
A Refinement Calculus for Promela

Asankhaya Sharma
Department of Computer Science
National University of Singapore

asankhs@comp.nus.edu.sg

Abstract—The use of formal methods for developing software
is increasing. However in many cases only a model of the
system is validated against a set of specifications. The actual
implementation may thus not correspond to the formal model.
One approach to this problem is to directly verify the actual
implementation. Another solution is to provide a refinement
scheme for the model. In this paper we present a method for
refining a given Promela model to an implementation in C.
We show that our refinement preserves the temporal properties
(specified in LTL) of the original model. We give a new dual action
semantics for a minimal core of Promela (called Featherweight
Promela). The operational semantics of Featherweight Promela
makes it easier to define the refinement calculus as a set of
structural rules. Based on our calculus, we derive syntax directed
translation rules for refinement of Promela models to C programs.
These translation rules are easier to apply and generate an
implementation which is a refinement of the formal model. We
have applied our approach on existing Promela models and a
larger case study of the cardiac pacemaker challenge.

I. INTRODUCTION

Formal methods have been used to validate requirements
and designs of software systems typically early in the devel-
opment life cycle. The use of formal methods for software
and hardware design is motivated by the expectation that,
performing appropriate mathematical analysis can contribute
to the reliability and robustness of a design. However, the
high cost of using formal methods means that they are usually
only used in the development of high-integrity systems [1],
[3] where safety or security is of utmost importance. Over
the last several years many tools have been built that aid in
formal modeling and model checking of software. But these
tools typically work on a model or specification of the system.
Several process based languages (Z, CSP, Event-B, Promela,
etc.) have been designed to specify such formal models.

Promela is the language in which models are specified for
the SPIN model checker [9]. SPIN is a popular model checking
tool which aids in verification of software and hardware
systems. Users can specify temporal properties of the system
as LTL formulas and the tool validates if the Promela model
satisfies the property. The implementation may then be based
on the model and written in a language like C. However this
step is usually ad-hoc and requires programmer ingenuity to
ensure that the original properties of the model are captured
by the implementation.

A formal model written in a specification language like
Promela is meant to aid in reasoning about the program. It
is not directly possible to use it for execution as it may con-
tain constructs like non-determinism, channel based message
passing and concurrency. While an executable program in a
language like C (based on the model) may fail to capture all

the necessary properties of the model. We have identified this
gap between a formal model in Promela and its implementation
in C. In this paper we propose a refinement calculus which
enables users to refine a Promela model into a C program
which preserves all the original LTL properties of the model.
This makes it possible to generate implementation from a
Promela model. We have applied our approach in the context
of formal development for the pacemaker challenge [22]. As
an example, consider the following Promela code snippet taken
from [1]. It shows a particular operating mode of the cardiac
pacemaker model.

if
::((timer - lastpulsev) > mintime &&

(timer - lastpulsev) < maxtime) ->
pulv = 1;
lastpulsev = timer;
avdelay = -1;

::else->skip;
fi;

The model checks if the time since the lastpulsev is
between mintime and maxtime, and then sets pulv to 1
sending a new pulse to the corresponding chamber of heart
(ventricles). We want to ensure that between successive pulses
sent to heart by the pacemaker there is always a mintime
gap. This can be specified in LTL as the safety property
G((pulv = 1)⇒ (timer− lastpulsev) > mintime)) (where
G stands for Globally). The SPIN model checker can then be
used to validate if the model satisfies this property.

Our refinement calculus (described in section III) can
generate an implementation based on this model. We also
guarantee that the implementation will preserve the original
LTL properties proven for the model. By using the syntax
directed rules of section IV we get the following C code for
the above mentioned snippet.

if(((timer - lastpulsev) > mintime &&
(timer - lastpulsev) < maxtime)) {

pulv = 1;
lastpulsev = timer;
avdelay = -1; }

else ;

This simple example requires application of only a few
rules and the generated code looks similar to the model.
The only difference is with regards to the non-deterministic
choice operator, in this case it can simply be replaced with
a conditional statement in C. In addition to non-determinism,
some of other challenges in building a refinement calculus for

Promela include concurrency, channel based communication
and under specification of the model. Due to lack of a formal
semantics for Promela it is hard to show that the refinement
will preserve the LTL properties.

We address these issues in this paper by proposing a
novel dual action semantics for an operational core subset
of Promela language (called Featherweight Promela). This se-
mantics makes it easier to reason about the language and prove
that the refinement calculus preserves temporal properties of
the model. In particular our main contributions are

• Featherweight Promela (FP) a core subset of
Promela which is easy to formalize with well defined
syntax and semantics.

• A novel dual action operational semantics, which
helps to isolate the concurrency in a language by
using a Global Semantics which instantiates the Local
Semantics. We describe this semantics for FP and an
imperative C like language.

• A calculus for refinement of FP based on structural
rules which ensure that temporal properties are pre-
served.

• Syntax directed translation rules from Promela to
C. These rules are used to implement the refinement
calculus directly for the full Promela language and
generate executable C code.

• A real time extension of FP with clocks and timing
constraints and its refinement to generate implemen-
tations for real time systems.

