-all classifier also suffers from labels that rarely occur in the
dataset and has limited training data (the tail label problem). The
lack of data for the tail labels leads to lower performance of the
binary classifier [3]. Some one-vs-all classifiers are PDSparse [56],
PPDSparse [55], and DiSMEC [3]. PDSparse and PPDSparse utilize
sparse learning to reduce the complexity of one-vs-all classifiers.
DiSMEC, considered the state-of-the-art for one-vs-all classifiers,
uses distributed computing to reduce the complexity of learning
linear classifiers for each label.

Tree-based Classifiers. Tree-based classifiers are based on de-
cision trees, where a label tree is recursively generated based on the
input features. Compared to one-vs-all classifiers, tree-based clas-
sifiers require less computational resources. However, they suffer
from the tree cascading effect, where erroneous predictions in the
upper nodes of the tree propagate to the lower nodes. Tree-based
XML models include FastXML [40], PfastreXML [21], Parabel [39],
Bonsai [26], and ExtremeText [52].

Both FastXML and PfastreXML recursively partition the feature
space to build the tree, where FastXML optimizes nDCG (Normal-
ized Discounted Cumulative Gain) based on a loss function, and
PfastreXML optimizes the propensity scored loss function. Parabel
and Bonsai recursively partition the label space to build a tree. Para-
bel partitions the labels into two balanced groups using balanced
2-mean, resulting in a deep tree. Meanwhile, Bonsai partitions the
labels using K-means with a large value of K (e.g., more than 100),
resulting in a wide and shallow tree. This wide and shallow tree re-
duces the tree cascading effect in Bonsai architecture. ExtremeText
(XT) proposes an implementation of probabilistic label trees (PLT)
for XML by extending hierarchical softmax (HSM) to address XML.
Recent studies [26, 39] highlight that tree with label partitions (i.e.,
Parabel, Bonsai, and XT) outperforms tree with feature partition
(i.e., FastXML and PfastreXML).

Embedding-basedClassifiers. Embedding-based classifiers pro-
ject the high dimensional label space into a lower dimensional space.
The underlying idea for this category of approaches is that the high
dimensional label space can be compressed to a lower dimensional

space where similar labels have representations close to one an-
other in the lower dimensional space. In the training process, a
compressed label space is used. Then, during the prediction process,
the decompressed label space is used. Thus, the label compression
and decompression process are key to these classifiers. SLEEC [5]
and AnnexML [46] are two proposed embedding-based classifiers
for XML. SLEEC learns an ensemble of local distance preserving
embeddings that preserve the pairwise distances between the near-
est label vectors. AnnexML is an extension of SLEEC. It generates
a K-Nearest Neighbor graph of label vectors in its embedding. The
major drawback of embedding-based classifiers is the loss of in-
formation during the compression of the label space. This loss of
information results in higher prediction error for embedding-based
classifiers compared to other types of classifiers [26].

Deep learning-based Classifiers. Related to the embedding-
based classifiers, deep learning has been utilized to learn a better
representation of raw text for creating XML classifiers. Several deep
learning-based classifiers for XML have been proposed [9, 23, 29, 57].
XML-CNN [29] is one of the first deep learning approaches pro-
posed for XML problems. By using a CNN (convolutional neural
network) with a hidden bottleneck layer to project the text fea-
ture into low dimensional space, XML-CNN is able to work for
tasks with a large number of labels. AttentionXML [57] uses an
RNN (recurrent neural network) with the attention mechanism to
learn embeddings from the text inputs. Using these embeddings,
AttentionXML trains a probabilistic label tree (PLT) to handle the
big number of labels. Transformer-X [9] is the first deep learn-
ing XML approach to utilize transformer models, e.g. BERT [14].
Transformer-X decomposes the XML problem into a set of smaller
sub-problems using label clustering. Then, the transformer model
is fine-tuned to each sub-problem, creating several models in the
process. However, Transformer-X still requires extensive compu-
tational resources while providing marginal improvements over
AttentionXML.

More recently, to address the computational constraints of deep
learning models, LightXML [23] has been proposed as a lightweight
deep learning model that is trained end-to-end and has a reduced
model size and training time relative to other deep learning models.
LightXML fine-tunes the transformer models with dynamic nega-
tive label sampling. For its text representation, LightXML extracts
embeddings from multiple layers of the transformer model. In other
XML tasks, LightXML has been demonstrated to outperform other
deep learning and tree-based XML classifiers.

For our study, we experiment on XML techniques that have
achieved better performance in other tasks compared to FastXML,
which is used in the prior work of Chen et al. [11]. From the one-
vs-all classifiers, we choose DiSMEC. From the tree-based classi-
fiers, we choose Parabel, Bonsai, and ExtremeText. From the deep
learning-based classifiers, we choose XML-CNN and LightXML.
These XML techniques have good performance that was evaluated
and highlighted by prior works [3, 23, 26, 29, 39, 52]. The descrip-
tions of these techniques as well as their parameters used in our
experiments are provided in Section 3.4.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ICPC 2022, May 21–22, 2022, Pittsburgh, PA, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

2.2 Existing Approaches for Library
Identification from Vulnerability Report

Chen et al. [11] proposed two approaches to automatically identify
affected libraries from vulnerability reports. In their study, they
explored the CPE matcher and FastXML.

(1) CPE matcher. As a simple baseline that does not use ma-
chine learning, the CPE matcher is an approach that uses
the library names listed in a vulnerability report’s CPE con-
figuration. After the library names are retrieved from the
CPE configurations, they are output as the predicted affected
libraries from the vulnerability report.
Overall, as the CPEs do not identify all relevant libraries, the
CPE matcher achieves an average F1 of only 0.24 [11].

(2) FastXML. Chen et al. [11] proposed the use of FastXML.
Their experiments showed that FastXML achieves an average
F1-score of 0.51 at top-k predictions (k=1,2,3), outperforming
the CPE matcher. A detailed description of the FastXML
algorithm is provided in Section 3.4.

3 METHODOLOGY
3.1 Dataset
We utilize the dataset that was used by prior work of Chen et al. [11].
This dataset comprises 7,696 vulnerability reports with 4,682 labels
(i.e., libraries) collected from the NVD (National Vulnerability Data-
base) and the SCA (Software Composition Analysis) vulnerability
database. Each report consists of a unique CVE ID, its vulnerability
description, a list of web references, its CPE (Common Platform
Enumeration) configuration, and its labels (i.e., the libraries that
correspond to the given vulnerability report, manually curated by
a team of security researchers). The information related to the vul-
nerability is collected from NVD entries between 2002 to 2019. For
each vulnerability report, the SCA vulnerability database is used to
determine the affected library names based on the vulnerability’s
CVE ID. Within the dataset, we find that each vulnerability is re-
lated to 1 – 432 libraries. The ground truth labels of this dataset are
vetted by security experts from Veracode SCA.

3.2 Data Preparation
Beforewe proceed to themodel training process, we perform several
data preprocessing steps.

1. Data Cleaning. We check the vulnerability reports in the
dataset to ensure that their information is correct and up-to-date.
For this purpose, we utilize the API provided by NVD1 and compare
the information retrieved from the API with the dataset. From the
7,696 vulnerability reports that we checked, we find that 30 of them
are no longer in use (e.g., no longer deemed a vulnerability, rejected
by NVD, etc.). After removing these entries, our dataset has 7,666
vulnerability reports.

