Agentic Al Workflows
for DevOps

Asankhaya Sharma

When do you
thlnk AI W|” Wr|te A. Less than 5 Years
B. More than 5 Years

Of a” neW C. Never
code?

Al may automate software
development :

AT Agenca

The ‘Magic’ Breakthrough That Got Friedman and
Gross to Bet $100 Million on a Coding Startup

Devin: Al Software Engineer that Codes Entire Projects

from Single Prompt

Devin, an autonomous Al ager

ﬂ Ben Wodecki, Jr. Edito

t to replace human engineers

At a Glance

Al startup Cognition develops an Al software engineering platform that
can automate entire projects.

Latest News

FDA Clears Al Tool for Detecting Cancer
Signs in Bone Marrow

“Music to cook
Gochujang.
noodies to”

[frobeats o
inergy boost”

Amazon Music Launches Maestro; Al
Tool Generates Playlists From Text
by Ber

"Devin, you missed updating JIRA. Again."

But we can automate the
parts of development that
suck,

FEATURE COMPLETE MONKEYUSER COM

Software Development
Lifecycle today is
, and

LLMs have a lot of potential to automate the SDLC...

Automated Unit Test Improvement using
at Meta

Nadia Alshahwan’
Jubin Chheda

Anastasia
Beliz

Finegenova

Gokkaya

Mark Harman
Inna Harper
Alexandru Marginean

Shubho

Eddy

Sengupta
War

Meta Platforms Inc.
Menlo Park, California,

ABSTRACT
This paper describes Meta's TestGen-LLM tool, which uses LLMs
to automatically improve existing human-written tests. TestGen
LLM verifies that its gencrated test classes successfully clear a set
of filters that assure measurable improvement over the original
test suite, thereby eliminating problems due to LLM hallucination.
We deseribe the deployment of TestGen-LLM at Meta test-a-thons
for the Instagram and Facebook platforms. In an evaluation on
Reels and Stories products for Instagram, 75% of TestGen-LLM's
test cases built correctly, 57% passed reliably, and 25°
coverage. During Meta's Instagram and Facebook test-a-thons, it
improved 11.5% of all

increased

asses to which it was applie

its recommendations being accepted for production deployment
by Meta software engineers. We believe this is the first report on
industrial scale deployment of LLM-generated code backed by such
assurances of code improvement

KEYWORDS

Unit Testing, Automated Test Generation, Large Language Models
LLMs, Genetic Improvement

ACM Reference Format

Nadia Alshahwan, Jubin Chheds. wva, Beliz Gokkaya,

Mark Harman, Inna Harper, Alexandru Marginean. Shubho Sengupta, and Eddy

nastasia Fineg

Wang. 2024. Automated Unit Test Improvement using Large Langusge Mod
els at Meta. e 320 ACM Sympostum onthe Foundations
of Software Engineering (FS! 19, 2024, Porto de G
Brazil, ACM, New York, NY, USA

1 INTRODUCTION

As part of our overall mission to automate unit test generation
for Android code, we have developed an automated test class im:
prover, TestGen-LLM. TestGen-LLM uses two of Meta's' Large
Language Models (LLMs) to extend existing, human-written, Kotlin
test classes by generating additional test cases that cover previ-
usly missed corner cases, and that increase overall test coverage.
estGen-LLM is an example of Assured Offline LLM-Based Software
Engineering (Assured Offline LLMSE) (6]

That is, unlike other LLM-based code and test
niques, TestGen-LLM uses Assured Offline LLA
language models, as a service, in a larger software engineering

orkflow that ultimately recommends fully formed software im.
provements rather than smaller code snippets. These fully-formed
code improvements are backed by verifiable guarantees for im
provement and non-regression of existing behavior. A filtration
process discards any test case that cannot be guaranteed to meet
the assurances.

The filtration process can be used to evaluate the performance of
a particular LLM, prompt strategy. or choice of hyper-parameters.
For this reason, we include telemetry to log the behavior of every
can evaluate different choices. However, the
same infrastructure can also be used as a kind of ensemble learning
approach to find test class improvement recommendations. TestGen
LLM thus has two use cases

neration tech
to embed the

execution so that

(1) Evaluation: To evaluate the effects of different LLMs, prompt
ing strategies, and hyper-parameters on the automatically
measurable and verifiable improvements they make to exist
ing code.