In the next section we introduce FP and describe the dual
action semantics of the language. In section III we present
our calculus of refinement. In section IV we discuss the
implementation of the refinement calculus from Promela to C.
We present the real time extension of our refinement calculus
in Section V. Section VI shows how our approach can be
applied to existing Promela models. Section VII surveys some
related work and finally we conclude in section VIII.

prog ::= p*

p ::= t id (t x)* { e }

e ::= x | t x ’;’ e | x ’:=’ e | e1 ’;’ e2
| ’::’ be ’→’ e | ’if’ e ’fi’ | ’do’ e ’od’
| e1 ’!’ e2 | e1 ’?’ e2 | ’run’ p | ’atomic’ e

be ::= ae | be1 ’&&’ be2 | be1 ’||’ be2
| be1 $ be2 ($ ∈ {=, 6=,<,>,≤,≥})

ae ::= v1 ◦ v2 (◦ ∈ {+,−, ∗, /})

x ::= ’true’ | ’false’ | v | ’()’ (v is an integer value)

t ::= ’int’ | ’chan’ | ’mtype’ | ’bit’

id ::= identifier
Fig. 1: Syntax of Featherweight Promela (FP)

II. FEATHERWEIGHT PROMELA (FP)

Promela is used as a specification language for the SPIN
model checker. As such the existing implementation of SPIN

provides a semantics for the language. In order to reason about
Promela programs and develop a calculus for refinement we
propose to work with a core subset of the language. Figure
1 shows the syntax of FP, it includes all essential features
of Promela like channel operators (! and ?), non-deterministic
choice (::) and the corresponding data types.

Each proctype process of Promela is represented by p
and is executed by a run command. A process in FP p is
a sequence of statements e and includes the usual control
structures like if conditional and do loop. In addition there
are two channel operators - write ! and read ?. As an example,
e1 ? e2 reads the contents of the channel e1 into e2. For
simplicity we assume channels to be asynchronous, but we
remove this restriction in section IV. The atomic keyword
before an expression e ensures that the expression will be
executed atomically. To complete the discussion about the
syntax of the FP language, we mention that it also includes
boolean expressions be and simple arithmetic expressions ae.

FP is similar to the core language used in [10] for automatic
symmetry detection for Promela. Since FP includes all the
constructs described in the core language of [10], any program
written in Promela can also be written in FP. However, our
notion of semantics is quite different from the existing work.
The current informal semantics for Promela uses a notion of
Kripke structures and transitions between states. This transition
system based approach is useful for understanding the model
checking algorithm of Promela programs. In SPIN a LTL
property is checked for a model by performing a search
through the state space. But this makes it harder to refine
such a structure to a real world programming language like
C. In order to better facilitate such refinement we propose a
novel dual action semantics that cleanly separates concurrency
actions of the model from their sequential counterpart.

Assign1
< x := v, s >−→< (), s[x 7→ v] >

Assign2
< e, s >−→< e′, s >

< x := e, s >−→< x := e′, s′ >

Seq1
< (); e, s >−→< e, s >

Seq2
< e1, s >−→< e1′, s′ >

< e1; e2, s >−→< e1′; e2, s′ >

Cond1 <:: true→ e, s >−→< e, s >

Cond2
<:: false→ e, s >−→< (), s >

Cond3
< e1, s >−→< e1′, s′ >

<:: e1→ e2, s >→<:: e1′ → e2, s′ >

If
<if :: e1→ e2 fi, s >−→<:: e1→ e2, s′ >

Do
<do e od, s >−→<if e fi; do e od, s >

ChanWrite
< e1 ! e2, s >−→<:: e1→ e1 := e2, s >

ChanRead
< e1 ? e2, s >−→<:: e1→ e2 := e1, s >

Fig. 2: Local Semantics of Featherweight Promela (FP)

A. Dual Action Operational Semantics

A dual action operational semantics is a small step se-
mantics which performs two actions at each step. A global
action and a local action together form the single step in this
semantics. Based on these two kinds of actions, we divide
this semantics into Global and Local Semantics. Concurrency
from the language is confined to the Global Semantics, while
Local Semantics is used to describe the sequential part. Figure
2 shows the Local Semantics of the language. Essentially it is
a small step operational semantics starting with expression e
and state s of the program. The state transitions for the entire
program are represented by < e, s >−→∗< (), s′ >, where
the empty expression corresponds to (),

The small step semantics of an expression e can be
understood in terms of transition between configurations <
e, s >−→< e′, s′ >, where s, s′ ∈ Store which is simply a
mapping from variables to values. The rule for assignment
Assign1 causes the state to update with the value of the
variable v. The rules for sequences, conditionals and do loop
are standard. A channel write e1 ! e2 first evaluates e1 to see
if it is true and then assigns e2 to it. This is shown in the rule
ChanWrite which converts a write channel command to a
conditional and assignment. A similar rule is used for channel
read command (ChanRead). This Local Semantics avoids the
use of any non-deterministic construct and concurrency. We
handle those aspects with a Global Semantics, which in turn
instantiates this Local Semantics.

Exp
< e, s >−→< e′, s′ >

< e,E, s >−→< (), E ∪ {e′}, s′ >

AtomicExp
< e, s >−→< (), s′ >

< e,E, s >−→< (), E, s′ >
atomic(e)

NonDet
< (), E, s >−→< e′, E − e′, s > (e′ ∈ E)

FIFO
< (), E, s >−→< ei, E − ei, s > (∀ej ∈ E, i ≤ j)

LIFO
< (), E, s >−→< ei, E − ei, s > (∀ej ∈ E, i ≥ j)

RR
< (), E, s >−→< ei, E − ei, s >

(∀ej ∈ E, j = (i+ 1)%n)

Fig. 3: Global Semantics

Figure 3 depicts the Global Semantics of FP, which is
parameterized by the given Local Semantics. E is the set of
all executable expressions in the program. A single step in
the Global Semantics for expression e makes a transition from
state s to s′ by instantiating the Local Semantics with the
same expression e (as shown in the rule Exp). The expressions
generated by the Local Semantics are then added to the set of
all expressions E. Thus the state transitions can be represented
by < e,E, S >−→∗< (), {}, s′ >. When the instantiating
semantics is applied on the expression e we can follow any
given local semantics. This amounts to choosing an executable
expression from the program and then just executing it. For the
atomic expression we use the AtomicExp rule which actually
evaluates the expression e completely to () before taking
another step. This ensures that the expression is executed
atomically.