2. Label Merging. Next, we check the labels of the remaining
7,666 vulnerability reports and find that there are labels that always
co-occur, which is a known problem in XML tasks [32, 51]. We
find that the majority of co-occurrences are between labels that are
closely related, such as gnome-session and gnome-shell. Therefore,
we merge the labels that always co-occur into a single label. For
1https://nvd.nist.gov/vuln/data-feeds

Figure 3: Distribution of the number of labels that the en-
tries are related to

example, the labels gnome-session and gnome-shell are merged into
gnome-session;gnome-shell. We merged a total of 1,865 labels, reduc-
ing the number of labels from 4,682 to 2,817. Figure 3 shows the
distribution of the number of labels per vulnerability.

3. Feature Engineering. From each vulnerability report, we use
its vulnerability description, references, and CPE configurations
for training the models. We perform the same preprocessing steps
as prior work [11]. While all three components are textual, we
preprocess the components differently:

• Description: From the description text, we remove non-alpha-
numeric characters and non-noun words. Non-alphanumeric
characters are removed using a regular expression. Mean-
while, we remove the non-noun words using the part-of-
speech tagging provided by NLTK [6] library. Following
Chen et al. [11] work, we also remove words that appear in
more than 30% of the vulnerability data (i.e., common words).
To do so, we use CountVectorizer from Scikit-Learn [36] to
count the occurrences of each word in the vulnerability data.

• References: We remove the non-alphanumeric characters
from references. As an example, consider the reference link
“http://secunia.com/advisories/59328” from CVE-2014-1533.
We replace non-alphanumeric characters with whitespace,
resulting in the following string: http secunia com
advisories 59328.

• CPE configurations: For each CPE configuration, we use a
regular expression based on the CPE format [7] to retrieve
the library names contained within the CPE. As an example,
consider the following CPE configuration for CVE-2014-1533:
cpe:2.3:a:mozilla:firefox:*:*:*:*:*:*. Using the reg-
ular expression, we retrieve the library name mozilla
firefox.

After preprocessing, we combine the text of the three compo-
nents into a single feature.

4

http://secunia.com/advisories/59328

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Automated Identification of Libraries from Vulnerability Data: Can We Do Better? ICPC 2022, May 21–22, 2022, Pittsburgh, PA, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

4. Train and Test Data Preparation. For a fair comparison
between the models, we use the same training and testing dataset.
Similar to Chen et al. [11], we use a 75%-25% split, where 75% of
the dataset forms the training dataset while the remaining 25%
forms the test dataset. As each instance in the dataset may have
multiple labels, we use iterative stratification [42, 45] to split the
dataset, which is recommended for experiments on multi-label
datasets [10, 43]. We use the scikit-multilearn’s implementation2 to
split the dataset. This results in a split where the training dataset
has 6,017 entries and the test dataset has 1,649 entries.

3.3 Experimental Setup
Through our experiments, we aim to evaluate the performance (to
answer RQ1) and efficiency (to answer RQ2) of the XML models. In
this section, we describe the device configuration and the evaluation
metrics used to assess the performance and efficiency of the model.

Device Configuration. All the model training and prediction
processes are done in a Docker environment running Ubuntu 18.04
with Intel(R) i7-10700K@ 3.8GHz, 64GB RAM, and 2 RTX 3070 GPU.
For the XML techniques which require deep learning (XML-CNN
and LightXML), we utilize the GPU for training. For the techniques
that do not require deep learning (FastXML, DiSEMC, Parabel, Bon-
sai, ExtremeText), we utilize all available CPU cores (8 cores).

Performance Metric. Following previous work [11], we eval-
uate the performance of a model through precision (P), recall (R),
and F1-score (F1) calculated for the top k (k=1,2,3) prediction re-
sults. In total, we have nine performance metrics: P@1, R@1, F1@1,
P@2, R@2, F1@2, P@3, R@3, and F1@3. These metrics are stan-
dard metrics used for the evaluation of XML tasks in prior stud-
ies [23, 26, 39, 40, 52]. Given the top-k prediction pred_k(vul) and the
actual labels label(vul) for a given vulnerability report, precision@k
and recall@k are defined as follow:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 (𝑣𝑢𝑙) = 𝑝𝑟𝑒𝑑_𝑘 (𝑣𝑢𝑙) ∩ 𝑙𝑎𝑏𝑒𝑙 (𝑣𝑢𝑙)
𝑘

𝑟𝑒𝑐𝑎𝑙𝑙@𝑘 (𝑣𝑢𝑙) = 𝑝𝑟𝑒𝑑_𝑘 (𝑣𝑢𝑙) ∩ 𝑙𝑎𝑏𝑒𝑙 (𝑣𝑢𝑙)
|𝑙𝑎𝑏𝑒𝑙 (𝑣𝑢𝑙) |

Then, we compute the average of the precision and recall calcu-
lated above to obtain the precision@k and recall@k that we use to
compare the performance between the XML techniques (n refers to
the number of data):

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 =
1
𝑛

𝑛∑
𝑣𝑢𝑙=1

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 (𝑣𝑢𝑙)

𝑟𝑒𝑐𝑎𝑙𝑙@𝑘 =
1
𝑛

𝑛∑
𝑣𝑢𝑙=1

𝑟𝑒𝑐𝑎𝑙𝑙@𝑘 (𝑣𝑢𝑙)

Finally, we calculate the F1-score@k by using the harmonic mean
of precision@k and recall@k.

𝐹1@𝑘 = 2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 × 𝑟𝑒𝑐𝑎𝑙𝑙@𝑘

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 + 𝑟𝑒𝑐𝑎𝑙𝑙@𝑘

EfficiencyMetric.To evaluate the efficiency of the XMLmodels,
we measure their execution time during training and prediction.
2http://scikit.ml/api/skmultilearn.model_selection.iterative_stratification.html

Table 1: FastXML training parameters

Parameter Value
Number of trees 64
Parallel jobs No. of CPUs
Max. leaf size 10
Max. labels per leaf 20
Re-split count 0
Subsampling data size 1 (no subsampling)
Sparse multiple 25
Random number seed 2016

Table 2: DiSMEC training parameters

Parameter Value

Solver type L2-regularized
L2-loss support vector classification

Bias 1
Cost 1
Learning batch 1000

The training time is measured from the start of the training process
until the trained model is saved to a file. For prediction time, we
measure the time required by the model to produce predictions for
the entire test dataset containing 1,649 vulnerability reports. Based
on this prediction time, we compute the average time required by
the model to produce predictions of the affected libraries for one
vulnerability report.

3.4 Model Implementation
Using the dataset that has been split into train and test data as
specified in Section 3.2, we perform experiments using seven dif-
ferent XML models. For the three tree-based models (i.e., FastXML,
Parabel, and Bonsai), the performance of the model may fluctuate
slightly due to the randomness in the clustering. To mitigate the
effect of randomness, we run the experiment ten times for each
tree-based model and report the average of the performance metrics.
For the one-vs-all and deep-learning based models, we construct
one model each as the performances of these models do not fluctu-
ate. For all models, we select parameters based on the parameters
reported in previous works. If more than one set of parameters
were reported, we pick the parameters used for experiments on
datasets that are most similar to our dataset by comparing the total
number of entries and labels.

FastXML. FastXML is a tree-based XML classifier, using trees to
represent hierarchies over the feature space. An ensemble of trees
are trained, and to build a tree, FastXML recursively partitions the
parent node by optimizing the normalized Discounted Cumulative
Gain (nDCG) as its ranking loss function. To perform prediction,
FastXML returns the ranked list of the most frequently occurring
labels in all the leaf nodes of the built trees ensemble. As the model
used for baseline comparison, we replicate the FastXML model used
by Chen et al. [11]. We use the model parameters that are listed in
their paper, which can be seen in Table 1.