LLaMA-Reviewer: Advancing Code Review
Automation with Large Language Models through
Parameter-Efficient Fine-Tuning

Junyi Lu™, Lei Yu'!, Xiaojia Li®
Chinese Academ

TInstitute of Softwar

. Li Yang*!, Chun Zuo'
¢ of Sciences, Beijing, China

*University of Chinese Academy of Sciences, Beijing, China

hool of Software, Tsinghua University, Beijing
{lujunyi2

yulei2 1} @mails.ucas.ac.cn, 1i

China YSinosoft Company Limited, Beijing, China
21 @mails.tsinghua.edu.cn,

angli2017 @iscas.ac.cn, zuochun@sinosoft.com.cn

Abstract—The automation of code review activities, a long-
standing pursuit gineering, has been primarily ad-
dressed by numerous domain-specific pre-trained models. Despite
their success, these models frequently demand extensive resources
for pre-training from scratch. In contrast, Large Language
Models (LLMs) provide an intriguing alternative, given their
remarkable capabilities when suppl h domain-specific
knowledge. However, their potential for automating code review

In response to this research gap, we present LLaMA-Reviewer,
an innovative framework that leverages the capabilities of
LLaMA, a popular LLM, in the realm of mde review. Mindful of
resource constraints, this framework employs parameter-efficient

¢ (PEFT) methods, delivering hlgh performance while
mm;_ less than 1% of trainable paramete

An extensive evaluation of LLaMA-Reviewer is conducted on
two diverse, publicly available datasets. Notably, even with the
smallest LLaMA base model consisting of 6.78 parameters and
a limited number of tuning epochs, LLaMA-Reviewer equals the
performance of existing code-review-focused models.

The ablation experiments provide insights into the influence
of various fine-tuning process components, including input rep-
resentation, instruction tuning, and different PEFT methods. To
foster continuous progress in this field, the code and all PEFT-
weight plugins have been made open-source,

Index Terms—Code Review Automation, Large Language

Efficient Fine-Tuning (PEFT), Deep
Learning, LLaMA, Software Quality Assurance

Recent advancements in natural language processing (NLP)
have further enabled the use of pre-trained language models
1PLMw for these tasks [20], [23]. However, such domain-
specific models often require substantial resources for pre-
training from scratch.

In contrast, unified large language models (LLMs) demon-
strate remarkable performance when scaled to a certain param-
eter size [12], [13]. They can effectively handle specific tasks
without the need for domain-specific pre-training, presenting
a promising avenue for code review automation

In this study, we present LLaM/
work that leverages LLa a mainstream LLM, for au-
tomating code review. We incorporate Parameter-Efficient
Fine-Tuning (PEFT) methods to address the computational
challenge of LLM fine-tuning. Our approach builds upon the
pipeline proposed by Li et al. [20], which comprises 1) review
necessity prediction, 2) review comment generation, and 3)
code refinement tasks.

-Reviewer, a novel frame-

We extensively evaluate LLaMA-Reviewer on two public
datasets for each sub-task and investigate the impacts of the
input representation, instruction tuning, and different PEFT
methods. The primary contributions of this work include:

« Introducing the application of LLMs to code review au-

Automated Program

Repair in the Era of

Large Pre-trained Language Models

Chungiu Steven Xia
University of linois University
Urbana-Champaign

chunqiu2@illinois.edu

Abstract—Automated Program Repair (APR) aims to hel
patch software bugs. However, curre
I and learning-based APR techniques
ited petch vaciey, fulng to fix com-
ing

otentially help avold th X
directly leveraged LLMs for APR without reiing on any bug.
fixing datasets. Meanwhile, such existing work either failed to
include state-of-the-art LLMs or was not evaluated on realis
datasets. Thus, the true power of modern LLMs on the important
APR problem is yet to be revealed.

eek, e periocm the firt extcnee simdy on direct

Is for APR. We select 9 recent sta
cluding both generative and infilling nlx)del\ ra
1 to 208 in size. We designed 3 different repair sett

to evaluate the different ways we can use LLMs to generate
patches: 1) generate the entire patch function, 2) fill in a chunk
of code given the prefix and suffx 3) output a single line EE
We apply the LLMs under these repair seitings on S
across 3 different languages and compare different L
number of bugs fixed, generation speed and compilation ra
We also compare the LLMs against recent state-of-the-art APR
tools. Our study demonstrates that directly applying state-of-
the-art LLMs can already substantially outperform all existing
APR techniques on all our datasets. Among the studied LLMs,
the scaling effect exists for APR where larger models tend to
achieve better performance. Also, we show for the first time
that suffix code after the buggy line (adopted in infilling-style
APR) is important in not only generating more fixes but more
patches with higher comy

ing
sample size, and 2 incorporating fv template information.