The choice of the next expression to execute is what we
control by using the Global Semantics. This is analogous
to how SPIN executes a Promela model, by choosing non-
deterministically any executable statement at each step. By
formalizing the Global Semantics this way, not only do we
get more control on the choice of expression but also we are
able to eliminate the discussion of concurrency from the Local
Semantics. We now use different kinds of rules to pick an
expression e to execute.

The default behavior for FP programs is captured by the
NonDet rule which picks an arbitrary expression e′ from
the set of executable expressions. Similarly we can think of
other forms of scheduling for expressions like first in first out
(FIFO), last in first out (LIFO) and round robin (RR). These
schedules represent the interleaving of various statements in
the program. By making this explicit in the Global Semantics
of the program we can reason about it easily while defining
the refinement calculus.

Taking into account the Local and Global semantics to-
gether, a single small step in our semantics takes the following
actions < e, s >−→< e′, s′ > and
< e,E, s >−→< (), E ∪ e′, s′ > Thus we take dual actions
at each transition between the configurations. Note that this
Global Semantics makes no assumptions on the underlying
Local Semantics of the program. We may as well use any
language with appropriate Local Semantics. We use this ob-
servation as a basis for the refinement calculus.

prog ::= f*

f ::= t id (t x)* { e }

e ::= x | t x ’;’ e | x ’=’ e | e1 ’;’ e2
| ’if’ be ’then’ e1 ’else’ e2
| ’while’ be ’do’ e | ’call’ f
| ’lock’ x | ’unlock’ x

be ::= ae | be1 ’&&’ be2 | be1 ’||’ be2
| be1 $ be2 ($ ∈ {=, 6=,<,>,≤,≥})

ae ::= v1 ◦ v2 (◦ ∈ {+,−, ∗, /})

x ::= v | skip (v is an integer value)

t ::= ’int’ | ’struct’

id ::= identifier
Fig. 4: Syntax of Core Language (C)

III. REFINEMENT CALCULUS

To develop a refinement calculus for FP programs we need
to define a target language. Eventually we wish to convert
Promela programs into corresponding C programs. Keeping
the syntax of C in mind we introduce an imperative Core
Language for our calculus. Figure 4 shows the syntax of the
core language.

It contains all the usual C language features like conditions,
loops and functions (f). There is also a special no-op value
skip. In addition, there are lock and unlock statements. They
are used to model atomic blocks from FP programs. We do not
include pointers or memory references in the Core Language.

Even though widely used in C, pointers are not required for
handling the constructs from our source language FP. In order
to handle FP data types like channels and bits, we will use
the struct construct in C. All the expressions have their usual
meaning as in C. We now give a Local Semantics to this Core
Language similar to the one in previous section.

Assign1
< x = v, s >−→< skip, s[x 7→ v] >

Assign2
< e, s >−→< e′, s >

< x = e, s >−→< x = e′, s′ >

Seq1
< skip; e, s >−→< e, s >

Seq2
< e1, s >−→< e1′, s′ >

< e1; e2, s >−→< e1′; e2, s′ >

If1
<if v then e1 else e2, s >−→< e1, s > (v 6= 0)

If2
<if 0 then e1 else e2, s >−→< e2, s >

If3
< e, s >−→< e′, s′ >

<if e then e1 else e2, s >−→
<if e′ then e1 else e2, s′ >

While
<while e1 do e2, s >−→
<if e1 then e2; while e1 do e2 else skip, s >

Fig. 5: Local Semantics of Core Language (C)

This Local Semantics is also a small step operational
semantics as shown in Figure 5. It is very similar to the one
for FP given in Figure 2. All the commands have their usual
meaning as in any imperative language like C. We do not
discuss the semantics for Core Language in detail here as it is
fairly standard and straightforward.

Looking at the similarities between the Local Semantics
for FP and C, intuitively we can think of a system of rules
that can refine a given FP program into a C program. Figure
6 shows a set of structural refinement rules for FP, which
transform a FP construct into corresponding C construct.
The rules for variables (RefVar) , constants (RefConst) and
sequences (RefSeq) do not change anything. For now, we
assume that the refinement is applied across proper data types
and a corresponding data structure is already present in C.
If a corresponding data type is missing we construct an
appropriate type using struct. We lift this restriction later
when we discuss our implementation in section IV. The rule
for atomic expression (RefAtomic) refines the expression into
corresponding one within lock and unlock statements.

The assignment construct used in C is different from FP,
which is handled by RefAssign rule. The control constructs in
FP are refined by RefCond , RefIf and RefDo to similar ones
in C. Each run statement in FP is replaced by a call to the
function representing the same process as shown in RefRun .
The syntax of C and FP are very similar, so each process p in
FP is refined to a function with same name in C. Applying the
rules exhaustively to a FP program refines all the expressions
and commands.The refined program is now a valid C program
and can be executed directly.

Thus, the structural refinement rules transform a given FP

RefConst
[v]FP

[v]C
RefVar

[x]FP

[x]C

RefAtomic
[atomic e]FP

[lock x; e;unlock x;]C

RefAssign
[x := e]FP

[x = e]C
RefSeq

[e1; e2]FP

[e1; e2]C

RefCond
[:: e1→ e2]FP

[if e1 then e2 else skip]C
RefIf

[if e fi]FP

[e]C

RefDo
[do e od]FP

[while (e 6= skip) do skip]C
RefRun

[run p]FP

[call p]C

Fig. 6: Structural Refinement Rules

program by refining each construct in FP to a corresponding
construct in C. This refinement is based only on the structure
of the program and does not talk about the semantics of each
expression. The original FP program may satisfy some LTL
(temporal) properties which we want to preserve during the
refinement.