5

http://scikit.ml/api/skmultilearn.model_selection.iterative_stratification.html

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICPC 2022, May 21–22, 2022, Pittsburgh, PA, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 3: Parabel and Bonsai model training parameters

Parameter Parabel Bonsai
Clustering function Balanced 2-means K-means
Cluster size 3 100
Num trees 3 3
Loss function hinge hinge
Maximum depth 20 20
Feature TF-IDF TF-IDF

Table 4: ExtremeText model training parameters

Parameter Value
Learning-rate 1.0
L2 regularization 0.001
Tree arity 2
Word vector size 100
Feature TF-IDF

DiSMEC. DiSMEC (Distributed Sparse Machines for Extreme
Multi-label Classification) [3] is a one-vs-all XML classifier that
uses a distributed learning mechanism for scalable one-vs-all model
training. DiSMEC employs a binary one-vs-rest framework to learn
the weight vector for each label. As the number of labels grows,
more weight vectors has to be learned.

For better performance, DiSMEC takes a distributed approach,
where labels are sent to training nodes in batches of 1,000. Within
each node, a batch is trained in parallel [8]. Using this distributed ap-
proach, DiSMEC achieves comparable training and prediction time
with tree-based XML classifiers (e.g. FastXML). In our experiments
on DiSMEC, we use the training parameters listed in Table 2. These
parameters were used for all experiments in the study proposing
DiSMEC [3].

Parabel. Parabel [39] combines a tree-based approach and a
one-vs-all approach. One-vs-all approaches tend to have higher pre-
diction accuracies compared to tree-based classifiers. On the other
hand, one-vs-all approaches have significantly higher training and
prediction cost compared to tree-based approaches. Parabel aims to
have a comparable training speed with tree-based approaches while
maintaining a similar accuracy to the one-vs-all XML approach.

Parabel learns up to three label trees by recursively partitioning
the labels into two balanced groups using balanced 2-means cluster-
ing. Each leaf node in a label tree is associated with a set of linear
one-vs-all classifiers, one for each label contained in the leaf. Each
non-leaf node within the tree is associated with binary classifiers
that decide whether the currently processed data should be passed
down to the left, right, or both child nodes. A piece of data may ar-
rive into multiple leaf nodes, where the one-vs-all classifiers predict
the corresponding labels for the given data. In our experiments, we
use the parameters shown in the second column of Table 3. These
parameters were used for all experiments in the study proposing
Parabel [39].

Bonsai. Bonsai [26] works similarly to Parabel, learning label
trees by partitioning the labels and having one-vs-all classifiers in
its leaf node. Different from Parabel’s deep and balanced tree, Bonsai

Table 5: XML-CNN model training parameters

Parameter Value
Dynamic max pooling [128, 128, 128]
Filter channel 128
Filter sizes [2, 2, 2]
Hidden dimensions 1024
Learning rate 0.003
Stride [2, 1, 1]
Feature TF-IDF

Table 6: LightXML training parameters

Parameter Value
Learning rate 0.00001
Epoch 30
Batch size 4
SWA warmup 10
SWA step 200

creates a diverse and shallow tree. This is done by setting the K
value of its K-means clustering to >2 (default to K=100 in the Bonsai
implementation) and dropping the balanced trees constraint. The
intuition behind the use of a shallow tree is to minimize the error
propagation due to the tree cascading effect. In our experiments
on Bonsai, we use the parameters shown in the third column of
Table 3. These parameters were also used in all experiments in the
study proposing Bonsai [26].

ExtremeText. ExtremeText (XT) [52] is a tree-based model that
is built on top of FastText [24], a text classification approach using
hierarchical softmax (HSM). XT extends FastText for XML problems
by utilizing probabilistic label trees (PLT) [22], which generalizes
HSM for multi-label classification. In building the PLT, XT uses
hierarchical clustering with recursive balanced k-means until the
size of the clusters are smaller than a given value (e.g., 100). This
clustering approach allows for similar labels to be located close to
one another within the tree. Each node in the tree is associated
with a logistic regression classifier. In our experiments, we use
the training parameters shown in Table 4, which are based on the
parameters used for the experiments on the EURLex-4K [33] dataset
in the study proposing XT [52].

XML-CNN. XML-CNN [29] is a deep learning approach for
XML. XML-CNN extends the CNN (Convolutional Neural Network)
proposed by Kim et al. [27]. To adapt the CNN architecture for
XML tasks, XML-CNNmakes some modifications in its architecture.
XML-CNN uses binary cross-entropy (BCE) loss function rather
than the sigmoid function, as they find that BCE loss is more suitable
for XML. XML-CNN adds a hidden bottleneck layer, which is a fully-
connected hidden layer between the pooling and output layer.

XML-CNN requires a validation dataset for training. Thus, to
train an XML-CNN model, we further split the training dataset
into 80% training data (4850 entries) and 20% validation data (1167
entries). The parameters that we use for the XML-CNN model are
listed in Table 5. These parameters were used in the experiments
in the study proposing XML-CNN [29].

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automated Identification of Libraries from Vulnerability Data: Can We Do Better? ICPC 2022, May 21–22, 2022, Pittsburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 7: Experiment result on the performance of various XML modeling techniques. The two models with the best perfor-
mance are highlighted in bold text. The average F1 is the arithmetic mean of F1@1, F1@2, and F1@3. Improve vs. FastXML
column shows the average F1-score improvement of the model compared to FastXML. The category column refers to the
category of the model based on Section 2.1.

Category Model P@1 R@1 F1@1 P@2 R@2 F1@2 P@3 R@3 F1@3 Avg. F1 Improve vs.
FastXML

One-vs-all DiSMEC 0.79 0.58 0.67 0.57 0.72 0.64 0.44 0.76 0.55 0.62 -3%
Deep learning XML-CNN 0.80 0.59 0.68 0.58 0.75 0.65 0.44 0.79 0.56 0.63 -1%
Tree-based FastXML 0.81 0.59 0.69 0.59 0.74 0.65 0.45 0.79 0.57 0.64 0%
Tree-based ExtremeText 0.84 0.63 0.72 0.59 0.77 0.67 0.45 0.82 0.58 0.66 3%
Tree-based Parabel 0.87 0.65 0.74 0.62 0.80 0.70 0.47 0.85 0.60 0.68 7%
Tree-based Bonsai 0.87 0.65 0.74 0.62 0.80 0.70 0.47 0.86 0.61 0.68 7%
Deep learning LightXML 0.88 0.66 0.75 0.64 0.82 0.72 0.49 0.87 0.63 0.70 10%

LightXML. LightXML [23] is a recent deep learning-based XML
approach that takes a transformer-based approach. LightXML is a
deep learning model which fine-tunes a transformer model with
dynamic negative label sampling. LightXML model consists of four
components: label clustering, text representation, label recalling,
and label ranking. First, the labels are clustered such that each
label belongs to one label cluster. Balanced 2-means clustering is
used to recursively partition the label sets to create the clusters.
Then, to obtain the text representation, LightXML uses transformer
models which embed raw text into a high dimensional represen-
tation. For this purpose, three pre-trained transformer models are
used: BERT [14], XLNet [53], and RoBERTa [30]. To reduce the
computational complexity associated with the use of transformers,
only the base model of each transformer is used (12 layers and 768
hidden dimensions). This text representation is the input of the
label recalling and label ranking components.