Yuxiang Wei

Urbana-Champaign
yweid0@illinois.edu

Lingming Zhang
of Hlinois University of Hlinois
Urbana-Champaign

lingming @illinois.cdu

Repair (APR) tools have been built to automatically generate
potential patches given the original buggy program [6].
Among traditional APR techniques [7]-{18], template-based
APR has been widely recognized as the state of the art [19],
[20]. These techniques leverage fix templates, often designed
by human experts, to fix specific types of bugs in the source
code. As a result, these APR tools are constrained by the
underlying fix templates in the types of bugs that can be
fixed. To combat this, researchers have proposed learning-
based APR tools [21]-[24], which typically model program
repair as a Neural Machine Translation (NMT) problem [25],
where the goal is to translate a buggy program into a fixed
program. The core component of these leaning-based APR
tools is an encoder and decoder pair, where the model aims
to capture the buggy context via the encoder and then autore-
gressively generate the patch using the decoder. As such, these
learning-based APR tools require supervised training datasets
containing pairs of buggy and patched code, usually obtained
y mining historical by
While learning-based APR tools have shown improvements in
both the number and variety of bugs that can be fixed [21],
22], they are still restricted by their training data which may
contain unrelated commits and only contain limited bug-fix
types, which may not generalize to unseen bug types [26].
Recent developments in building Large Pre-Trained Lan-
guage Models (LLMs) offer an alternative solution that can
be applied for program repair without relying on historical
bug fixes. While LLMs are usually general-purpose tools for
NLP tasks (e.g.. GPT3 [27]), they have also been used for pro-
gramming languages by finetuning on code (e.g.. Codex [28]
and ChatGPT [29]). Unlike the specifically designed learning
based APR models. LLMs are trained in an_unsupervised

But they need to be
with
and
While preserving

and offering

seamlessly,

Software that interacts with the environment, collects data, and use the
data to perform self-determined tasks to meet predetermined goals.

Short-term memory Long-term memory
))
|
Calendar() [« Memory
A
Calculator () [« »| Reflection
CodeInterpreter () [« Tools |« Agent | Planning —» Self-critics
Search () |« 1} »| Chain of thoughts
...more <t Action »| Subgoal decomposition

An framework that

I nt ro d U Ci N 8‘ integrates into ar\:\j:lh”e
PatC hWO rk giving you complete and

Patchwork Overview

Memory |-~~~ -~ -
I
A 1
I
4
Tools |= Agent > Planning
I
I
: v
I
------ > Action

Patchflow

»Patchwork

Why Patchwork?

emao

(] README & AGPL-30 license 7

* X patched

PatchWork

An open-source framework for patching and managing code repositories using large language models. PatchWork
allows you to automate workflows like PR reviews, bug fixing, security patching, and more using a self-hosted CLI
agent and your preferred LLMs.

@ Key Components

+ Steps: A set of reusable atomic actions that define various operations.
+ Patchflows: LLM-assisted automations such as PR reviews, code fixing, debugging.

Patchflows can be run locally in your CLI and IDE, or as part of your CI/CD pipeline.
Installation

Using Pip

PatchWork is available on PyPl and can be installed using pip:

©

pip install patchwork-cli —upgrade

https://github.com/patched-codes/patchwork

© patchwork ried

Open-source Agentic Al Workflows
for DevOps
Turbocharge your software development lifecycle using LLMs.

Automate PR reviews, bug fixing, securlty patching, and more using
customizable prompts and your preferred LLMs via sel-hosted agents.

Run intelligent patchflows

Use ready-to-go patchfiows o create your own to automate patches,
reviews, riages, tickets and more.

3 AutoFix 11 PRReview PR rm——

https://patched.codes

Thank You! j@

9