We will now show that the rules given in Figure 6 do indeed
preserve the LTL properties across refinement. In particular we
prove two things, firstly, using Local Semantics we show that
the set of states in the refined C program is a subset of the set
of states in the original FP program. Secondly, using Global
Semantics we show that the interleaving of the expressions
in refined C program is a subset of the interleaving of the
expressions in the original FP program. While constructing the
Global Semantics (Figure 3) we made no assumptions about
the underlying Local Semantics so we can use the same for
both FP and C. LTL properties are defined on traces which
represent all possible interleaving of the statements in the
language. Showing the above will prove that the satisfiability
of LTL formulas is preserved during refinement.

A. Temporal Property Preservation

Definition 1: (Set of States) A program state is a map
from variables to values. Let the set of states in the original
FP program be SFP and the set of states after applying the
structural refinement rules be SC .

Lemma 1: The set of states in the C program is a subsest
of the orignial FP program, i.e. SC ⊆ SFP .

Proof: The proof is by structural induction on the refine-
ment rules. Consider the rules for variables RefVar and con-
stants RefConst , as per the Local Semantics of Figure 2 and
5 the refinement from FP to C changes the state from s to the
same state s[x 7→ v]. Thus for this case SC ⊆ SFP . Similarly,
we can show the same for RefAssign and RefSeq rules. For
the RefAtomic rule, the lock and unlock statements do not
change the expression inside and are just used to choose the
appropriate global semantics corresponding to atomic block.

For the RefCond rule, there are three cases in the Local
Semantics of FP Cond1, Cond2 and Cond3. These cases
correspond to the If1 , If2 and If3 rules of the Local Semantics
of C respectively. The only difference is the skip expression

added in If3 , but since it is just a no-op the state s′ is same,
both in C and FP. Consequently, SC ⊆ SFP after applying
this rule as well.

The if rule RefIf and do loop rule RefDo are based on the
conditional rule RefCond and hence we have SC ⊆ SFP for
these cases as well.

As shown above, after applying any of the structural rules
we have SC ⊆ SFP . The set of states in the refined C program
are all contained in the original FP program. As none of the
refinement rules change the value of the expressions the state
invariants are not changed at all. Thus it is sufficient to show
that the number of states in the refined program are a subset
of the original program. This proof is based only on the Local
Semantics, next we will extend this to the Global Semantics
by choosing different scheduling of expressions.

Definition 2: (Set of Traces) A trace is a sequence of
program states. Let TFP be the set representing the possible
interleaving of executable expressions as defined in the Global
Semantics for the original FP program and TC be the same
for the refined C program.

As mentioned in previous section by default we as-
sume a NonDet Global Semantics for FP programs. Non-
deterministic interleaving of statements is also used in SPIN to
model check the temporal property and represents an exhaus-
tive search over the total state space. Thus, a LTL property
is satisfied by the FP program for all possible scheduling
of expressions. In order to show that the refined C program
preserves the temporal properties, we only need to show that
TC ⊆ TFP .

This can be done by choosing the right scheduler and con-
currency mechanism for C programs. In our implementation
we choose pthreads library for scheduling each function in
the C program in a different thread. POSIX standard [12]
supports two possible scheduling for pthreads - SCHED FIFO
and SCHED RR. We already support these in our Global
Semantics as shown in Figure 3. The POSIX library also
supports mutex locks which are used by the C program
for atomic blocks and the Global Semantics already handles
atomic expressions.

By using pthreads we would be executing the refined C
program according to the Global Semantics specified by the
FIFO (or RR) rule. Since the interleaving generated by these
scheduling are a subset of the NonDet (as it contains all
possible schedules) we have TC ⊆ TFP . Combining with
the proof for Local Semantics, we have SC ⊆ SFP and
TC ⊆ TFP .

Restating the result in terms of states and transitions, we
see that the refined C program has less number of states and
each of the transitions on those states is actually a subset of
original number of transitions. Given a FP model and the set
of traces for the model TFP , the FP model satisfies a LTL
formula if all the traces satisfy the LTL formula. As shown
above TC ⊆ TFP , hence a LTL property was satisfied by
the FP model it will be satisfied by the C program. Hence,
temporal properties are preserved by the refinement calculus.
We state this result as the following soundness theorem for the
refinement calculus.

Theorem 1: (Soundness of Refinement Calculus) The re-
finement calculus is sound with respect to LTL safety proper-
ties.

Proof: Follows from Lemma 1 and choosing the dual
action constructively in the Global Semantics as above.

Theorem 2: (Soundness Condition for Liveness) In addi-
tion to Theorem 1, If SFP ⊆ SC then the refinement calculus
is sound with respect to LTL safety and liveness properties.

Proof: Since the number of states is same in both the
FP model and the C program, the liveness properties are also
preserved.

IV. IMPLEMENTATION

The refinement calculus described so far is based on FP
and it is not clear how to implement it directly. For the refined
C program to be executable directly we also need to take care
of the proper syntax requirements of the language. In order
to lift the restrictions of the core language, we describe a set
of syntax directed rules based on the calculus. These rules
help to directly refine a Promela model to an implementation
in C language (with pthreads). These rules are based on the
Calculus described in previous section (Figure 6). We divide
them into two categories - Data Refinement (D1 to D8) and
Control Refinement (C1 to C8).

So far we have avoided the issue of mismatch of data
types between Promela and C. We also did not consider
asynchronous channels and selection construct. In this section
we lift all these limitations. The rules shown in Figure 7 handle
all data and control constructs in Promela. Data Refinement
rules translate Promela data structures to the corresponding
ones in C. Most of the rules are a straightforward mapping to
the appropriate data type in C. Rule D7 shows how to refine
a mtype into a series of #define declarations. This is done
to reflect the semantics of the mtype declaration in Promela.
Rule D8 refines a Promela channel chan to a queue which is
represented as a buffered array in C of corresponding size.

For control refinement we have rules C1 to C8, which
translate the appropriate control flow constructs from Promela
to C. Rules C3 and C4 refine the send and receive operations
on channels with enqueue and dequeue functions which act
on the C array refined via rule D8. A non-deterministic
choice in Promela is treated as under specification (or external
input) of the model. We refine the non-deterministic operator
to a stub function which is called to generate the choice
deterministically.