For label recalling and label ranking, LightXML uses generative
cooperative networks with dynamic negative label sampling. Label
recalling acts as the generator that dynamically samples positive
and negative labels. The label ranking part acts as the discriminator,
which can distinguish between positive and negative labels. Given
a raw text as an input, LightXML first takes the raw text input to
construct a representation. Using the text representation, the label
recalling component scores all label clusters and returns possible
labels. Finally, the label ranking component scores every label re-
turned by the label recalling component, obtaining the top-k labels.
For our LightXML model training, we use the parameters shown in
Table 6. These parameters are based on the parameters used in the
experiments on the EURLex-4k [33] dataset in the study proposing
LightXML [23].

4 RESULTS
Based on the experiment setup that we describe in Section 3.3, we
conduct our experiments on six different XML techniques (DiS-
MEC, Parabel, Bonsai, ExtremeText, XML-CNN, and LightXML).
We compare their results with the FastXML baseline that was used
in Chen et al. [11] study. The following subsections provide details
of the evaluation results on both the performance (RQ1) and the
efficiency (RQ2) of the XML techniques.

4.1 RQ1: Do deep learning-based models and
other recently proposed XML models
outperform FastXML?

The results of the performance evaluation for all XML techniques
are shown in Table 7. Based on the experiment results, we found that
all XML techniques other than DiSMEC and XML-CNN achieve
better results than FastXML on all the evaluation metrics. The
biggest performance improvement can be seen in the top-1 predic-
tion results, where ExtremeText, Parabel, Bonsai, and LightXML
achieve 5%, 8%, 8%, and 10% F1-score improvement respectively.
For the top-2 prediction results, ExtremeText, Parabel, Bonsai, and
LightXML achieve 3%, 7%, 7%, 9% F1-score improvement respec-
tively. For the top-3 prediction results, ExtremeText, Parabel, Bonsai,
and LightXML achieve 3%, 6%, 6%, and 10% F1-score improvement
respectively. Among the tested XML techniques, LightXML achieves
the highest improvement from the FastXML baseline.

While LightXML outperforms the other models in terms of effec-
tiveness, XML-CNN does not. Furthermore, the tree-based model,
Bonsai, has comparable performance to LightXML. This indicates
that deep learning methods do not always outperform tree-based
models. Future work should, therefore, still consider XML tech-
niques that use approaches other than deep learning-based tech-
niques.

Comparing the performance of the XML models with the CPE
matcher described in Section 2.2, we observe that all XML models
achieve better performance. Even the worst performing XMLmodel,
DiSMEC, with an average F1-score of 0.62, outperforms the CPE
matcher which achieves an average F1-score of only 0.24 based on
Chen et al.’s [11] evaluation. This highlights that the use of machine
learning approaches significantly improves accuracy in predicting
affected libraries from vulnerability reports.

Apart from DiSMEC and XML-CNN, the other XML models out-
perform FastXML. Both the best-performing deep learning-based
approach and tree-based approach obtain improvements of 5%
– 10% over FastXML. The transformer-based LightXML has the
greatest F1-score improvement of 10%.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ICPC 2022, May 21–22, 2022, Pittsburgh, PA, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 8: Execution time for the training and prediction of
the XML models

Model Train (s) Prediction (s) Avg. Pred. (ms)
Parabel 0.47 0.63 0.38
Bonsai 0.50 0.64 0.39
DiSMEC 24.28 2.55 0.58
ExtremeText 43.64 0.67 1.55
XML-CNN 90.34 3.24 1.96
FastXML 294.75 8.01 4.86
LightXML 15,378.65 103.72 62.90

4.2 RQ2: How efficient are the different XML
techniques?

It is important that the trained XML models are efficient enough for
practical application. The results of the efficiency evaluation for the
XML techniques are shown in Table 8. All techniques, apart from
LightXML, have a shorter training time compared to the baseline
FastXML. In terms of prediction time, only one model, LightXML,
requires a longer time to produce its predictions than FastXML.
XML-CNN achieves 3x faster training time and 2x faster prediction
time than FastXML, while ExtremeText achieves 6x faster training
time and 11x faster prediction time. To train LightXML, over 15,378
seconds (4.27 hours) are required, which is higher than the 294
seconds required for training FastXML. Despite the decrease in effi-
ciency, LightXML can be trained in several hours and is, therefore,
still practical to be deployed for practical use. The LightXML model
can be retrained overnight whenever a change in data distribution
is observed (e.g. the model’s effectiveness begins to drop).

The biggest improvements over FastXML can be seen in Parabel
and Bonsai, which have similar training and prediction times. It
takes less than a second to train both Parabel and Bonsai. Specifi-
cally, Parabel takes 0.47 seconds while Bonsai takes 0.50 seconds.
These training times are equal to 627x and 589x faster training
time over FastXML respectively. For prediction, Parabel takes 0.63
seconds while Bonsai takes 0.64 seconds, 12x faster than FastXML.

We also compute the average time required to predict the li-
braries of one vulnerability report in the test data. All of the XML
models have an average prediction time of less than one second.
Parabel achieves the fastest prediction time of 0.38 milliseconds for
a vulnerability report. Meanwhile, LightXML requires the longest
prediction time of 62.90 milliseconds for a vulnerability report, 13x
more than the prediction time of FastXML model. All considered
XML models, including LightXML, are practical as they produce
predictions for a single vulnerability report in a fraction of a second.

Overall, the considered XML models are all practical for use in
terms of efficiency. Apart from LightXML, all models have better
efficiency than FastXML in both training and prediction time.
LightXML underperforms all other models, requiring training
time that is two orders of magnitude greater than FastXML. In
turn, FastXML is an order of magnitude less efficient than the
other five models. All models require just a fraction of a second
for the average prediction time of one vulnerability report.

Figure 4: The number of occurrences of the labels in the
dataset.

5 DISCUSSION
5.1 Lessons Learned
Transformer-based deep learning model achieves the best
performance but is less efficient. Based on the experimental re-
sults described in Section 4, we find that among the tested XML
techniques, LightXML is the best-performing model. Our results
are consistent with other studies in text classification in multiple
tasks, in which transformer-based models outperform other mod-
els [1, 35, 49, 54]. However, the improvements in the effectiveness
are not without a cost. Transformer-based models require more
computational resources and take more time for both training and
prediction. This limitation can be seen in the training and predic-
tion time of LightXML that is shown in the last row of Table 8.
LightXML takes 15,378.65 seconds (4 hours 16 minutes, and 18.65
seconds) for training and 103.72 seconds (1 minute 43.72 seconds)
for making 1,649 predictions. This is greater than the training and
prediction times of other XML models. For example, Bonsai takes
less than one second for both training and prediction.

Knowing this characteristic of the transformer-based model, sev-
eral considerations can be made when choosing an XML model.
If short training and prediction time is important, then it may be
better to use a tree-based model, such as Bonsai, which achieves
only slightly worse performance than LightXML but has higher
efficiency. Meanwhile, if time and computational resources are not
a problem, the transformer-based model achieves the best perfor-
mance. In the future, another possible approach is to reduce the
required resource and time of the transformer model. LightXML
utilize three transformer models, namely BERT [14], RoBERTa [30],
and XLNet [53]. It is possible to either reduce the number of trans-
former models used (e.g., only using one transformer model such
as BERT) or to use lightweight transformer models that have been
proposed by recent studies [16, 31, 44].

Ease of predicting the tail labels. Prior studies [26, 48] raised
the problem that improvements in the effectiveness of better XML
models may come only from the better prediction of the labels
with a large number of training data (the head labels), while still
performing poorly on the labels with a small number of training

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Automated Identification of Libraries from Vulnerability Data: Can We Do Better? ICPC 2022, May 21–22, 2022, Pittsburgh, PA, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

Figure 5: Top-1 prediction differences and intersections be-
tween FastXML and LightXML model.

data (the tail labels). This is undesirable in a practical setting with
real-world implications, such as our task. Therefore, it is important
to understand the data associated with the tail labels.

In our analysis of the dataset, we find that a total of 3,188 labels
(68.1%) have less than 4 entries in the dataset, i.e., tail labels. As
such, it may be challenging for machine learning algorithms to train
good models that accurately predict many labels due to the low
amount of training data for the tail labels. The distribution of the
label occurrence of the dataset can be seen in Figure 4. Moreover,
considering the large proportion of labels with limited examples
(78.1% labels have four or less examples), prior studies [11, 29] have
suggested that deep learning-based approaches may not be suitable
due to data scarcity and the lack of training data for the tail labels.
However, our experiments have been surprising; the results of our
experiments show that recent models, including the deep learning-
based LightXML, achieve high effectiveness. This suggests that the
problem of tail labels did not hinder the XML models in our task of
identifying relevant libraries.

To understand this phenomenon, we analyze a subset of data
where the labels occur four or less times, i.e., the tail labels, in the
dataset. We find that vulnerabilities associated with libraries that
appear four or less times in the dataset are more likely to have a
vulnerability description that explicitly mentions at least one of
the affected library names, which can be learned as highly discrim-
inative features by the XML models. Out of 2,642 vulnerabilities,
2,191 (83%) of them contain an explicit mention of the library in the
vulnerability report. This is a higher proportion than the libraries
that appear more than four times; out of 5,024 vulnerabilities, 3,726
(74%) of them contain an explicit mention of the library. Using a Chi-
Square test to compare the distributions, we obtain a Chi-Square
statistic of over 75.5 and p-value less than 0.05, indicating that the
distributions of library mentions of frequently appearing libraries
differ from that of libraries uncommonly seen in the dataset. In
other words, library names are more likely to appear in the text of
vulnerability reports describing uncommon libraries.

Still, if a machine learning approach, which typically requires
many examples for training [15, 41], does not encounter a label
in the training dataset, it cannot correctly predict the label when
the model is deployed. As such, an XML model is limited by its
inability to correctly predict a previously unseen library affected
by a vulnerability. This is a challenge that should be addressed by
future work.

OnhowLightXMLachieves better prediction accuracy.We
conduct a deeper analysis on the prediction results of the XMLmod-
els to get a better understanding of the more accurate predictions
provided by the recent XML models. In particular, we compare the
predictions of the baseline FastXMLmodel against the best perform-
ing LightXMLmodel. Figure 5 shows a Venn diagram comparing the
top-1 predictions of bothmodels. There are 164 vulnerability reports
where LightXML provides a correct prediction while FastXML does
not. On the other hand, there are 41 vulnerability reports where
FastXML provides a correct prediction while LightXML does not.
We further analyze these cases to get a better understanding of the
XML models.

First, we analyze the 164 vulnerability reports for which the
affected libraries are correctly predicted only by LightXML. We
find that FastXML produces frequently occurring labels for the
164 vulnerability reports. FastXML incorrectly predicts 49 (30%)
of them with ImageMagick library, 15 (9%) of them with firefox
library, and 15 (9%) of them with kernel-rt library. These three
libraries are some of the most frequently-occurring libraries within
our dataset, with ImageMagick, firefox, and kernel-rt occurring
in 5.2% (the most common label), 5.1% (the second most common
label), and 3.8% (the fourth most common label) of the CVE entries
respectively. Thismay indicate that FastXML defaulted to predicting
the most frequent libraries on these vulnerability reports, which
suggests that it did not manage to extract discriminating features
from them.

Then, we analyze the 41 entries that are correctly predicted
by FastXML but not by LightXML. We observe that most of the
failures are caused by LightXML predicting other libraries that are
related to the actual affected library. Consider CVE-2014-6468 and
CVE-2015-0437. Both vulnerabilities affect java-1.8.0-openjdk.
However, LightXML predicts java-1.6.0-ibm, which is a different
version of the java library, instead. These cases account for 16
of the 41 (39%) failed prediction cases. We further analyze the 194
vulnerability reports where LightXML is unable to provide a correct
top-1 prediction. We find a similar finding, where 93 out of the 194
(48%) incorrect top-1 predictions are due to LightXML predicting
related libraries.

5.2 Future Directions
While using more sophisticated XML techniques have led to im-
provements, there are still vulnerability reports with affected li-
braries that were not correctly predicted by the techniques. We
outline challenges and directions for future work:

Similar features with different labels. The features used for
classification are extracted from the description, reference URLs,
and CPE configuration of the vulnerability reports. We find that
there are vulnerability reports with similar features but have differ-
ent labels. An example is the vulnerability report of CVE-2014-1568.
This vulnerability affects three libraries, namely nss, nss-softokn,
and nss-util. However, LightXML and Bonsai identify firefox, thun-
derbird, and nss as the 3 most related labels. Upon investigation, we
observe that the features of the report are similar to other reports
of vulnerabilities affecting firefox and thunderbird. To check this
hypothesis, we extract the term frequency - inverse document fre-
quency (TF-IDF) vectors from our dataset using Scikit-Learn [36]

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ICPC 2022, May 21–22, 2022, Pittsburgh, PA, USA Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

gopivotal resources directory traversal vulnerability resources
grails attackers information vectors issue split cve vulnerability
types securityfocus http archives archives fulldisclosure html
http www com security cve 0053

Figure 6: Extracted feature for CVE-2014-2858

library.3 Then, we compare the similarity of CVE-2014-1568’s vec-
tors with other vulnerability reports’ vectors. We compute the
cosine similarity of two vectors and rank the reports by their simi-
larity. We find that the features that are most similar to this report
are taken from CVE-2014-1574 and CVE-2014-1590 with 0.70 cosine
similarity. Both vulnerabilities affect firefox and thunderbird. Since
the vulnerability reports have similar features, the XML models are
unable to distinguish between their labels.

One solution to mitigate this problem is to incorporate other
sources of data to extract features from. The above example suggests
that the vulnerability report alone may not be informative enough
to distinguish between vulnerability reports of different libraries,
pointing at the need to consider other data beyond the vulnerability
report.

Lack of quality features.After analysis, we also find that some
reports have more details (e.g., more reference URLs) and more
verbose descriptions than others. When the vulnerability reports
lack informative features, the XML model is unable to identify the
correct library. An example of this is CVE-2014-2858. The features
extracted from the vulnerability report are shown in Figure 6. None
of the features provide enough information to correctly infer the
affected libraries.

Similar to the problem of similar features with different labels
(described in the prior point), we suggest considering other types of
features extracted from other sources of data. A possible new source
of information is to collect data from the webpages referenced by
the reference URLs rather than processing the URLs as text.

Libraries that rarely appear in the training data. Data spar-
sity hinders the effectiveness of machine learning techniques. In
machine learning, having more training data often improves accu-
racy and generalizability [4, 20]. To alleviate this problem, future
work can explore techniques from the ML field that target the lack
of data, such as the use of data augmentation [13, 50, 58] to create
artificial data from existing data.

In our application of predicting relevant libraries from vulnerabil-
ity reports, one potential challenge is that the models will encounter
vulnerabilities affecting libraries that were not previously seen by
the XML model. One possible direction is to build on our finding
that vulnerability reports may include explicit mention of uncom-
mon library names. This challenge is related to the problem of
“Out-of-Vocabulary” words [25]. A solution is to use techniques
from the Natural Language Processing (NLP) domain, such as the
Copy mechanism [18] from recent Deep Learning models, which
learns to repeat important terms from the input text (in our case,
the vulnerability report) even when the term has not been seen
before.