This stub function takes care of the under specification
of the model by allowing the user to implement external
calls, user input, etc. as stubs. Quite often during the formal
modeling several aspects of the system are not specified, since
they may not be critical to the property of interest. Also
some processes may represent external environment or inputs.
By allowing stub functions we keep the generated C code
extensible, so if needed these aspects can be added later. For
now, to mimic the exhaustive search of the Promela model
(by SPIN) we use the POSIX threads library to execute one of
the satisfied branches using a thread as shown in rule C7. We
separate each branch into a function which can be executed
atomically by using a lock. We use a global variable turn to

D1
skip

1
D2 bool

bit
D3

byte

uchar
D4

mtype var

int var
D5

name[const] = expr

name[const] = expr, expr...;
D6

Typedef t {decl list}
struct t {decl list};

D7
mtype = {x1, x2, x3, ...xn}

#define x1 n #define x2 n− 1...#define xn 1
D8

chan name = [n] of {t1, t2, ...}
struct chani{t1 var1, t2 var2, ...}; chani name [n];

C1
if :: sequence[:: sequence] ∗ fi
{sequence; [sequence]∗}

C2
do :: sequence[:: sequence] ∗ od
while(1){sequence; [sequence]∗}

C3
name ! expr1, expr2, ..., exprn

for(i = 1; i ≤ n; i++){enqueue(name, expri); }
C4

name ? expr1, expr2, ..., exprn
for(i = 1; i ≤ n; i++){expri = dequeue(name); }

C5
:: expr1 → expr2
if (expr1) expr2;

C6
name (args) {seq}

void name (args) {seq}

C7

:: guard1 → expr1
:: guard2 → expr2

...
proc1(arg1){pthread mutex lock(&mutex);

if (turn == 0){expr1; turn = 1; }
pthread mutex unlock(&mutex); }

proc2(arg2){pthread mutex lock(&mutex);
if (turn == 0){expr2; turn = 1; }

pthread mutex unlock(&mutex); }
...

turn = 0; pthread mutex init(&mutex,NULL);
if (guard1) pthread create(th1, NULL, proc1, arg1);
if (guard2) pthread create(th2, NULL, proc2, arg2);

...
pthread join(th1, NULL);
pthread join(th2, NULL);

...
turn = 0; pthread mutex destroy(&mutex);

C8
init {run proc1(args1); run proc2(args2); ...}

void main()
{pthread t th1, pthread t th2, ...;

pthread create(&th1, NULL, proc1, args1);
pthread create(&th2, NULL, proc2, args2);

...
pthread join(th1, NULL);

pthread join(th2, NULL); ...}

Fig. 7: Syntax Directed Refinement Rules

ensures that only one of the satisfied branch is executed. Then
we create threads for each of the branch based on satisfied
guards and execute them in parallel. This enables us to keep
the same behavior as the model if we were to validate this
C code. Note this does not change the temporal behavior of
the program as all the branches are checked to validate a LTL
property (by SPIN). The interleaving between various Promela
processes are refined using POSIX threads. We translate each
process as a C function and then create a thread to execute
that function as shown in rules C6 and C8. The initial init
process in Promela is translated to the main function in C.
This set of 16 refinement rules is sufficient to translate most
of the commonly used constructs in Promela to C code. These
rules are similar in spirit to the ones described in [21] for
refinement from B specifications to C. Applied exhaustively,
these rules translate a given Promela model to C code, this
code is directly executable.

In additional to these refinement rules, we present 3
synchronization rules which translate the atomic blocks and
synchronous channels in Promela. As shown in Figure 8 the
atomic block in Promela is refined using a global Pthread
mutex lock. We lock the mutex before entering the atomic

block and unlock it after exiting the block. This ensures that the
changes in the atomic block are not visible to the other threads.
Rules S2 and S3 handle synchronous channels using Pthread
barriers. We initialize a global barrier for each synchronous
channel and wait on the barrier after writing to the channel (in
S2) and before reading from the channel (in S3). This ensures
that the writes made to the channel are not queued and are
visible to the thread reading from the channel immediately.
Compare this with the rules C3 and C4 where we use a
queue to handle updates to the channel. The refinement rule
for the atomic block S1 along with rules S2 and S3 enable
synchronous channels in the generated C implementation. This
C code generated using the POSIX threads library behaves
in the same manner as intended by the Promela model and
preserves the temporal properties of the model.

A limitation of these rules is that a Promela model is
a super set of all possible system behaviors, even though
we can guarantee that the generated C implementation is a
subset of those behaviors it may not be the desired subset.
We can only say that the C implementation will satisfy LTL
properties of the model. Nondeterminism in the Promela model
is a big source of under specification of desired properties.

S1
atomic{expr}

pthread mutex lock(&mutex);
expr;

pthread mutex unlock(&mutex);

S2
name ! expr

name = expr;
pthread barrier wait(&barr);

S3
name ? expr

pthread barrier wait(&barr);
expr = name;

Fig. 8: Additional Synchronization Rules

As discussed earlier with the C7 rule we allow use of stub
functions in C code to determine the non-deterministic choice
operator in Promela as a way to address this issue partially.
In practice the generated code it is still better than having
no implementation at all and developing it by hand from the
model. In our experiments, we have found that the syntax
directed nature of these rules make it easier to implement
our calculus. These rules can be automated and applied to
the Promela model as a translation to extract the refined C
program. Our refinement calculus guarantees that the generated
implementation will satisfy all the temporal properties of the
model.