3https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.T
fidfVectorizer.html

5.3 Threats to Validity
Threats to internal validity. Threats to internal validity relate
to the possibility of errors in our implementation. To mitigate this
risk, we have provided the detailed training parameters of the XML
models in our experiments. We have also made our code publicly
available in the following link: https://github.com/automated-
library/ICPC_2022_Automated-Identification-of-Libraries-from-
Vulnerability-Data Using the parameters and the available code,
other researchers can replicate our work and confirm our findings.

Threats to construct validity. Threats to construct validity
relate to the suitability of our evaluation metrics. For performance
evaluation, the metrics that we use are precision, recall, and F1-
score from the top-k prediction (k=1,2,3). These metrics are the
same as used in prior work [11]. For the efficiency evaluation, we
use the same metrics, the training and prediction time of the XML
models, as prior works on XML [23, 29, 39]. As we use the same
metrics as prior works, we believe that this threat is minimal.

Threats to external validity. Threats to external validity re-
late to the generalizability of our findings. In this study, we utilize
the dataset by the prior study of Chen et al. [11], which contains
7,696 vulnerability reports and their labels. These vulnerability re-
ports were curated and verified by security researchers in Veracode.
Moreover, the reports are collected from NVD entries over a long
time period between 2002 to 2019. Thus, we believe that this threat
is minimal.

6 CONCLUSION AND FUTUREWORK
An essential part of software composition analysis (SCA) is the iden-
tification of the relevant libraries from a vulnerability report, which
may not explicitly indicate them. A previous study has framed the
problem as an extreme multi-label classification problem, in which
machine learning approaches are used to predict affected libraries
from the reports. We assess the effectiveness and efficiency of six
XML models. These models are chosen as they have exhibited im-
proved performance over FastXML, a baseline proposed in prior
work, in other XML tasks.

We find that all models, including deep learning-based models,
were effective. Specifically, we find that the Bonsai tree-based model
and the LightXML transformer-based model achieve 7% and 10%
average F1-score improvements over the baseline FastXML model
respectively. We find that all XML models are highly practical, as
each vulnerability report can be predicted in less than 100 mil-
liseconds. Apart from the transformer-based LightXML, all models
improve over FastXML in training and prediction time, with Bonsai
and Parabel achieving the biggest improvement of 627x and 589x
for training time, and 12x faster prediction time.

We analyze the performance of themodels and discuss challenges
and future directions regarding the use of XML on this task. Many
vulnerability reports of different libraries do not contain sufficient
detail to be distinguished from one another, suggesting that future
work explore other sources of information beyond NVD.

10

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://github.com/automated-library/ICPC_2022_Automated-Identification-of-Libraries-from-Vulnerability-Data
https://github.com/automated-library/ICPC_2022_Automated-Identification-of-Libraries-from-Vulnerability-Data
https://github.com/automated-library/ICPC_2022_Automated-Identification-of-Libraries-from-Vulnerability-Data

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Automated Identification of Libraries from Vulnerability Data: Can We Do Better? ICPC 2022, May 21–22, 2022, Pittsburgh, PA, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

REFERENCES
[1] Mohammed Ali Al-Garadi, Y.-C. Yang, H. Cai, Yucheng Ruan, Karen O’Connor,

Graciela Gonzalez-Hernandez, Jeanmarie Perrone, and A. Sarker. 2020. Text
Classification Models for the Automatic Detection of Nonmedical Prescription
Medication Use from Social Media. medRxiv (2020).

[2] Mahmoud Alfadel, Diego Elias Costa, and Emad Shihab. 2021. Empirical Anal-
ysis of Security Vulnerabilities in Python Packages. In 2021 IEEE International
Conference on Software Analysis, Evolution and Reengineering (SANER). 446–457.
https://doi.org/10.1109/SANER50967.2021.00048

[3] Rohit Babbar and Bernhard Schölkopf. 2017. DiSMEC: Distributed Sparse Ma-
chines for Extreme Multi-Label Classification. In Proceedings of the Tenth ACM
International Conference on Web Search and Data Mining (Cambridge, United
Kingdom) (WSDM ’17). Association for Computing Machinery, New York, NY,
USA, 721–729. https://doi.org/10.1145/3018661.3018741

[4] Michele Banko and Eric Brill. 2001. Scaling to Very Very Large Corpora for Natural
Language Disambiguation. In Proceedings of the 39th Annual Meeting on Associa-
tion for Computational Linguistics (Toulouse, France) (ACL ’01). Association for
Computational Linguistics, USA, 26–33. https://doi.org/10.3115/1073012.1073017

[5] Kush Bhatia, Himanshu Jain, Purushottam Kar, Manik Varma, and Prateek Jain.
2015. Sparse Local Embeddings for Extreme Multi-Label Classification. In Pro-
ceedings of the 28th International Conference on Neural Information Processing
Systems - Volume 1 (Montreal, Canada) (NIPS’15). MIT Press, Cambridge, MA,
USA, 730–738.

[6] Steven Bird, Ewan Klein, and Edward Loper. 2009. Natural Language Processing
with Python (1st ed.). O’Reilly Media, Inc.

[7] Andrew Buttner, Todd Wittbold, and Neal Ziring. 2007. Common Platform Enu-
meration (CPE)-Name Format and Description. Technical Report. NATIONAL
SECURITY AGENCY/CENTRAL SECURITY SERVICE FORT MEADE MD FORT
MEADE

[8] Robit Chandra, Leonardo Dagum, Dave Kohr, Dror Maydan, Jeff McDonald, and
Ramesh Menon. 2001. Parallel Programming in OpenMP. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

[9] Wei-Cheng Chang, Hsiang-Fu Yu, Kai Zhong, Yiming Yang, and Inderjit Dhillon.
2020. Taming Pretrained Transformers for ExtremeMulti-label Text Classification.
In KDD ’20: The 26th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining. 3163–3171. https://doi.org/10.1145/3394486.3403368

[10] Francisco Charte, Antonio Rivera, María José del Jesus, and Francisco Herrera.
2016. On the impact of dataset complexity and sampling strategy in multilabel
classifiers performance. In International conference on hybrid artificial intelligence
systems. Springer, 500–511.

[11] Yang Chen, Andrew E. Santosa, Asankhaya Sharma, and David Lo. 2020. Au-
tomated Identification of Libraries from Vulnerability Data (ICSE-SEIP ’20).
Association for Computing Machinery, New York, NY, USA, 90–99. https:
//doi.org/10.1145/3377813.3381360

[12] Yang Chen, Andrew E. Santosa, Ang Ming Yi, Abhishek Sharma, Asankhaya
Sharma, and David Lo. 2020. A Machine Learning Approach for Vulnerability
Curation. In Proceedings of the 17th International Conference on Mining Software
Repositories (Seoul, Republic of Korea) (MSR ’20). Association for Computing
Machinery, New York, NY, USA, 32–42. https://doi.org/10.1145/3379597.3387461

[13] Xiaodong Cui, Vaibhava Goel, and Brian Kingsbury. 2015. Data Augmentation
for Deep Neural Network Acoustic Modeling. IEEE/ACM Transactions on Audio,
Speech, and Language Processing 23, 9 (2015), 1469–1477. https://doi.org/10.1109/
TASLP.2015.2438544

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
NAACL.

[15] Simon Shaolei Du, Yining Wang, Xiyu Zhai, Sivaraman Balakrishnan, Ruslan
Salakhutdinov, and Aarti Singh. 2018. HowMany Samples are Needed to Estimate
a Convolutional Neural Network?. In NeurIPS.