V. REAL TIME EXTENSION

In one of our experiments, with the cardiac pacemaker we
need the system to support real time constraints . That is, take
into account the actual time elapsed between certain system
events. The Promela language and LTL is not expressive
enough to represent such cases. We make use of RT Promela,
[25] a timed extension of Promela which adds support for real
time systems. The syntax of FP is extended with a special kind
of global variable for clocks and timed statements as shown
in Figure 9.

prog ::= p*

p ::= t id (t x)* { e }

e ::= untimede | timede

timede ::= ’when’ ’{’ u ’}’ untimede
| ’reset’ ’{’ R ’}’ untimede
| ’when’ ’{’ u ’}’ ’reset’ ’{’ R ’}’ untimede

u ::= ineq ’,’ u

R ::= c ’,’ R

ineq ::= c $ x | c1 $ c2 ’+’ x ($ ∈ {=,<,>,≤,≥})

t ::= ’int’ | ’chan’ | ’mtype’ | ’bit’ | ’clock’

id ::= identifier
Fig. 9: Syntax of Real Time Featherweight Promela (RTFP)

The global clock type allows for declaring a new clock
variable (c). All the clocks are started at 0 and are incre-
mented in an infinite non-zeno (doesn’t converge to a bounded
value) time sequence. The clocks may be reset back to 0.
An expression can be either timed or untimed. The untimed
expressions are all the same was before in FP (from Figure
1). The new timed expressions allow expressing constraints

on clock variables using the when keyword. The constraints
are limited to the simple linear expressions shown in ineq.
This limitation is required to enable an efficient procedure
for validating RT Promela programs as described in [25]. The
constraints in the set u are equivalent to a conjunction of the
individual constraints. The clocks specified in the set R can
be reset using the reset statement.

The RTFP programs can be verified by the RT Spin tool
using a timed buchi automata (similar to SPIN). The details
of the RT Spin tool are available in [25], in this paper we
focus on evaluating the timed statements using our dual action
semantics. The Local Semantics of the timed statements is
presented in Figure 10.

When
< u, s >−→< e1, s′ >

<when {u} e2, s >−→< atomic {:: e1→ e2}, s′ >

Reset
<reset {c1, c2, ...} e, s >−→

< atomic {c1 := 0; c2 := 0; ...; e}, s >

Fig. 10: Local Semantics of RTFP

The Local Semantics of when statement checks if the
constraints on the clock variables are satisfied and executes
the untimed statement using the conditional expression. While
reset statement resets the clocks to 0 and then executes the
untimed expression. The Global Semantics of RTFP are same
as before, the only difference is that now the next expression
to be evaluated also takes into account the constraints on
clocks. The refinement for these real time expressions to
corresponding C code can be supported by using the real time
extensions [13] of the POSIX standard.

Figure 11 gives the rules for refinement of a Real Time
Promela model. Even though the refined C code corresponding
to real time rules is to be executed atomically using locks (as
detailed Figure 7) we do not show it here in order to avoid
repetition. The rule RT1 refines a global clock declaration
by using the real time clock on the system and initializ-
ing a time t variable to that value. The POSIX function
clock gettime returns the time with a resolution of at least
20 ms (as defined in the standard). However for simplicity we
just show the time in seconds. The rule for clock constraints
(RT2 and RT3) take into account the current time (now) and
then builds the constraints for elapsed time between events.

The comma separated constraints are all combined into a
single conjunction using rule RT4. This conjunction is used

RT1 clock c
struct timespec ts;

clock gettime(CLOCK REALTIME,&ts);
time t c = ts.tv sec;

RT2
c$x

struct timespec ts;
clock gettime(CLOCK REALTIME,&ts);

time t now = ts.tv sec;
(now − c)$x

RT3
c1$c2 + x

struct timespec ts;
clock gettime(CLOCK REALTIME,&ts);

time t now = ts.tv sec;
(now − c1)$(now − c2) + x

RT4
u1, u2, ...

u1 && u2 &&...

RT5
when {u} e
if (u) e

RT6
reset {c1, c2, ...} e
struct timespec ts;

clock gettime(CLOCK REALTIME,&ts);
time t now = ts.tv sec;

c1 = now;
c2 = now;

...
e;

Fig. 11: Refinement Rules for Real Time Extension

in RT5 to refine the when statement to the corresponding if
statement in C implementation. The reset statement is refined
by rule RT6 by updating the current time on the clocks and
then executing the untimed statement. These rules can also be
applied automatically in a syntax directed manner to generate
an implementation from the Real Time Promela model. The
refinement of real time extension of Promela model does not
change the control structure of the program. Each rule refines a
RTFP expression in a state to a similar expression in the same
state in C. Using the argument made in section III-A we can
say that the refinement of RTFP also preserves the temporal
properties. Thus the refinement calculus is sound for the real
time extension as well.

VI. EXPERIMENTS

In order to evaluate our approach we designed two kinds of
experiments - refinement of existing Promela models and using
refinement as part of formal development of a new system.
We have implemented a prototype in Objective Caml called
SpinR (Spin with Refinement). Source code of SpinR is made
available online at [24]. A detailed example of refinement of
a RT Promela model capturing mutual exclusion is given in
Appendix. We have applied our calculus on a set of existing
Promela models from literature [15]. These Promela models
form a diverse set of case studies, which includes a real
time system (Rate Scheduler), non-deterministic algorithm (8-
Queens Problem) and a distributed system (Chandy Lamport’s
Algorithm). These models use different kinds of Promela
constructs and commands which are challenging to handle
for refinement. For all these case studies we downloaded the
existing Promela model from [16] and applied our refinement
calculus to generate the corresponding C code.

In addition to these models, we also undertook a formal
development of cardiac pacemaker. The pacemaker challenge
[22] is a formal development problem that models an artifi-
cial cardiac pacemaker based on the specifications issued by
Boston Scientific [6]. Based on the informal specifications,
we designed and modeled various components as part of the

pacemaker challenge in Promela. We also formulated several
temporal properties of interest for the pacemaker. Our efforts
towards a verified cardiac pacemaker are described in [2],
[1]. Formal model development for a critical system like the
pacemaker is in itself a hard problem. Once we formulate and
validate the properties on the model there is no easy way to
convert that model into executable code. We used the refine-
ment calculus described in this paper to refine the pacemaker
model to C code which can then be run on supporting target
hardware (pacemaker device controller).

TABLE I. REFINEMENT WITH PROMELA MODELS

Promela Model LoC LoC(C) States States(C)
Sparse Channels 86 119 106 14

8-Queens Problem 50 65 41525 39225
Rate Scheduler 87 93 27 27
Fisher’s Algo 60 74 494729 4337

Chandy Lamport’s Algo 168 214 14632233 13063946
Pacemaker Challenge 389 431 35684919 392716

Table I shows the results of our experiments. All the test
cases in the experiments with Promela models and generated
C code is available online at [24]. The LoC column depicts
the number of lines of code in the Promela model and
LoC(C) shows the same value for the generated C code. Our
models range to a few hundred lines of Promela code with
the pacemaker model being the largest (389). The refinement
usually increases the number of lines in the program as we
expand several Promela constructs while translating based on
the rules of Figure 7. The increase in code size is modest for
all of the case studies.

We also show the number of states in the Promela
model (States) and compare it with the refined C program
(States(C)). The states are calculated using SPIN as it does
an exhaustive search over the state space. The scheduling used
for C program corresponds to RR from our Global Semantics.
We see that the refined C program has less number of states
for all the cases except the Rate Scheduler (which has equal
number of states). Since the refined C program has only a
subset of the behaviors of the original Promela model, the

number of states in the program are reduced. Our proof for
temporal property preservation was also based on this fact. In
general there is a large decrease in the states space as is evident
from the Pacemaker Challenge example.

Based on our experiments with several small to modest
sized Promela models and one real world case study of the
Pacemaker Challenge we see that the refinement calculus for
Promela can be a useful component for formal modeling of
systems. In particular, for new formal development efforts,
this approach is easy to implement. We were able to use
the refinement calculus to generate an implementation for the
pacemaker software after verifying the model of the system in
SPIN. Thus this calculus is an essential ingredient to make the
formal development process more end to end. Our pacemaker
case study is challenging and unique in this aspect as we are
able to use SPIN to do verification and validation during the
full development life cycle of the system.

VII. RELATED WORK

Refinement based on Hoare style pre-post specification
of programs has been studied widely in literature [18], [19],
[20]. The presence of pre and post conditions helps to guide
the refinement and ensures the correctness of the program
at every step. However, it is not possible to express tempo-
ral properties directly in Hoare’s logic for refinement. The
SPIN model checker [9] enables temporal property verification
(expressed as LTL formulas) of Promela models. Prior work
[7] on compiling Promela models to C does not ensure that
the temporal properties satisfied by the model are preserved
during the translation. The authors use the existing features
of SPIN to validate the generated C code directly. There is
a difference between the validation of a Promlea model and
C code. While validating the C code directly, SPIN treats
whole functions in the program as single atomic steps [8]. This
does not correspond to the non deterministic exhaustive search
that happens when SPIN is validating a Promela model. Our
refinement calculus translates Promela models into C programs
while preserving all the temporal properties. Thus, eliminating
the need to validate the generated C code again. Existing work
on translating Promela into another implementation language
like Java [23] also suffers from the same problem in that
it doesn’t respect the semantics as defined in SPIN. The
refinement calculus guarantees that the dual action semantics
are preserved during translation.

Other process based languages like Event-B [17] have some
support for generation of implementation from models. The B-
Method is a formal methodology of guided refinement based
on patterns. It can be used to generate C code from models
specified in Event-B. The transition system of the generated
implementation needs to be shown as a Bi-Simulation of
the original transition system of the model. Our refinement
calculus for Promela is based on structural rules which ensures
that we can generate C code for all possible models. Our
work is inspired by [14], where a formal system for temporal-
logic property preservation is proposed for the Z language.
Unlike Z, the syntax of Promela similar to C, so by using our
novel dual action semantics we are able to easily derive syntax
directed rules that translate models into implementation while
preserving LTL properties.

We have applied our calculus to derive an implementa-
tion for pacemaker challenge [1]. The pacemaker challenge
presents a real world case study of applying formal methods for
the development of various components of a cardiac pacemaker
based on high level specifications [6]. Formal models for the
pacemaker have been proposed and developed in [3], [4], [5].
These systems model interesting properties of the pacemaker
software using languages like Z, VDM and CSP respectively.
We have developed a formal model in Promela for several
components of the pacemaker [1]. By using the refinement
calculus presented in this paper we were also able to derive an
implementation in C. This extends the current work on formal
pacemaker development and makes it more end to end.

VIII. CONCLUSION

Model checking for temporal property verification typically
works on a formal model of the system. The implementation
derived from such a model may not always correspond to the
original system. Thus, there is no way to ensure the correctness
of the implementation. We presented a calculus for Promela,
which enables to refine models written in Promela to imple-
mentation in C. Our approach is based on a novel dual action
semantics, using which we show that the temporal properties
proven on the model are preserved during refinement. We have
applied our calculus to a modest set of existing models and
to a real world case study for the pacemaker challenge. Initial
results are promising and show the usefulness of the calculus
for formal development.

For future work we would like to provide better tool
support for the calculus by integrating it within the SPIN model
checker and allowing users to extract implementations from
it. This will enable to bridge the gap between formal model
development and software implementation.

ACKNOWLEDGMENT

We would like to thank Wei-Ngan Chin, who reviewed an
earlier draft of this paper and provided valuable suggestions
for formalizing the approach.We are also grateful to Andreea
Costea for her feedback and comments on the paper.