[16] Prakhar Ganesh, Yao Chen, Xin Lou, Mohammad Ali Khan, Y. Yang, Deming
Chen, Marianne Winslett, Hassan Sajjad, and Preslav Nakov. 2021. Compressing
Large-Scale Transformer-Based Models: A Case Study on BERT. Transactions of
the Association for Computational Linguistics 9 (2021), 1061–1080.

[17] Antonios Gkortzis, Daniel Feitosa, and Diomidis Spinellis. 2021. Software
reuse cuts both ways: An empirical analysis of its relationship with security
vulnerabilities. Journal of Systems and Software 172 (2021), 110653. https:
//doi.org/10.1016/j.jss.2020.110653

[18] Jiatao Gu, Zhengdong Lu, Hang Li, and Victor OK Li. 2016. Incorporating Copying
Mechanism in Sequence-to-Sequence Learning. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
1631–1640.

[19] Nilesh Gupta, Sakina Bohra, Yashoteja Prabhu, Saurabh Purohit, and Manik
Varma. 2021. Generalized Zero-Shot ExtremeMulti-Label Learning. In Proceedings
of the 27th ACM SIGKDDConference on Knowledge Discovery DataMining (Virtual
Event, Singapore) (KDD ’21). Association for Computing Machinery, New York,
NY, USA, 527–535. https://doi.org/10.1145/3447548.3467426

[20] Alon Halevy, Peter Norvig, and Fernando Pereira. 2009. The Unreasonable
Effectiveness of Data. Intelligent Systems, IEEE 24 (05 2009), 8 – 12. https:

//doi.org/10.1109/MIS.2009.36
[21] Himanshu Jain, Yashoteja Prabhu, and Manik Varma. 2016. Extreme Multi-Label

Loss Functions for Recommendation, Tagging, Ranking Other Missing Label
Applications. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (San Francisco, California, USA) (KDD
’16). Association for Computing Machinery, New York, NY, USA, 935–944.

[22] Kalina Jasinska, Krzysztof Dembczynski, Róbert Busa-Fekete, Karlson
Pfannschmidt, Timo Klerx, and Eyke Hüllermeier. 2016. Extreme F-Measure
Maximization Using Sparse Probability Estimates. In Proceedings of the 33rd
International Conference on International Conference on Machine Learning -
Volume 48 (New York, NY, USA) (ICML’16). JMLR.org, 1435–1444.

[23] Ting Jiang, Deqing Wang, Leilei Sun, Huayi Yang, Zhengyang Zhao, and Fuzhen
Zhuang. 2021. LightXML: Transformer with Dynamic Negative Sampling for
High-Performance Extreme Multi-label Text Classification. Proceedings of the
AAAI Conference on Artificial Intelligence 35 (May 2021), 7987–7994.

[24] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. 2017. Bag
of Tricks for Efficient Text Classification. In Proceedings of the 15th Conference of
the European Chapter of the Association for Computational Linguistics: Volume 2,
Short Papers. Association for Computational Linguistics, Valencia, Spain, 427–
431.

[25] Rafael-Michael Karampatsis, Hlib Babii, Romain Robbes, Charles Sutton, and An-
drea Janes. 2020. Big code!= big vocabulary: Open-vocabulary models for source
code. In 2020 IEEE/ACM 42nd International Conference on Software Engineering
(ICSE). IEEE, 1073–1085.

[26] Sujay Khandagale, Han Xiao, and Rohit Babbar. 2020. Bonsai: diverse and shallow
trees for extreme multi-label classification. Machine Learning 109 (11 2020).
https://doi.org/10.1007/s10994-020-05888-2

[27] Yoon Kim. 2014. Convolutional Neural Networks for Sentence Classification.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computational Linguistics, Doha, Qatar,
1746–1751. https://doi.org/10.3115/v1/D14-1181

[28] Qiang Li, Jinke Song, Dawei Tan, Haining Wang, and Jiqiang Liu. 2021. PDGraph:
A Large-Scale Empirical Study on Project Dependency of Security Vulnerabilities.
In 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). 161–173. https://doi.org/10.1109/DSN48987.2021.00031

[29] Jingzhou Liu, Wei-Cheng Chang, Yuexin Wu, and Yiming Yang. 2017. Deep
Learning for Extreme Multi-Label Text Classification. In Proceedings of the 40th
International ACM SIGIR Conference on Research and Development in Information
Retrieval (Shinjuku, Tokyo, Japan) (SIGIR ’17). Association for Computing Ma-
chinery, New York, NY, USA, 115–124. https://doi.org/10.1145/3077136.3080834

[30] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A
Robustly Optimized BERT Pretraining Approach. ArXiv abs/1907.11692 (2019).

[31] Yihuan Mao, Yujing Wang, Chufan Wu, Chen Zhang, Yang Wang, Yaming Yang,
Quanlu Zhang, Yunhai Tong, and Jing Bai. 2020. LadaBERT: Lightweight Adap-
tation of BERT through Hybrid Model Compression. In COLING.

[32] Mark Marsden, Kevin McGuinness, Joseph Antony, Haolin Wei, Milan D. Redzic,
Jian Tang, Zhilan Hu, Alan F. Smeaton, and Noel E. O’Connor. 2020. Investigating
Class-Level Difficulty Factors In Multi-Label Classification Problems. 2020 IEEE
International Conference on Multimedia and Expo (ICME) (2020), 1–6.

[33] Eneldo Loza Mencía and Johannes Fürnkranz. 2008. Efficient Pairwise Multilabel
Classification for Large-Scale Problems in the Legal Domain. In ECML/PKDD.

[34] Na Meng, Stefan Nagy, Danfeng (Daphne) Yao, Wenjie Zhuang, and Gus-
tavo Arango Argoty. 2018. Secure Coding Practices in Java: Challenges and
Vulnerabilities. In Proceedings of the 40th International Conference on Software
Engineering (Gothenburg, Sweden) (ICSE ’18). Association for Computing Ma-
chinery, New York, NY, USA, 372–383. https://doi.org/10.1145/3180155.3180201

[35] Shervin Minaee, Nal Kalchbrenner, Erik Cambria, Narjes Nikzad, Meysam
Chenaghlu, and Jianfeng Gao. 2021. Deep Learning–Based Text Classification:
A Comprehensive Review. ACM Comput. Surv. 54, 3, Article 62 (April 2021),
40 pages.

[36] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. Journal
of machine learning research 12, Oct (2011), 2825–2830.

[37] Nam H. Pham, Tung Thanh Nguyen, Hoan Anh Nguyen, and Tien N. Nguyen.
2010. Detection of Recurring Software Vulnerabilities. In Proceedings of the
IEEE/ACM International Conference on Automated Software Engineering (Antwerp,
Belgium) (ASE ’10). Association for Computing Machinery, New York, NY, USA,
447–456. https://doi.org/10.1145/1858996.1859089

[38] Serena Elisa Ponta, Henrik Plate, and Antonino Sabetta. 2020. Detection, assess-
ment and mitigation of vulnerabilities in open source dependencies. Empirical
Software Engineering (2020), 1–41.