REFERENCES

[1] A. Sharma. End to End Verification and Validation with SPIN. In CoRR
2013. http://arxiv.org/abs/1302.4796

[2] A. Sharma. Towards a Verified Cardiac Pacemaker. In NUS Techni-
cal Report 2010. http://www.comp.nus.edu.sg/∼asankhs/pdf/Towards
Verified Cardiac Pacemaker.pdf

[3] A. O. Gomes and M. V. M. Oliveira. Formal Specification of a Cardiac
Pacing System. In FM 2009.

[4] H. D. Macedo, P. G. Larsen and J. Fitzgerald. Incremental Development
of a Distributed Real-Time Model of a Cardiac Pacing System using
VDM. In FM 2008.

[5] L. A. Tuan, M. C. Zheng and Q. T. Tho. Modeling and Verification of
Safety Critical Systems: A Case Study on Pacemaker. In SSIRI 2010.

[6] Pacemaker System Specification. In Boston Scientific 2007.
[7] S. Loffler. From Specification to Implementation: A PROMELA to C

Compiler. In Project Report Ecole Nationale Suprieure des Tlcommuni-
cations.

[8] G. J. Holzmann. Logic Verification of ANSI-C code with SPIN. In SPIN
2000.

[9] G. J. Holzmann and R. Joshi. Model-Driven Software Verification. In
SPIN 2004.

[10] A. F. Donaldson and A. Miller. Automatic Symmetry Detection for
Promela. In J. Autom. Reasoning 41(3-4): 251-293, 2008.

[11] Proposal for the Pacemaker Formal Methods Challenge hosted by
SQRL. http://sqrl.mcmaster.ca/pacemaker.htm. Retrieved on 26th Sep
2011.

[12] Thread Scheduling. In IEEE POSIX 1003.1c standard.
[13] Real-time Extensions. In IEEE POSIX 1003.1b standard.
[14] J.Derrick and G. Smith. Temporal-logic property preservation under Z

refinement. In Formal Aspects of Computing (25th May 2011).
[15] M. Ben-Ari. Chapter 11 Case Studies. In Principles of Spin Model

Checker 2008 edition.
[16] http://www.springer.com/978-1-84628-769-5. Source of PROMELA

models for case studies. Retrieved on 27th Sep 2011.
[17] J-R. Abrial. In Modeling in Event-B: System and Software Engineering.

Cambridge University Press 2010.
[18] R-J. Back and J.v. Wright. Refinement Calculus A Systematic Intro-

duction 1998 edition.
[19] R-J. Back. Correctness preserving program refinements: Proof theory

and applications. Mathematical Centre Tracts, 131, 1980.
[20] E. Denney. A theory of program refinement. Technical Report ECS-

LFCS-99-412, University of Edinburgh, 1999.
[21] D. Bert, S. Boulme, M-L. Potet, A. Requet and L. Voisin. Adaptable

Translator of B Specifications to Embedded C Programs. In FME 2003.
[22] http://sqrl.mcmaster.ca/pacemaker.htm. Pacemaker Formal Methods

Challenge. Retrieved on 10th Feb 2012.
[23] E. Vielvoije. SPIN’s Promela to Java Compiler, with help from Stratego.

In Master’s Thesis 2008 TU Delft.
[24] https://github.com/codelion/SpinR. SpinR - Spin with Refinement. Re-

trieved on 21th Feb 2013
[25] S. Tripakis and C. Courcoubetis. Extending Promela and Spin for Real

Time. In TACAS 1996.

APPENDIX

RT-Promela Model (Mutual Exclusion)

#define N 5 /* number of processes */
#define deltaB 1
#define deltaC 2
clock y[N];
int x,crit;
proctype P (byte id)
{do::

reset{y[id]} x == 0 ->
when{y[id < deltaB} reset{y[id]}

x=id+1 ->
atomic{when{y[id]>deltaC}

x==id+1;
crit++;} ->

atomic{x=0;crit--;}
od}

init{
byte proc;
atomic{

crit = 0;
proc = 1;
do
:: proc <= N ->

run P (proc%N);
proc = proc + 1

:: proc > N -> break
od}

}

Refined C Implementation

#define N 5 /* number of processes */
#define deltaB 1
#define deltaC 2
time_t y[N];
int x,crit;
void P (int id)
{while(1){

struct timespec ts;
clock_gettime(CLOCK_REALTIME,&ts);
time_t now = ts.tv_sec;
y[id] = now;
if(x == 0){
struct timespec ts;
clock_gettime(CLOCK_REALTIME,&ts);
time_t now = ts.tv_sec;
if((now-y[id]) < deltaB){
struct timespec ts;
clock_gettime(CLOCK_REALTIME,&ts);
time_t now = ts.tv_sec;
y[id] = now;
x=id+1;
pthread_mutex_lock(&mutex);
struct timespec ts;
clock_gettime(CLOCK_REALTIME,&ts);
time_t now = ts.tv_sec;
if((now-y[id]) > deltaC){

if(x==id+1)
crit++;}

pthread_mutex_unlock(&mutex);
pthread_mutex_lock(&mutex);
x=0;
crit--;
pthread_mutex_unlock(&mutex);}}}

}

void main(){
pthread_mutex_t mutex;
pthread_mutex_init(&mutex, NULL));
pthread_t threads[N];
int proc;
struct timespec ts;
pthread_mutex_lock(&mutex);
clock_gettime(CLOCK_REALTIME, &ts);
time_t now = ts.tv_sec;
for(int i = 0;i<=N;i++)
y[i] = now;
pthread_mutex_unlock(&mutex);
pthread_mutex_lock(&mutex);
crit = 0;
proc = 1;
while(1){

if(proc <= N){
int i = proc % N;
pthread_create(&thread[i],NUL,P,i);
proc = proc + 1;}

if(proc > N) break;}
pthread_mutex_unlock(&mutex);
pthread_mutex_destroy(&mutex);
pthread_exit(NULL);
}