[39] Yashoteja Prabhu, Anil Kag, Shrutendra Harsola, Rahul Agrawal, and Manik
Varma. 2018. Parabel: Partitioned Label Trees for Extreme Classification with
Application to Dynamic Search Advertising. InWWW ’18: Proceedings of the 2018
World Wide Web Conference. 993–1002. https://doi.org/10.1145/3178876.3185998

11

https://doi.org/10.1109/SANER50967.2021.00048
https://doi.org/10.1145/3018661.3018741
https://doi.org/10.3115/1073012.1073017
https://doi.org/10.1145/3394486.3403368
https://doi.org/10.1145/3377813.3381360
https://doi.org/10.1145/3377813.3381360
https://doi.org/10.1145/3379597.3387461
https://doi.org/10.1109/TASLP.2015.2438544
https://doi.org/10.1109/TASLP.2015.2438544
https://doi.org/10.1016/j.jss.2020.110653
https://doi.org/10.1016/j.jss.2020.110653
https://doi.org/10.1145/3447548.3467426
https://doi.org/10.1109/MIS.2009.36
https://doi.org/10.1109/MIS.2009.36
https://doi.org/10.1007/s10994-020-05888-2
https://doi.org/10.3115/v1/D14-1181
https://doi.org/10.1109/DSN48987.2021.00031
https://doi.org/10.1145/3077136.3080834
https://doi.org/10.1145/3180155.3180201
https://doi.org/10.1145/1858996.1859089
https://doi.org/10.1145/3178876.3185998

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

ICPC 2022, May 21–22, 2022, Pittsburgh, PA, USA Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

[40] Yashoteja Prabhu and Manik Varma. 2014. FastXML: a fast, accurate and stable
tree-classifier for extreme multi-label learning. Proceedings of the 20th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD)
(2014).

[41] Franco Scarselli, Ah Chung Tsoi, and Markus Hagenbuchner. 2018. The Vap-
nik–Chervonenkis dimension of graph and recursive neural networks. Neural
Networks 108 (2018), 248–259. https://doi.org/10.1016/j.neunet.2018.08.010

[42] Konstantinos Sechidis, Grigorios Tsoumakas, and Ioannis Vlahavas. 2011. On
the stratification of multi-label data. Machine Learning and Knowledge Discovery
in Databases (2011), 145–158.

[43] Konstantinos Sechidis, Grigorios Tsoumakas, and Ioannis Vlahavas. 2011. On
the stratification of multi-label data. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases. Springer, 145–158.

[44] Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny
Zhou. 2020. MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited
Devices. ArXiv abs/2004.02984 (2020).

[45] Piotr Szymański and Tomasz Kajdanowicz. 2017. A Network Perspective on Strat-
ification of Multi-Label Data. In Proceedings of the First International Workshop
on Learning with Imbalanced Domains: Theory and Applications (Proceedings of
Machine Learning Research, Vol. 74), Luís Torgo, Bartosz Krawczyk, Paula Branco,
and Nuno Moniz (Eds.). PMLR, ECML-PKDD, Skopje, Macedonia, 22–35.

[46] Yukihiro Tagami. 2017. AnnexML: Approximate Nearest Neighbor Search for
Extreme Multi-Label Classification. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (Halifax, NS,
Canada) (KDD ’17). Association for Computing Machinery, New York, NY, USA,
455–464. https://doi.org/10.1145/3097983.3097987

[47] Morteza Verdi, Ashkan Sami, Jafar Akhondali, Foutse Khomh, Gias Uddin, and
Alireza Karami Motlagh. 2020. An Empirical Study of C++ Vulnerabilities in
Crowd-Sourced Code Examples. IEEE Transactions on Software Engineering (2020),
1–1. https://doi.org/10.1109/TSE.2020.3023664

[48] Tong Wei and Yu-Feng Li. 2019. Does Tail Label Help for Large-Scale Multi-Label
Learning? IEEE transactions on neural networks and learning systems 31, 7 (2019),
2315–2324.

[49] ThomasWolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
AnthonyMoi, Pierric Cistac, Tim Rault, R’emi Louf, Morgan Funtowicz, and Jamie
Brew. 2019. HuggingFace’s Transformers: State-of-the-art Natural Language

Processing. ArXiv abs/1910.03771 (2019).
[50] Sebastien C. Wong, Adam Gatt, Victor Stamatescu, and Mark D. McDonnell. 2016.

Understanding Data Augmentation for Classification: When to Warp?. In 2016
International Conference on Digital Image Computing: Techniques and Applications
(DICTA). 1–6. https://doi.org/10.1109/DICTA.2016.7797091

[51] TongWu, Qingqiu Huang, Ziwei Liu, YuWang, and Dahua Lin. 2020. Distribution-
Balanced Loss for Multi-Label Classification in Long-Tailed Datasets. In ECCV.

[52] Marek Wydmuch, Kalina Jasinska, Mikhail Kuznetsov, Róbert Busa-Fekete, and
Krzysztof Dembczyński. 2018. A No-Regret Generalization of Hierarchical Soft-
max to ExtremeMulti-Label Classification. In Proceedings of the 32nd International
Conference on Neural Information Processing Systems (Montréal, Canada) (NIPS’18).
Curran Associates Inc., Red Hook, NY, USA, 6358–6368.

[53] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan Salakhutdi-
nov, and Quoc V. Le. 2019. XLNet: Generalized Autoregressive Pretraining for
Language Understanding. In NeurIPS.

[54] Andrew Yates, Rodrigo Nogueira, and Jimmy Lin. 2021. Pretrained Transformers
for Text Ranking: BERT and Beyond. In Proceedings of the 14th ACM International
Conference on Web Search and Data Mining (Virtual Event, Israel) (WSDM ’21).
Association for Computing Machinery, New York, NY, USA, 1154–1156.

[55] Ian E.H. Yen, Xiangru Huang, Wei Dai, Pradeep Ravikumar, Inderjit Dhillon,
and Eric Xing. 2017. PPDsparse: A Parallel Primal-Dual Sparse Method for
Extreme Classification. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (Halifax, NS, Canada) (KDD
’17). Association for Computing Machinery, New York, NY, USA, 545–553. https:
//doi.org/10.1145/3097983.3098083

[56] Ian E. H. Yen, Xiangru Huang, Kai Zhong, Pradeep Ravikumar, and Inderjit S.
Dhillon. 2016. PD-Sparse: A Primal and Dual Sparse Approach to Extreme
Multiclass and Multilabel Classification. In Proceedings of the 33rd International
Conference on International Conference on Machine Learning - Volume 48 (New
York, NY, USA) (ICML’16). JMLR.org, 3069–3077.

[57] Ronghui You, Zihan Zhang, Ziye Wang, Suyang Dai, Hiroshi Mamitsuka, and
Shanfeng Zhu. 2019. AttentionXML: Label Tree-based Attention-Aware Deep
Model for High-Performance ExtremeMulti-Label Text Classification. InNeurIPS.

[58] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. 2017. Random
Erasing Data Augmentation. Proceedings of the AAAI Conference on Artificial
Intelligence 34 (08 2017). https://doi.org/10.1609/aaai.v34i07.7000

12

https://doi.org/10.1016/j.neunet.2018.08.010
https://doi.org/10.1145/3097983.3097987
https://doi.org/10.1109/TSE.2020.3023664
https://doi.org/10.1109/DICTA.2016.7797091
https://doi.org/10.1145/3097983.3098083
https://doi.org/10.1145/3097983.3098083
https://doi.org/10.1609/aaai.v34i07.7000

	Abstract
	1 Introduction
	2 Background
	2.1 Extreme Multi-Label Classification
	2.2 Existing Approaches for Library Identification from Vulnerability Report

	3 Methodology
	3.1 Dataset
	3.2 Data Preparation
	3.3 Experimental Setup
	3.4 Model Implementation

	4 Results
	4.1 RQ1: Do deep learning-based models and other recently proposed XML models outperform FastXML?
	4.2 RQ2: How efficient are the different XML techniques?

	5 Discussion
	5.1 Lessons Learned
	5.2 Future Directions
	5.3 Threats to Validity

	6 Conclusion and Future Work
	References

